
ORIGINAL RESEARCH
published: 06 November 2019
doi: 10.3389/fnins.2019.01159

Frontiers in Neuroscience | www.frontiersin.org 1 November 2019 | Volume 13 | Article 1159

Edited by:

Enkelejda Kasneci,

University of Tübingen, Germany

Reviewed by:

Evangelia-Regkina Symeonidou,

University of Florida, United States

Solomon G. Diamond,

Dartmouth College, United States

*Correspondence:

Seyed Yahya Shirazi

shirazi@ieee.org

Specialty section:

This article was submitted to

Brain Imaging Methods,

a section of the journal

Frontiers in Neuroscience

Received: 01 March 2019

Accepted: 14 October 2019

Published: 06 November 2019

Citation:

Shirazi SY and Huang HJ (2019) More

Reliable EEG Electrode Digitizing

Methods Can Reduce Source

Estimation Uncertainty, but Current

Methods Already Accurately Identify

Brodmann Areas.

Front. Neurosci. 13:1159.

doi: 10.3389/fnins.2019.01159

More Reliable EEG Electrode
Digitizing Methods Can Reduce
Source Estimation Uncertainty, but
Current Methods Already Accurately
Identify Brodmann Areas
Seyed Yahya Shirazi* and Helen J. Huang

Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL, United States

Electroencephalography (EEG) and source estimation can be used to identify brain

areas activated during a task, which could offer greater insight on cortical dynamics.

Source estimation requires knowledge of the locations of the EEG electrodes. This

could be provided with a template or obtained by digitizing the EEG electrode locations.

Operator skill and inherent uncertainties of a digitizing system likely produce a range

of digitization reliabilities, which could affect source estimation and the interpretation

of the estimated source locations. Here, we compared the reliabilities of five digitizing

methods (ultrasound, structured-light 3D scan, infrared 3D scan, motion capture probe,

and motion capture) and determined the relationship between digitization reliability

and source estimation uncertainty, assuming other contributors to source estimation

uncertainty were constant. We digitized a mannequin head using each method five times

and quantified the reliability and validity of each method. We created five hundred sets of

electrode locations based on our reliability results and applied a dipole fitting algorithm

(DIPFIT) to perform source estimation. The motion capture method, which recorded the

locations of markers placed directly on the electrodes had the best reliability with an

average electrode variability of 0.001 cm. Then, in order of decreasing reliability were the

method using a digitizing probe in the motion capture system, an infrared 3D scanner,

a structured-light 3D scanner, and an ultrasound digitization system. Unsurprisingly,

uncertainty of the estimated source locations increased with greater variability of EEG

electrode locations and less reliable digitizing systems. If EEG electrode location variability

was ∼1 cm, a single source could shift by as much as 2 cm. To help translate

these distances into practical terms, we quantified Brodmann area accuracy for each

digitizing method and found that the average Brodmann area accuracy for all digitizing

methods was >80%. Using a template of electrode locations reduced the Brodmann

area accuracy to ∼50%. Overall, more reliable digitizing methods can reduce source

estimation uncertainty, but the significance of the source estimation uncertainty depends

on the desired spatial resolution. For accurate Brodmann area identification, any of the

digitizing methods tested can be used confidently.

Keywords: electrocortical dynamics, electrode position, 3D scanning, source localization, spatial accuracy,

independent component analysis (ICA), mobile brain/body imaging (MoBI)
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1. INTRODUCTION

Estimating active cortical sources using electroencephalography
(EEG) is becoming widely adopted in multiple research areas as
a non-invasive and mobile functional brain imaging modality
(Nyström, 2008; Landsness et al., 2011; Bradley C. et al., 2016;
Tsolaki et al., 2017). EEG is the recording of the electrical activity
on the scalp and is appealing for studying cortical dynamics
duringmovements and decisionmaking due to the high temporal
(i.e., millisecond) resolution of electrical signals. One of the
challenges of using EEG is that the signal recorded in an EEG
electrode is a mixture of electrical activity from multiple sources,
which include the cortex, muscles, heart, eye, 60 Hz noise from
power lines, and motion artifacts from cable sway and head
movements (Kline et al., 2015; Symeonidou et al., 2018). To
meaningfully correlate EEG analyses with brain function, the
unwanted source content such as muscle activity, eye blinks, and
motion artifacts need to be attenuated or separated from the
cortical signal content. A multitude of tools such as independent
component analysis, artifact rejection algorithms, and phantom
heads have been developed to address the need to separate the
source signals to extract the underlying cortical signal (Delorme
et al., 2012; Mullen et al., 2013; Artoni et al., 2014; Oliveira
et al., 2016; Nordin et al., 2018). Using high-density EEG and
improving EEG post-processing techniques have also improved
spatial resolution of source estimation to ∼1 cm in experimental
studies (He andMusha, 1989; Lantz et al., 2003; Scarff et al., 2004;
Klamer et al., 2015; Hedrich et al., 2017; Seeber et al., 2019).

Source estimation requires knowing the EEG signals and the
locations of the EEG electrodes to estimate the locations of the
cortical sources that produced the EEG signals measured on
the scalp. An intuitive assumption of source estimation is that
precise placement of the EEG electrodes on the scalp is essential
for accurate estimation of source locations (Keil et al., 2014).
Computational studies reported shifts of 0.5–1.2 cm in estimated
source locations as a result of 0.5 cm (or 5◦) error in the electrode
digitization (Kavanagk et al., 1978; Khosla et al., 1999; Wang and
Gotman, 2001; Beltrachini et al., 2011; Akalin Acar and Makeig,
2013). For EEG studies conducted inside a magnetic resonance
imaging (MRI) device, the electrode locations with respect to
the cortex can be captured and processed with <0.3 cm position
error, which results in near perfect alignment of identified brain
areas (Scarff et al., 2004; Marino et al., 2016). However, for
studies that do not involve MRI, the electrode locations should
be “digitized,” i.e., recorded digitally via a three-dimensional (3D)
position recording method (Koessler et al., 2007). These digitized
locations can then be coupled with either a subject-specific or an
averaged template of the brain structure obtained from MRI or
other imaging techniques to perform EEG source estimation.

Just one decade ago in the mid-2000’s, the main digitizing
technologies available were based on ultrasound and
electromagnetism, which were expensive, time consuming,
and needed trained operators (Koessler et al., 2007; Rodríguez-
Calvache et al., 2018). An ultrasound digitizing system uses
differences in ultrasound-wave travel times from emitters on
the person’s face and a digitizing wand to an array of receivers
to estimate the 3D location of the tip of the digitizing wand

with respect to the face emitters. An electromagnetic system
tracks the locations of receivers placed on the person’s head and
on a wand in an emitted electromagnetic field to estimate the
position of the tip of the wand with respect to the head receivers.
The environment must be clear of magnetic objects when using
an electromagnetic digitizing system, otherwise the electrode
locations will be warped (Engels et al., 2013; Cline et al., 2018).

Recent efforts have focused on developing technologies to
make digitization more accessible and convenient, mainly by
incorporating image-based technologies (Baysal and Sengül,
2010; Koessler et al., 2010). For example, using photogrammetry
and motion capture methods for digitization can provide
accurate electrode locations in a short period of time (Reis
and Lochmann, 2015; Clausner et al., 2017). Photogrammetry
involves using cameras to take a series of color images at
different view angles. These images can then be analyzed to
identify the locations of specific points in the 3D space (Russell
et al., 2005; Clausner et al., 2017). Motion capture typically uses
multiple infrared cameras around the capture volume to take
simultaneous images to identify the locations of reflective or
emitting markers. If markers are placed directly on the EEG
electrodes, a motion capture system could conveniently record
the position of all of the electrodes at once (Engels et al.,
2013; Reis and Lochmann, 2015). Motion capture could also
be used to record the position of the tip of a probe, a rigid
body with multiple markers, to digitize 3D locations of the
electrodes with respect to the reflective face markers. Several
recent commercial digitizing systems use simple motion capture
approaches to digitize EEG electrode locations with or without
a probe (Cline et al., 2018; Song et al., 2018; ANT-Neuro, 2019;
Rogue-Resolutions, 2019).

Another option for digitizing EEG electrodes that has also
gained much interest recently are 3D scanners. A common
approach for 3D scanning is detecting the infrared or visible
reflections of projected light patterns with a camera to estimate
the shape of an object (Chen and Kak, 1987). The 3D scanned
shapes can then be plotted in a software program such as
MATLAB, and the locations of specific points on the 3D scanned
shape can be determined. Recently, common EEG analysis
toolboxes such as EEGLAB (Delorme and Makeig, 2004) and
FieldTrip (Oostenveld et al., 2010) support using 3D scanners
to digitize the electrode locations. Studies suggest that 3D
scanners can improve digitization accuracy and significantly
reduce digitization time (Taberna et al., 2019). Using other
camera-based systems such as time-of-flight scanners and virtual
reality headsets were also reported to provide comparable
digitization reliabilities as the ultrasound or electromagnetic
digitizing methods, while reducing the time spent for digitizing
the EEG electrodes (Vema Krishna Murthy et al., 2014; Zhang
et al., 2014; Cline et al., 2018).

The purposes of this study were (1) to compare the
reliability and validity of five digitizing methods and (2) to
quantify the relationship between digitization reliability and
source estimation uncertainty. We determined source estimation
uncertainty using spatial metrics and Brodmann areas. We
hypothesized that digitizing methods with less reliability would
increase uncertainty in the estimates of the electrocortical

Frontiers in Neuroscience | www.frontiersin.org 2 November 2019 | Volume 13 | Article 1159

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Shirazi and Huang Digitization Reliability and Source Estimation Uncertainty

source locations. For our analyses, we assumed that all other
contributors to source estimation uncertainty such as variability
of head-meshes and assumptions of electrical conductivity values
were constant.

2. METHODS

We fitted a mannequin head with a 128-channel EEG
cap (ActiveTwo EEG system, BioSemi B.V., Amsterdam, the
Netherlands, Figure 1A) and used this mannequin head setup
to record multiple digitizations of the locations of the EEG
electrodes and fiducials, i.e., right preauricular, left preauricular,
and nasion (Klem et al., 1999). To prevent the cap from
moving from digitization to digitization, we taped the cap to the
mannequin head (Figure 1A). To help ensure that the fiducials
were digitized at the same locations for every digitizing method,
we marked the fiducials with small 4-mm markers on the
mannequin head and with small o-rings on the cap (Figure 1A).

2.1. Digitizing Methods
We compared five methods for digitization: ultrasound,
structured-light 3D scanning, infrared 3D scanning, motion
capture with a digitizing probe, and motion capture with
reflective markers. We calibrated each digitizing device only
once and completed collecting data for each digitizing in a
single session (see Table S1 in the supplement for the calibration
results). We also kept the position of the mannequin head,
mannequin head orientation, start and endpoint of digitizing,
lighting, and temperature constant to avoid introducing
additional sources of error to our data collection and analysis.

For each method, four different members of the laboratory
digitized the mannequin head five times (one person performed
the digitization twice). All of the operators had prior experience
in digitizing and were asked to follow each method’s specific
guidelines. We imported the digitization data to MATLAB
(version 9.4, R2018a, Mathworks, Natick, MA) and performed all
analyses in MATLAB.

2.1.1. Ultrasound
We used a Zebris positioning system with ElGuide software
version 1.6 (Zebris Medical GmBH, Tübingen, Germany,
Figure 1B) to digitize the electrodes with an ultrasound method.
Following the Zebris manual, we placed 3 ultrasound emitters on
the face of the mannequin head, placed the receiver module in
front of the mannequin head, and used the digitizing wand to
record the electrode locations. We calibrated the system using
the ElGuide calibration procedure. We marked the fiducials
repeatedly until we obtained fiducials with a digitized 3D
location of nasion that was < 2 mm with respect to the
midline and with preauriculars that had a difference of <

5 mm in the anterior/posterior and top/bottom directions.
Operators followed the interactive ElGuide template to digitize
each electrode location. This process involved fully placing
the wand tip into the electrode wells and ensuring that the
receivers were able to see all emitters at the time of recording
electrode locations, so that the estimated position of the wand
tip was stable.

2.1.2. Structured-Light 3D Scan
Weused an Einscan Pro+ (Shining 3DTech. Co. Ltd., Hangzhou,
China, Figure 1C) to digitize the electrodes with a structured-
light 3D scanner. This scanner estimates the shape of an object
from reflections of the projected visible lights. We calibrated the
Einscan Pro+ one time with the Einscan’s calibration board and
followed the software’s step-by-step instructions. We used the
scanner’s hand-held rapidmode with high details and allowed the
scanner to track both texture and markers during the scanning
process. Each operator scanned the mannequin head until the
scan included the cap, fiducials, and the face. We then applied
the watertight model option to the scan and exported the model
as a PLY file to continue the digitization process in MATLAB.

After acquiring the 3D scan, the 3D head model needed to be
imported into a software program, where the operator manually
marked the EEG electrode locations on the 3D scanned head
model. We followed the FieldTrip toolbox documentation for
digitization using 3D scanners (FieldTrip, 2018) and created a
MATLAB script file for importing and digitizing 3D models of
the mannequin head. The operator first marked the fiducials
on the mannequin head model in MATLAB to build up the
head coordinate system. Then, the operator marked the locations
of the electrodes on the screen in each section of the cap in
alphanumerical order (A, B, C, D, and the fiducials, total: 131
locations, Figure 1A). The operators referred to a physical EEG
cap for guidance to help mark the locations in the expected order
because these scans were not in color and the letter labels of the
electrodes were not visible on the 3D model.

2.1.3. Infrared 3D Scan
We used the Structure sensor (model ST01, Occipital Inc., San
Francisco, CA) integrated with an Apple R© iPad (10-inch Pro) to
digitize the electrodes with an infrared dot-projection 3D scanner
(Figure 1D). This scanner shares similar working principles as
a structured-light scanner but uses infrared light projection
to estimate the shape of objects. We calibrated the sensor in
daylight and office light according to the manual. We scanned
the head using the high color and mesh resolutions. When the
mannequin head was completely in the sensor’s field of view,
the operator started scanning. The Structure sensor interface
gives the operator visual feedback to help the operator obtain
a complete high-quality scan. We visually inspected that the
scanned model matched the mannequin and then exported the
model to the MATLAB environment. We used the FieldTrip
toolbox to import and digitize the 3D mannequin head scans
following the same procedure described for the structured-light
3D scan digitization.

2.1.4. Motion Capture Probe
We used a digitizing probe and a 22-camera motion capture
system (OptiTrack, Corvallis, OR) to digitize the electrodes. The
probe is a solid rigid body with four fixed reflective markers
(Figure 1E). We placed three reflective makers on the face of
the mannequin to account for possible movements of the head
during data collection. Each operator digitized the fiducials and
each section of the cap (A, B, C, D, Figure 1A) in separate takes.
We placed double o-rings 7 mm away from the probe tip to
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FIGURE 1 | The mannequin head used for digitization and the five digitizing methods tested. (A) The mannequin head fit with the 128-electrode EEG cap used for all

of the digitizing recordings. The right and left preauriculars were marked by o-rings and nasion was marked with a reflective marker. The color-coded map of the cap

shows the different electrode strips and the order of digitization from (A–D). (B) The ultrasound digitizing system and an operator placing the tip of the wand in the

electrode well on the cap. Two of the total five ultrasound emitters on the face and wand, as well as the data acquisition (DAQ) box and the receiver module are also

indicated. (C) The structured-light 3D scanner and an operator manually marking the locations of individual electrodes of the scanned model in MATLAB. (D) The

infrared 3D scanner and an operator manually marking the locations of individual electrodes of the colored 3D scan in MATLAB. (E) The motion capture digitizing

probe with a close-up view of the o-rings placed 7 mm away from the tip. The probe has a similar role to the wand in the ultrasound system. (F) The EEG cap with 35

3D-printed EEG electrode shaped reflective markers, 3 face markers, and 3 fiducial markers used for the motion capture digitization. We placed reflective markers on

top of the preauricular o-rings to be able to capture fiducial locations. The electrode map depicts the approximate locations of the digitized electrodes and grounds.

ensure consistent placement of the tip inside the electrode wells
(Figure 1E). The tracking error of the motion capture system was
<0.4 mm.

2.1.5. Motion Capture
We used the motion capture system to record the locations of 35
3D printed reflective markers that resembled a 4-mm reflective
marker on top of a BioSemi active pin electrode (Figure 1F).
We did not use actual BioSemi electrodes, which have wires that
could prevent the cameras from seeing themarkers.We placed 27
EEG electrode shaped markers to approximate the international
10–20 EEG cap layout and placed an additional eight EEG
electrode shapedmarkers randomly on the cap to add asymmetry
to improve tracking of the markers. We recorded 2-s takes of the
positions of the 35 markers, three markers on the fiducials, and

three face markers. Before transforming the locations to the head
coordinate system, we identified and canceled movements of the
head during data collection using the three face markers.

2.2. Transformation to Head Coordinates
We developed a dedicated pipeline to convert the digitized
electrode locations for each digitizing method to a format that
could be imported to the common toolboxes for EEG analyses.
Because EEGLAB and FieldTrip can easily read Zebris ElGuide’s
output file (an SFP file), we created SFP files for all digitizations.

The head coordinate system in ElGuide defines the X-axis
as the vector connecting the left preauricular to the right
preauricular and the origin as the projection of the naison to the
X-axis. Therefore, the Y-axis is the vector from the origin to the
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naison, and the Z-axis is the cross product of the X and Y unit
vectors, which starts from the origin.

2.3. Digitization Reliability and Validity
Variations in the digitized electrode locations could originate
from random errors and systematic bias. The effects of random
errors can be quantified as variability. Reliability is inversely
related to variability. Systematic bias can be quantified as the
difference between measured locations and the ground truth
locations. Validity is inversely related to systematic bias.

2.3.1. Digitization Reliability
To assess the effects of random errors, we quantified digitization
variability. We averaged the five digitized locations for each
electrode to find the centroid. We then calculated the average
Euclidean distances of the five digitized points to the centroid
for each electrode and averaged those distances for all of the
electrodes to quantify within-method variability. We identified
and excluded outliers, single measurements that were beyond
five standard deviations of the average variability for a digitizing
method (1 out of 655 measurements for ultrasound, 4 out of
655 measurements for motion capture probe and 2 out of 190
measurements for motion capture). If there were outliers, we
recalculated the average digitization reliability with the updated
dataset. Throughout the paper, we use “variability” to refer
to “within-method variability.” Because reliability is inversely
related to the variability, the most reliable method has the
least variability.

2.3.2. Digitization Validity
To quantify the systematic bias of a digitizing method, we
calculated the average Euclidean distance between the centroid
for a digitizing method and the ground-truth centroid for the
same electrode. We used the electrode centroids from the most
reliable digitizing method as the ground-truth (Dalal et al., 2014).
Then, we averaged the Euclidean distances for the 128 electrodes
to obtain the magnitude of the systematic bias for each digitizing
method. Because validity is inversely related to the systematic
bias, the most valid method has the least systematic bias.

2.4. Source Estimation Uncertainty
To generalize the possible effects of digitization reliability, we
synthesized 500 sets of electrode locations with a Gaussian
distribution using the variability average and standard deviation
calculated for each digitizing method in section 2.3.1. We
excluded the motion capture method from the source estimation
uncertainty analyses because we only recorded the locations
of 35 EEG electrode shaped reflective markers instead of all
128 EEG electrode locations. We used a single representative
128-channel EEG dataset from a separate study for the
source estimation analyses. We applied the Adaptive Mixture
Independent Component Analysis (AMICA) to decompose EEG
signals into independent components (ICs) (Palmer et al., 2007),
which has been reported to represent dipolar activities of
different brain and non-brain sources (Delorme et al., 2012).

We used EEGLAB’s DIPFIT toolbox version 2.3 to estimate
a dipole equivalent for each IC and applied DIPFIT 500 times

for each digitizing method. Each DIPFIT iteration used one of
the 500 sets of synthesized electrode locations, the Montreal
Neurological Institute (MNI) headmodel (Evans et al., 1993), and
the ICs from the AMICA. The MNI head model is an averaged
structural head model from 305 participants and provides 1
× 1 × 1 mm resolution. To convert the mannequin head to
be compatible with the MNI model, we warped the electrode
locations to the MNI model using only the fiducials to preserve
individual characteristics of the mannequin head. We used the
dipoles produced with the electrode location centroids from the
digitizing method with the highest reliability and identified the
dipoles that described >85% of the IC signal variance. We also
excluded any dipole that was estimated to be outside of the
brain volume for any of the DIPFIT results (500/method × five
methods= 2,500 DIPFIT results). In the end, 23 ICs remained.

2.4.1. Spatial Uncertainty
We fitted an enclosing ellipsoid with the minimum volume to
each IC’s cluster of 500 dipoles (Moshtagh, 2005) and quantified
spatial uncertainty in terms of the volume and width of the
ellipsoid. A larger ellipsoid volume indicated that a single dipole
could reside within a larger volume, and thus, had greater
volumetric uncertainty. A larger ellipsoid width indicated that a
single dipole could have a larger shift in location. We calculated
the ellipsoid’s width as the maximum distance that the IC’s
dipoles could have from one another. We averaged the volumes
and widths of all 23 ICs to quantify the spatial uncertainty for
each digitizing method.

2.4.2. Brodmann Area Accuracy
To identify Brodmann areas, we used a modified version
of the eeg_tal_lookup function from EEGLAB’s Measure
Projection Toolbox (MPT). This function looks for the anatomic
structures and Brodmann areas in a 10-mm vicinity of each
dipole and assigns the dipole to the Brodmann area with the
highest posterior probability (Lancaster et al., 2000; Bigdely-
Shamlo et al., 2013). We identified the “ground-truth” Brodmann
areas from the dipoles estimated using the centroid electrode
locations of the most reliable digitizing method. Then, we
calculated Brodmann area accuracy as the percentage of the other
500 Brodmann area assignments that matched the “ground-
truth” Brodmann area.

We also analyzed Brodmann area accuracy using a template
of electrode locations based on the MNI head model (Oostenveld
and Praamstra, 2001). Because the BioSemi 128-electrode cap is
not based on the 10-10 electrode map, instead of using the 10-10
electrode locations, we warped the BioSemi electrode locations
to reside on the outer surface of the MNI head model. We then
compared the Brodmann area identified from the template to the
“ground-truth” Brodmann area. Since there is only one template
for the Biosemi 128-electrode location on the MNI head model
and the locations are fixed, we could not calculate a percentage
of assignments; thus, the template’s Brodmann area for each IC
was either a hit or miss. However, we did calculate and compare
the distance between the template’s dipole to the “ground truth”
dipole. We also compared the distance between each digitizing
method’s dipoles to the “ground truth” dipole. These distances
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FIGURE 2 | Visualization of the digitization reliability. Colored and scaled dots show the electrode location within-method variability for all 128 electrodes for the five

digitizing methods. Ultrasound had the greatest variability and was the least reliable. The electrodes at the back of the head also tended to have the greatest variability.

The motion capture method had the least variability and was the most reliable. The color bar and scale for the radii of the dots illustrate the magnitude of variability.

indicated whether the dipoles estimated using each digitization
method were near the “ground truth” dipole.

2.5. Statistical Analysis
We used a one-way repeated measures analysis of variance
(rANOVA) to compare the reliability and validity of the digitizing
methods, the spatial uncertainty of the estimated dipoles, and
the Brodmann area accuracy. For significant rANOVA’s, we
performed Tukey–Kramer’s post-hoc analysis to determine which
comparisons were significant. We also performed a one-sided
Student t-test to identify if the Brodmann area accuracy of each
digitizing method was different from the template. The level of
significance for all statistics was α = 0.05. For rANOVA, we
reported degrees of freedom (DF), Fisher’s F-test result and the
probability value (p-value). We used p-values to report post-hoc
and Student t-test results.

Additionally, we fit a polynomial, using a step-wise linear
model (MATLAB stepwiselm function), to describe spatial
uncertainty as a function of digitization variability. We forced the
y-intercept of the first-order polynomials and the y-intercept and
y’-intercept of the higher-order polynomials to be zero. We set
the y-intercepts to be zero for two reasons: (1) when we used the
exact same electrode locations and performed DIPFIT 100 times,
themaximumdistance between source locations was on the order

of 10−4 cm, and (2) the fit should not model the uncertainty
values < 0 for positive digitization variability values. The step-
wise linear model started with a zero order model and only added
a higher-order polynomial term when necessary. The criterion
for adding a higher-order polynomial term to the model was a
statistically significant decrease of the sum of the squared error
between the data points and the predicted values.

3. RESULTS

The variability results for the five digitizing methods were visibly
different, and electrodes located at the back of the head tended
to have greater variability (Figure 2). The variability for the
ultrasound method was generally the largest compared to the
other methods and could be as large as ∼1.5 cm for electrodes
at the back of the head. The variability for all electrodes digitized
with the motion capture method was small, being no greater than
0.001 cm.

There was a range of reliabilities among the digitizingmethods
(Figure 3A). The motion capture digitizing method had the
smallest variability of 0.001 ± 0.0003 cm (mean ± standard
deviation) and hence, the greatest digitization reliability. The
motion capture probe was the next most reliable method with an
average variability of 0.147 ± 0.03 cm, followed by the infrared
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A

B

FIGURE 3 | (A) Reliabilities, quantified as the average variability, were

significantly different for the five digitizing methods. The reliability of each

digitizing method was significantly different from all other methods

(*Tukey–Kramer p’s < 0.001 for all pair-wise comparisons). (B) Validity,

quantified as the average systematic bias showed that the structured-light 3D

scan had the largest systematic bias compared to ultrasound and the infrared

3D scan. The motion capture probe method was assumed to be the ground

truth and thus has no systematic bias and is not shown. *Tukey–Kramer p’s <

0.001. Error bars are the standard deviation. Infrared = infrared 3D scan;

str.-light = structured-light 3D scan; m.+probe = motion capture probe;

mocap = motion capture.

3D scan (0.24 ± 0.05 cm), the structured-light scan (0.50 ±

0.09 cm), and the ultrasound digitization (0.86 ± 0.3 cm). The
variability for the digitizing methods were significantly different
(rANOVA DF = 4, F = 1,121, p < 0.001), and the variability for
each digitizing method was significantly different from all other
digitizing methods (post-hoc Tukey–Kramer, p’s < 0.001).

The systematic biases, thus validities, of the digitizingmethods
were significantly different (rANOVA DF = 2, F = 143.1, p <

0.01, Figure 3B). The digitization validity of the structured-light
3D scan was the worst of the digitizing methods with a systematic
bias of 0.63 ± 0.18 cm that was significantly larger than the
other digitizing methods (post-hoc Tukey–Kramer, p’s <0.001).
The digitization validity of the ultrasound and the infrared 3D
scans were similar, with systematic biases of 0.43± 0.18 and 0.41
± 0.13 cm, respectively.

Within a given digitizing method, dipoles generally showed
similar spatial uncertainty while different digitizing methods
generally showed differences in spatial uncertainty (Figure 4).
Ellipsoid sizes for the motion capture probe, infrared 3D scan,
structured-light 3D scan, and ultrasound digitization increased
in order from the smallest to the largest, respectively. The
enclosing ellipsoids of adjacent ICs also overlapped when the
ellipsoid size was large, on the order of 1 cm3, such as for the
ultrasound method.

Ellipsoid volumes increased significantly with increasing
digitization variability among the digitizing methods and had a
cubic relationship (r2 = 1.00, Figure 5A). The motion capture
probe and infrared 3D scan had the smallest uncertainty volumes
(mean ± standard error) 0.007 ± 0.0007 and 0.029 ± 0.0027
cm3, respectively, whereas ultrasound had the largest uncertainty
volume (1.37 ± 0.13 cm3). Structured-light 3D scan had an
average uncertainty volume of 0.21 ± 0.014 cm3. The volumes
of the enclosing ellipsoids showed a significant between-group
difference (rANOVA, DF = 3, F = 114.4, p < 0.001), and all
uncertainty volume combinations of paired digitizing methods
were significantly different (Tukey–Kramer post-hoc, p’s<0.001).

Ellipsoid widths also increased significantly with increasing
digitization variability among the digitizing methods but had
a linear relationship where the ellipsoid width was twice the
size of the digitization variability (r2 = 1.00, Figure 5B). The
average ellipsoid width was the smallest for the motion capture
probe (mean ± standard error), 0.34 ± 0.018 cm. The average
ellipsoid widths for the two 3D scans were 0.53± 0.028 cm for the
infrared 3D scan and 1.09± 0.051 cm for the structured-light 3D
scan. The largest average ellipsoid width was for the ultrasound
digitization, 1.90 ± 0.081 cm. The rANOVA for the widths
of the enclosing ellipsoids showed a significant between-group
difference (DF= 3, F = 434.8, p< 0.001) and all combinations of
paired digitizing methods had significantly different uncertainty
widths (Tukey–Kramer post-hoc p’s<0.001).

The Brodmann area accuracy among the digitizing methods
could be extremely consistent within some ICs and could also
be drastically different for other ICs (Figure 6 and in Figure S1).
In general, the digitizing method with the highest reliability also
had the highest Brodmann area accuracy within a given IC.
For some ICs, all digitizing methods had >98% Brodmann area
accuracy. For other ICs, the Brodmann area accuracy decreased
as reliability decreased. The most drastic example for this dataset
was BA18 in Figure 6, where the Brodmann area accuracy was
86% with the motion capture probe method but dropped to 26%
with the ultrasound method.

The Brodmann area accuracy for the digitizing methods and
the template were significantly different (Figure 7). The motion
capture probe had the highest Brodmann area accuracy, 93%
± 16 (mean ± standard deviation). The remaining digitizing
methods in order of decreasing Brodmann area accuracy were the
infrared 3D scan (91 ± 19%), the structured light 3D scan (87 ±
23%), and the ultrasound digitization (79± 25%). The rANOVA
for the Brodmann area accuracy showed a significant between-
group difference (DF= 4, F= 306.4, p< 0.001). Post-hoc Tukey–
Kramer analysis showed significant pair-wise differences between
all groups except the motion capture probe and infrared 3D scan.
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FIGURE 4 | An example depiction of the synthesized electrode locations with a Gaussian distribution using the same averaged variability and standard deviation as

the structured-light 3D scans, and the enclosing ellipsoids of the 500 dipoles for each independent component (IC) and digitizing method. Black dots = centroids of

the electrode locations. Light gray dots = first 150 out of 500 synthesized electrode locations. Each color represents a different IC (23 ICs total). A close-up view of the

ellipsoid fit for an Anterior Cingulate IC based on the reliability of the ultrasound digitizing method.

Using the MNI electrode template decreased the Brodmann area
accuracy to 53% and was significantly different compared to any
of the digitizing methods (p’s<0.001). The average distance of the
dipoles of each digitizing method to the “ground-truth” dipole
was<0.4 cm while the average distance of the template dipoles to
the “ground-truth” dipole was ∼1.4 cm.

4. DISCUSSION

We found that there was a range of reliability and validity
values among the digitizing methods. We also observed that less
reliable digitizing methods translated to greater uncertainty in
source estimation and poorer Brodmann area accuracy, assuming
all other contributors to source estimation uncertainty were
constant. Of the five digitizing methods (ultrasound, structured-
light 3D scan, infrared 3D scan, motion capture probe, and
motion capture), the most reliable digitizing method was the
motion capture while ultrasound was the least reliable. The
structured-light digitizing method had the greatest systematic
bias and was thus the least valid method. We had hypothesized
that less reliable digitizing methods would lead to greater source
estimation uncertainty. In support of our hypothesis, digitizing
methods with decreased reliability resulted in increased spatial
uncertainty of the dipole locations and decreased Brodmann area
accuracy. Surprisingly, any digitizing method led to an average
Brodmann area accuracy of >80%. Using a template of electrode
locations decreased Brodmann area accuracy to 53%. Overall,
these results indicate that electrode digitization is crucial for

accurate Brodmann area identification using source estimation
and that more reliable digitizing methods are beneficial if the
functional resolution for interpreting source estimation is more
specific than Brodmann areas.

To help summarize the advantages of the different digitization
systems, we created a table comparing the digitization reliability,
dipole uncertainty, speed, affordability, and ease-of-use score,
which are different factors that could influence which digitization
a laboratory might choose to use (Table 1). We estimated the
digitizing speed as how much time each digitization required.
The fastest digitizing method that required manual electrode
marking was the motion capture probe method, which took
5 min to mark each electrode and 5 min to calibrate the
system. The least expensive system was the infrared 3D scanner,
which is likely to become even less expensive as cameras on
smartphones become more advanced and could soon be used
to obtain an accurate 3D scan for digitizing EEG electrodes.
We also surveyed the operators to score each digitization on
a scale of 1–5, with 1 being easy to use. While performing
the actual 3D scan was perceived as being easy, marking the
electrodes in MATLAB was not an easy task. The operators

indicated that the motion capture was the easiest and that

ultrasound was the most difficult method to use. To create a final

ranking, we averaged the rankings for each factor (digitization

reliability, dipole uncertainty, speed, affordability, and ease-of-
use) to obtain a method score. Based on the method score, the
best digitizing method was the motion capture. The next best
method was tied between the motion capture probe and infrared
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A

B

FIGURE 5 | The relationships between digitization variability and dipole spatial

uncertainty. (A) Digitization variability and ellipsoid volume had a cubic

relationship with an r2 of 1.00. (B) Digitization variability and ellipsoid width had

a linear relationship with an r2 of 1.00. Error bars are the standard error.

*Tukey–Kramer p’s < 0.001 for all pair-wise comparisons. m.+probe = motion

capture probe; infrared = infrared 3D scan; str.-light = structured-light 3D

scan.

3D scan. The fourth best digitizing method was the structured-
light 3D scan, and the worst digitizingmethodwas the ultrasound
method, which ranked poorly for all factors.

Our results suggest that the motion capture method currently
provides the most reliable electrode digitization. The average
variability of the motion capture digitization was less than
the mean calibration error reported by the motion capture
system (0.001 vs. <0.04 cm, respectively). This difference might
be because of the different natures of the two variabilities.
The digitization variability is defined for a seated subject (or
mannequin) and multiple sub-second snapshots of the static
electrodes placed on the cap. However, the mean calibration
error is defined for a set of moving markers in a much larger

volume across several minutes of a calibration period. Using
the same position for mannequin placement and lack of head
movement may have also contributed to the small digitization
variability using motion capture. In a previous study, Reis
and Lochmann developed an active-electrode motion capture
approach for an EEG system with 30 electrodes and reported
small deviation of the digitized locations from the ground truth
locations (Reis and Lochmann, 2015). In addition to having sub-
millimeter variability, the motion capture method only required
1–2 s to digitize, assuming that the markers were already
placed on the EEG electrodes. However, tracking 64+ markers
on an EEG cap may be challenging for most motion capture
systems. Determining the maximum number of EEG electrodes
that could be digitized using a motion capture approach could
be beneficial and pursued in future work. Laboratories that
already have a motion capture system and do not need to
digitize more than 64 EEG electrodes could conveniently use the
motion capture method, which would provide a cost-effective,
fast, and easy digitizing process. For laboratories that need
to digitize 64+ electrodes and have a motion capture system
already, the motion capture probe digitizing method would be
the recommended option.

Our results support recent efforts to use 3D scanners as a
reliable and cost-effective method to digitize EEG electrodes
(Chen et al., 2019; Homölle and Oostenveld, 2019; Taberna
et al., 2019). Both the structured-light and infrared 3D scanning
methods were more reliable than digitizing with the ultrasound
method. Furthermore, our reliability results for the two 3D
scanners align well with a recent study that showed that an
infrared 3D scan could automatically digitize electrode locations
on three different EEG caps and achieve good reliability after
additional post-processing (Taberna et al., 2019). Of the two
3D scanners we tested, the less expensive infrared 3D scanner
was more reliable, had higher validity, and resulted in less
dipole uncertainty, compared to the structured-light 3D scanner.
Even though the structured-light 3D scanner provides more
details from the mannequin head and cap, those details did
not seem to be important for improving digitization reliability
or validity. Additionally, the highly detailed structured-light 3D
scans created large files and resulted in sluggish refresh rates
that made using FieldTrip toolbox to rotate and manipulate the
3D scans difficult. The infrared 3D scan, unlike the structured-
light 3D scan, was in color, which was helpful for the operators
to identify the EEG electrodes more easily on the computer
screen. In the future, artificial intelligence approachesmay be able
to fully automate the digitizing process and use the additional
topographic details from high resolution 3D scans. A continuous
image-based digitizing method such as using a regular video
recorded using a typical smartphone could also potentially be
developed to digitize EEG electrode locations.

Compared to simulation studies, our experimental results
demonstrated that source estimation uncertainty increased
steeply with increasing EEG electrode variability. We showed
that a digitizing method with an average variability of 1 cm
could lead to a shift of a single dipole by more than 2 cm,
which is >20% of the head radius. There is just one simulation
study that we know of that also showed a two-fold increase
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FIGURE 6 | Brodmann area (BA) accuracy for a subset of ICs. The dipole depicts the “ground truth” dipole produced from the most reliable digitizing method, the

motion capture probe method. The pie charts show the distribution of the Brodmann area assignments compared to the “ground truth” Brodmann area (shown in

bold). ICs in the left column had consistent Brodmann area assignments regardless of digitizing method while the ICs in the right column had more varied Brodmann

area assignments for the different digitizing methods. In general, less reliable digitizing methods led to less consistent Brodmann area assignments. Infrared = infrared

3D scan; str.-light = structured-light 3D scan; m.+probe = motion capture probe.

in source uncertainty for every unit of digitization variability
(Akalin Acar and Makeig, 2013). In that study, digitization
variabilities were created using systematic rotations applied to
every electrode location. The majority of the simulation studies
however, suggest that source uncertainty could only be as large
as the digitization variability (Khosla et al., 1999; Van Hoey
et al., 2000; Wang and Gotman, 2001; Beltrachini et al., 2011).
In one of the mathematical studies, the theoretical lower bound
of source estimation uncertainty was 0.1 cm for 0.5 cm shifts in
EEG electrode location (Beltrachini et al., 2011), which is 10x
smaller than our experimental results. While simulation studies
can be insightful, results should also be cross-validated with a
conventional source estimation method (e.g., DIPFIT, LORETA,
or minimum norm) to determine whether simulation results are
indicative of real-world source estimation uncertainty.

Because researchers often use Brodmann areas to describe
the function of a source, we translated our results to be in
terms of Brodmann area accuracy, which led to a few surprising
revelations. The main revelation was that despite the range
of digitization reliabilities, any of the digitizing methods we
tested produced an average Brodmann area accuracy >80%.
As long as sources are only discussed according to Brodmann

areas or larger cortical spatial regions, any current digitizing
method can be used. The second revelation was that using the
template electrode locations, instead of digitizing the electrodes,
significantly decreased Brodmann area accuracy from >80%
to ∼50%, which may be due to a ∼1.5 cm shift in dipoles
locations (Figure 7). This shift may occur because the template
removes information related to individual’s head shape. The
third revelation was that for several sources, the same Brodmann
area was almost always identified, regardless of the digitizing
method used (left column in Figure 6). For other sources, less
reliable digitizing methods led to more potential Brodmann
area assignments (right column in Figure 6), but those different
Brodmann areas may be functionally similar. Most likely, the
proximity of a source to the boundary of a Brodmann area as
well as the size of the Brodmann area contribute to Brodmann
area accuracy. Ultimately, the accuracy of source estimation will
depend on the target volumes of cortical regions of interest.

This study does not account for all of the possible sources
of errors contributing to digitizing EEG electrodes or source
estimation. We placed markers on the fiducials to control for
the digitization error of the fiducials, but in practice, marking
the fiducials while the subject wears the cap can be challenging.
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FIGURE 7 | Brodmann area accuracy plotted vs. the average dipole distance

from the “ground truth” dipole when using different digitizing methods and the

MNI template. Because larger distances between the dipoles and the “ground

truth” likely would decrease Brodmann area accuracy, we plotted the methods

on the x-axis at the method’s averaged dipole distance from the “ground truth”

dipole. The box-whisker plot contains the Brodmann area accuracy averages

for the 23 ICs. The Brodmann area accuracy average for an IC was the

average of the percentage of the 500 iterations when the Brodmann area

identified matched the “ground truth” Brodmann area for that IC. For the

template, 53% of the Brodmann areas assigned for the 23 ICs using the

template matched the “ground truth” Brodmann area. The Brodmann area

accuracy was significantly different among the digitizing methods, except

between the motion capture probe and infrared 3D scan (*Tukey–Kramer p’s <

0.001). The template’s Brodmann area accuracy was significantly different

than all digitizing methods (# Student’s t-test p’s < 0.001). m.+probe =

motion capture probe; infrared = infrared 3D scan; str.-light = structured-light

3D scan.

Mismarking a fiducial can significantly shift every dipole location
by 2 times the distance of the fiducial mismarking (Shirazi
and Huang, 2019a). We also used a mannequin to control
for the head movements and relative cap movements to the
head. In reality, participants may move their head and the
cap may slightly change position during digitization or data
collection that would affect the location of the EEG electrodes
with respect to the head. Further, we only calibrated our digitizing
devices once for multiple data collections. Nevertheless, in a real
laboratory setup, device calibrationmight be required before each
instance of data collection. We, however, included digitization by
multiple experienced operators to acknowledge that in a research
laboratory different members might complete the digitization for
different participants. Overall, our results suggest that as long
as all sources of digitization error do not create variability >1
cm, Brodmann area accuracy would be >80%. Using the same
electrical head model and source localization approach helped us
to only quantify the effects of digitization variability on source
estimation uncertainty. In reality, the EEG signal noise, number
and distribution of EEG electrodes, electrical properties of the

head model, head model shape and mesh accuracy, and solving
approach are among the other potential contributors to source
estimation uncertainty (Akalin Acar and Makeig, 2013; Dalal
et al., 2014; Song et al., 2015; Akalin Acar et al., 2016; Mahjoory
et al., 2017; Beltrachini, 2019).

Limitations of this study were that we tested a subset of
all digitizing methods, used a mannequin head, and not an
actual human head for the digitization, and did not perform
source estimation using other common algorithms. Even though
we did not test many of the marketed digitizing systems, we
replicated and tested the fundamental methods used by most of
the marketed digitizing systems. One widely used EEG electrode
digitizing method we did not test is an electromagnetic digitizing
method (e.g., Polhemus Patriot or Fastrack system). Another
study using similar digitization reliability analyses reported an
average variability of 0.76 cm for an electromagnetic digitization
system (Clausner et al., 2017), which is slightly better than the
ultrasound digitizing method, with a variability of 0.86 ± 0.3
cm. Collecting digitization data from an actual participant might
have helped in having a better distribution of the sources inside
the brain volume, but we decided to use a mannequin to better
control for head movements, relative cap movements and other
environmental factors. Here, we used the EEG data only to
provide a platform to understand the relationship between the
digitization variability and source uncertainty, and locations of
the sources do not have any neurological implications. Last, we
did not use other different source estimation algorithms such as
LORETA or beam-forming. Studies indicate that commonly used
source estimation algorithms generally identify the similar source
locations (Song et al., 2015; Bradley A. et al., 2016;Mahjoory et al.,
2017), which suggests that the choice of the source estimation
algorithm used would probably not significantly alter our results.

Future efforts to improve source estimation, so that sources
can be interpreted in terms of cortical spatial regions smaller
than Brodmann areas, will involve more than just developing
more reliable, convenient, and cost-effective digitizing methods
to help reduce source estimation uncertainty. Even if a perfect
digitizing method could be developed, there would still be
uncertainty in source estimation as result of other factors
such as improper head-model meshes and inaccurate electrical
conductivity values (Akalin Acar et al., 2016; Beltrachini, 2019),
which were assumed to have a constant contribution to the source
estimation uncertainty in our analyses. Obtaining and using as
much subject specific information, such as subject-specific MRI
scans in addition to digitizing EEG electrode locations, should
improve source estimation. EEGLAB’s Neuroelectromagnetic
Forward Head Modeling Toolbox (NFT) could be used to warp
the MNI head model to the digitized electrode locations to retain
the individual’s head shape but is computationally expensive
(Acar and Makeig, 2010). Using subject-specific MRIs instead of
the MNI head model is also limited to groups with access to an
MRI at an affordable cost per scan.

5. CONCLUSION

In summary, there was a range of digitization reliabilities
among the five digitizing methods tested (ultrasound,
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TABLE 1 | Rankings for each digitizing method based on factors related to performance, cost, and convenience.

Method Digitization reliability Dipole uncertainty Speed Affordability Ease-of-use

(1 is easiest)

Method score

(lower is better)

Mean ± SD (cm) # Mean ± SD (cm) # Time (min) # Cost (USD) #

Ultrasound 0.86 ± 0.30 5 1.90 ± 0.39 4 30 5 15k 5 4.2 4.6

Infrared

3D scan

0.24 ± 0.05 3 0.53 ± 0.136 2 20 (10 for scan

+ 10 for marking

in software)

3 1k 1 2.5 2.3

Str.-light

3D scan

0.50 ± 0.09 4 1.09 ± 0.24 3 25 (10 for scan

+ 15 for marking

in software)

4 5k 2 3.4 3.3

Mocap

probe

0.15 ± 0.03 2 0.34 ± 0.08 1 10 (5 for digitizing

+ 5 for calibration)

2 1k* (probe)

12k**(+mocap)

4 2 2.2

Mocap 0.001 ± 0.0003 1 N/A - 5.1 (0.1 for

digitizing

+ 5 for calibration)

1 11k** 3 1 1.5

# is the rank of each method among all five methods and for the specified factor. The digitization reliability values and dipole uncertainty scalar width values were taken from our results.

Speed was the approximate time a digitizing method required to obtain the file of electrode locations. The ease-of-use score was the average score operators provided in a survey with

a score of 5 being the most difficult and 1 being the easiest method to do. The method score is the average rank of all factors for a given method and was defined as score=
∑

#/N.

Dipole uncertainty was not available for motion capture digitization. Mocap = motion capture; Str.-Light 3D = structured-light 3D scan. *The probe price is for the OptiTrack digitizing

probe. **Motion capture cost was for an eight-camera system (Optitrack Flex13, $8000) and the Optitrack Motive software ($3000).

structured-light 3D scanning, infrared 3D scanning, motion
capture with a digitizing probe, and motion capture with
reflective markers), and less reliable digitization resulted in
greater spatial uncertainty in source estimation and poorer
Brodmann area accuracy. We found that the motion capture
digitizing method was the most reliable while the ultrasound
method was the least reliable. Interestingly, Brodmann area
accuracy for a source only dropped from ∼90 to ∼80%,
when using the most and least reliable digitizing methods,
respectively. If source locations will be discussed in terms
of Brodmann areas, any of the digitizing methods tested
could provide accurate Brodmann area identification. Using
a template of EEG electrode locations, however, decreased
the Brodmann area accuracy to ∼50%, suggesting that
digitizing EEG electrode locations for source estimation
results in more accurate Brodmann area identifications. Even
though digitizing EEG electrodes is just one of the factors
that affects source estimation, developing more reliable and
accessible digitizing methods can help reduce source estimation
uncertainty and may allow sources to be interpreted in terms
of cortical regions more specific than Brodmann areas in
the future.
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