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Puberty is initiated by hormonal changes in the adolescent body that trigger physical
and behavioral changes to reach adult maturation. As these changes occur, some
adolescents experience concerning pubertal symptoms that are associated with
dysfunction of the autonomic nervous system (ANS). Vasovagal syncope (VVS) and
Postural Orthostatic Tachycardia Syndrome (POTS) are common disorders of the ANS
associated with puberty that are related to orthostatic intolerance and share similar
symptoms. Compared to young males, young females have decreased orthostatic
tolerance and a higher incidence of VVS and POTS. As puberty is linked to changes
in specific sex and non-sex hormones, and hormonal therapy sometimes improves
orthostatic symptoms in female VVS patients, it is possible that pubertal hormones
play a role in the increased susceptibility of young females to autonomic dysfunction.
The purpose of this paper is to review the key hormonal changes associated with
female puberty, their effects on the ANS, and their potential role in predisposing some
adolescent females to cardiovascular autonomic dysfunctions such as VVS and POTS.
Increases in pubertal hormones such as estrogen, thyroid hormones, growth hormone,
insulin, and insulin-like growth factor-1 promote vasodilatation and decrease blood
volume. This may be exacerbated by higher levels of progesterone, which suppresses
catecholamine secretion and sympathetic outflow. Abnormal heart rate increases in
POTS patients may be exacerbated by pubertal increases in leptin, insulin, and thyroid
hormones acting to increase sympathetic nervous system activity and/or catecholamine
levels. Given the coincidental timing of female pubertal hormone surges and adolescent
onset of VVS and POTS in young women, coupled with the known roles of these
hormones in modulating cardiovascular homeostasis, it is likely that female pubertal
hormones play a role in predisposing females to VVS and POTS during puberty. Further
research is necessary to confirm the effects of female pubertal hormones on autonomic
function, and their role in pubertal autonomic disorders such as VVS and POTS, in order
to inform the treatment and management of these debilitating disorders.
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INTRODUCTION

Puberty Is Associated With Orthostatic
Intolerance
Puberty is a period of adolescence in which a child undergoes
rapid changes that affect physical and mental functioning in order
to reach adult maturation. During this time many adolescents
experience substantial fatigue, mood swings, and stress (Larson
et al., 1980). These symptoms of puberty are well-known and
not generally worrisome (Larson et al., 1980; Wheeler, 1991;
Viner and Christie, 2005; Table 1). However, other physical
symptoms can occur at the onset of puberty that reflect
autonomic nervous system (ANS) dysfunction, compromising
the homeostatic regulation of basic bodily functions (Palma
et al., 2017; Table 2). For example, puberty is associated with
an increased incidence of syncope (fainting: transient loss of
consciousness and postural tone) or presyncope (near-fainting),
particularly in females (Walsh, 2001).

Syncope and presyncope are common across the lifespan,
but have a particularly high incidence in adolescents, with
a peak age of onset during puberty at age ∼10–15 years
(Figure 1); approximately 1 in three adolescents with syncope
experience recurrent and severe episodes (de Jong-de Vos van
Steenwijk et al., 1995; Driscoll et al., 1997; McLeod, 2003;
Kenny et al., 2010; Kanjwal and Calkins, 2015). However,

TABLE 1 | Typical features of puberty.

Physical changes Mental/Emotional changes

Breast, penis, testicle development Mood swings – aggression, emotional
surges, bouts of crying

Body hair – appearance in armpits and
pubic area

Changes in sleep patterns and fatigue

Growth spurts and weight gain Changes in social behavior

Menstruation and menstrual
symptoms – nausea, cramps, bloating,
diarrhea, aching in upper thighs,
headache, backache, stomach ache

Menstrual symptoms – changes in
appetite

Widening of the hips/shoulders Risk-taking/novelty-seeking behaviors

Increased subcutaneous fat
distribution/muscle development

Cognitive development

Typical physical and mental/emotional changes are shown. Adapted from Larson
et al. (1980),Wheeler (1991), and Viner and Christie (2005).

TABLE 2 | Concerning features of puberty.

Physical changes

Dizziness and syncope upon standing

Exercise intolerance

Sweating abnormalities – hyperhidrosis or hypohidrosis

Digestive difficulties – loss of appetite, bloating unrelated to menstruation

Urinary problems – difficulty urinating, incontinence, incomplete bladder emptying

Sexual dysfunction

Vision problems – blurred vision or inability for pupils to react to light quickly

Concerning autonomic abnormalities associated with puberty are shown. Adapted
from Palma et al. (2017).

this prevalence is likely underestimated because many do not
report their symptoms (Wieling et al., 2004; Ganzeboom et al.,
2006; Nordkamp et al., 2009). Episodes are often related to
impaired autonomic function, and are associated with anxiety,
fatigue, headaches, dizziness, abdominal discomfort, nausea,
and weakness, with significant impairments in quality of life
(Braune et al., 1999; Rose et al., 2000; Radtke et al., 2011;
Anderson et al., 2012; Armstrong et al., 2017). In pediatric
populations, morbidity is equivalent to patients with asthma,
end-stage renal disease and structural heart disease (Linzer
et al., 1991; Anderson et al., 2012). Recurrent episodes are
associated with injury due to falls secondary to loss of
postural control, and may indicate more widespread autonomic
abnormalities (Hainsworth et al., 2012). Affected children
find these episodes distressing and exhibit sleep disturbances
and difficulty concentrating, attending and focusing at school
(Carapetian et al., 2008), as well as problems with exercising
and participating in activities of daily living (Braune et al.,
1999; Rose et al., 2000; Radtke et al., 2011; Anderson et al.,
2012; Raj, 2013; Armstrong et al., 2017). The burden on
healthcare resources is also substantial, with frequent medical
and emergency visits (Kanjwal and Calkins, 2015) and extensive
investigation – up to 35% see 10–20 physicians before
diagnosis (Armstrong et al., 2017) and 10% of individuals
still do not have a diagnosis 1 year after presenting in clinic
(Van Dijk et al., 2007). Given their high incidence, marked
healthcare burden, and severe impact on quality of life, a
better understanding of the predisposing factors to adolescent
syncope and presyncope and the potential role for pubertal
hormones is warranted.

Syncope has many causes, including structural heart disease,
cardiac arrhythmia, and impaired orthostatic cardiovascular
control (Hainsworth et al., 2012). Here we focus on orthostatic
(postural) syncope and presyncope, the most common forms
in children and adolescents (Hainsworth et al., 2012). The
most common sub-type of orthostatic syncope associated with
puberty is vasovagal syncope (VVS) (Da and da Silva, 2014),
responsible for up to 80% of pediatric syncope cases (Massin
et al., 2004). Another condition that often coincides with
the onset of puberty and presents with similar symptoms to
VVS is Postural Orthostatic Tachycardia Syndrome (POTS)
(Stewart, 2009). Both these conditions are associated with
orthostatic intolerance, where the ANS does not function
properly during changes in position or orthostatic stress. In
broad terms, VVS reflects an excessive decrease in blood
pressure and/or heart rate during orthostasis (Medow et al.,
2008), while POTS displays an excessive increase in heart
rate with orthostatic stress, with variable changes in blood
pressure (Low, 2014).

The hormonal factors that initiate the onset and maintenance
of puberty must be considered as possible culprits in the
associated increased susceptibility to disorders of orthostatic
intolerance, considering the timing of increased incidence
of POTS and VVS with puberty (Kenny et al., 2010; Shaw
et al., 2019; Figure 1). The initiation of puberty is prompted
by a rise in activity of the hypothalamic-pituitary-gonadal
(HPG) axis following a prolonged period of suppression

Frontiers in Neuroscience | www.frontiersin.org 2 November 2019 | Volume 13 | Article 1197

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-13-01197 November 8, 2019 Time: 17:48 # 3

Coupal et al. Puberty and the ANS

FIGURE 1 | Age at onset of vasovagal syncope (VVS) and Postural Orthostatic Tachycardia Syndrome (POTS). For both patients with VVS (n = 443) and POTS
(n = 4835) the peak age of onset of symptoms is between 10–15 years – coinciding with the age of onset of puberty. Data sourced from Kenny et al. (2010),
Shaw et al. (2019).

during childhood (Forbes and Dahl, 2010). The HPG axis
increases pulsatile release of gonadotropin-releasing hormones
(GnRHs), stimulating gonadal hormones, and inducing
various changes throughout the body to stimulate sexual
maturation (Forbes and Dahl, 2010). Puberty is further
associated with changes in other non-gonadal hormones such
as GH, thyroid hormone, leptin, cortisol, and melatonin,
which facilitate physical growth and behavioral changes in
adolescents (Figure 2).

Females are known to have lower orthostatic tolerance
compared to males (Meendering et al., 2005), with a 5:1
predominance of POTS (Low et al., 2009) and more than
twice the incidence of syncope (Wieling et al., 2004).
Since the initiation of puberty is prompted by a rise in
activity of the HPG axis inducing changes in sex hormones
(Clemans et al., 2010), it may be that some of the increased
susceptibility to autonomic dysfunction in pubertal females
could be attributed to hormonal changes occurring during
this stage. Indeed, females with known VVS are reported
to experience significant improvements in their symptoms
with the introduction of hormonal therapy (Boehm et al.,
1997). Orthostatic tolerance also improves in women across
the lifespan, and is highest in postmenopausal females
(Protheroe et al., 2013). These observations support the
potential role of pubertal hormones in increasing susceptibility
to cardiovascular autonomic dysfunction. Accordingly, the
purpose of this review is to identify the key hormonal
changes associated with female puberty, their effects on the
ANS, and their potential role in predisposing adolescent

females to cardiovascular autonomic dysfunctions such
as VVS and POTS.

Orthostasis Represents a Considerable
Cardiovascular Challenge and Requires
Compensation by the Autonomic
Nervous System
Orthostasis is a common trigger for VVS and POTS because
when a person is upright gravitational forces decrease arterial
pressures in regions above the level of the heart, while
simultaneously increasing lower body venous pooling and
capillary filtration, reducing venous return (Hainsworth et al.,
2012). If compensation for these hemodynamic consequences of
orthostasis is inadequate, cardiac output is reduced and cerebral
perfusion compromised, causing symptoms of presyncope that
can progress to syncope (Hainsworth et al., 2012).

Orthostatic reductions in arterial pressure are sensed
primarily by baroreceptors located in the aortic arch, coronary
arteries, and carotid sinus (Hall and Guyton, 2011). The carotid
sinus baroreceptors are particularly important in responding
to orthostatic hemodynamic changes because of their location
above the heart (carotid arterial pressure is about 15 mmHg
lower than the pressure at the aortic root when upright,
providing a potent stimulus to the carotid baroreceptors)
(Hainsworth et al., 2012). Accordingly, during orthostasis
these baroreceptors are unloaded, resulting in a reflex decrease
in cardiac parasympathetic (vagal) tone, and increase in
sympathetic outflow from the vasomotor center in the medulla
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to the heart and blood vessels (Hall and Guyton, 2011). The
combined effect of these compensatory influences on the heart
are increases in heart rate and contractility, accompanied by
sympathetically mediated vasoconstriction of the resistance
and capacitance vessels in the splanchnic, musculocutaneous,
and renal vascular beds (Smit et al., 1999; Hall and Guyton,
2011). These coordinated adaptations are, therefore, associated
with increases in total peripheral resistance, stroke volume, and
blood pressure, with the maintenance of cardiac output and
consequently cerebral perfusion (Medow et al., 2008). Given that
these compensatory mechanisms are chiefly mediated by the
ANS, impaired autonomic responses can predispose to loss of
orthostatic control (Medow et al., 2008), leading to presyncope
or syncope.

Orthostatic Cardiovascular Responses
Are Impaired in Patients With Vasovagal
Syncope and Postural Orthostatic
Tachycardia Syndrome
Ultimately, the cause of orthostatic presyncope or syncope is a
failure of normal cardiovascular autonomic responses. However,
different patterns of responses occur representing distinct
autonomic syndromes, and this complicates their diagnosis and
treatment. In POTS the primary problem is excessive orthostatic
tachycardia, whereas in VVS it is impaired vasoconstriction
and sudden hypotension, with or without reflex bradycardia or
asystole (van Lieshout et al., 1991; McLeod, 2003; Hainsworth,
2004; Brignole, 2005; Mathias et al., 2012). These abnormalities
can be subdivided further and may even coexist (Kurbaan et al.,
1999; Brignole et al., 2000; Schroeder et al., 2011); however,
the underlying mechanisms of these disorders remain unclear,
particularly in children and adolescents.

Postural Orthostatic Tachycardia Syndrome is defined as “the
development of orthostatic symptoms associated with a HR
increment ≥30 bpm (beats per minute) [≥40 bpm in children
(Singer et al., 2012; Zhao et al., 2015)], usually to ≥120 bpm
[≥125 bpm in children aged 13–18 years or ≥130 bpm in children
aged 6–12 years (Singer et al., 2012; Zhao et al., 2015)] without
orthostatic hypotension” (Low et al., 2009). It is not clear what
drives the change in cardiac responsiveness and the precise age
at which this change occurs is unclear; pediatric POTS has been
defined for chronological ages 12 years and younger (Kurbaan
et al., 1999), but this definition does not reflect physiological age
or pubertal status.

Postural Orthostatic Tachycardia Syndrome includes at
least four subtypes: hyperadrenergic POTS with excessive
sympathetic discharge; hypovolemic POTS (with compensatory
tachycardia); neuropathic POTS with impaired vasoconstriction
and compensatory tachycardia; and, rarely, noradrenaline
transporter deficiency with synaptic noradrenaline accumulation
(Low et al., 1995, 2009; Raj, 2013). Hemodynamic subtypes
of VVS have also been recognized, and are characterized
according to the relative contribution of hypotension and/or
bradycardia to the event (Brignole et al., 2000). These distinctions
provide mechanistic insight and may inform treatment, but
present similarly, so are difficult to distinguish clinically.

Whether adolescence is a time of general autonomic imbalance,
and whether susceptibility to VVS and POTS are related to
adolescence or pubertal hormone changes is unknown.

We and others demonstrated that in both patients with POTS
and VVS, excessive venous pooling or capillary filtration (Brown
and Hainsworth, 1999; Stewart et al., 2004), thermoregulatory
vasodilation (Wilson et al., 2006; Hainsworth et al., 2012),
low plasma or blood volumes (El-Sayed et al., 1995; Hoeldtke
et al., 1995; El-Sayed and Hainsworth, 1996; Jacob et al.,
1997; Mtinangi and Hainsworth, 1998, 1999; Lagi et al., 2003;
Claydon et al., 2004), abnormal baroreflex responses (Thomson
et al., 1997; Furlan et al., 1998; Gulli et al., 2001, 2005a,b;
Cooper and Hainsworth, 2002), concurrent hypocapnia (Novak
et al., 1998; Blaber et al., 2001; Carey et al., 2001; Lagi
et al., 2001; Gisolf et al., 2004), excessive vascular responses
to hypocapnia (Norcliffe-Kaufmann et al., 2007), and impaired
cerebral autoregulation (Daffertshofer et al., 1991; Grubb et al.,
1991; Claydon and Hainsworth, 2003) all increase susceptibility
to orthostatic syncope in adults. In adults with VVS there
is some evidence that the hypotension and reduced vascular
resistance during hemodynamic collapse at presyncope may not
be due to blunted sympathetic nerve activity per se but rather to
other competing vasodilatory influences at that time (Vaddadi
et al., 2010). There may also be an autoimmune component
to susceptibility to both POTS and VVS in adults (Etienne
and Weimer, 2006; Li et al., 2015; Ruzieh et al., 2017). These
mechanistic insights have been central to the development of
tailored management for affected adults; however, contributing
mechanisms in children are less clear.

There may be a role for early excessive orthostatic cardiac
sympathetic activation, and yet blunted vasoconstriction in
children with POTS and VVS (Wieling et al., 1997; Moak et al.,
2002; Laranjo et al., 2015; Wagoner et al., 2016), suggesting
a disconnect between sympathetic outflow and the effector
organ response. Indeed, some forms of POTS reflect selective
neuropathy, with sympathetic denervation and impaired vascular
resistance responses affecting the lower limbs (Raj, 2013). In
children with VVS, initial increases in sympathetically–mediated
vascular resistance responses are not sustained, and in fact
abruptly reverse, precipitating hypotension (Moak et al., 2002).
Orthostatic vasopressin and aldosterone are increased in children
with VVS (Wagoner et al., 2016), presumably to compensate for
impaired sympathetically–mediated vasoconstriction. Children
with VVS and some forms of POTS have excessive venous
pooling, particularly in the splanchnic vasculature (Stewart et al.,
2004, 2006). Vitamin B12 deficiency (Wieling et al., 1997), low
ferritin, and iron deficiency are reported in children with syncope
(Antiel et al., 2011; Guven et al., 2013; Jarjour and Jarjour, 2013),
presumably contributing to symptoms through anemia and low
blood volumes.

Regardless of the underlying mechanism, orthostatic
symptoms in children are associated with decreased cerebral
blood flow velocity (Sung et al., 2000). Whether this is due to
impaired cardiovascular control and compromised cerebral
perfusion, or primary abnormalities in cerebral autoregulation
is unclear. Interestingly, in adults with VVS cerebral pressure
autoregulation is impaired (Claydon and Hainsworth, 2003)
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and combined with orthostatic hyperventilation (via activation
of the respiratory muscle pump), with subsequent hypocapnia
and cerebral vasoconstriction (Novak et al., 1998; Blaber
et al., 2001; Carey et al., 2001; Lagi et al., 2001; Gisolf et al.,
2004) that is compounded by increased cerebral reactivity to
hypocapnia (Norcliffe-Kaufmann et al., 2007). The role and
relative contribution of hypocapnia and cerebral autoregulation
in pediatric syncope remain unclear.

Another contributor to most forms of orthostatic syncope
in adults is hypovolemia, which may be associated with
impaired renal sodium reabsorption in patients with POTS (Raj,
2013). Plasma or blood volume expansion improves orthostatic
tolerance in adults (Rosen and Cryer, 1982; El-Sayed et al., 1995;
Hoeldtke et al., 1995; El-Sayed and Hainsworth, 1996; Jacob et al.,
1997; Mtinangi and Hainsworth, 1998, 1999; Lagi et al., 2003;
Claydon et al., 2004; Cooper and Hainsworth, 2008), so it is
possible that low plasma volumes also contribute to orthostatic
syncope in children with POTS or VVS.

Lastly, physical deconditioning of the heart due to conditions
such as viral infections or chronic fatigue has also been
recognized as a possible mechanism underlying POTS (Fu
et al., 2010). There is an association between POTS and cardiac
deconditioning, and this is thought to be the result of a
decreased heart size and associated decrease in cardiac output
(Fu et al., 2010). The reasons why adolescent females are
particularly susceptible to POTS remain unknown but perhaps
their lower cardiac mass compared to adolescent males is a
contributing factor.

HORMONAL CHANGES DURING
FEMALE PUBERTY AND THEIR
INFLUENCES ON CARDIOVASCULAR
AUTONOMIC CONTROL

There are many hormonal changes during puberty that may have
implications for autonomic cardiovascular control. Certainly,
puberty seems to be a time of considerable change in autonomic
function and cardiovascular and cerebrovascular regulation,
with increases in endothelial function (Deda et al., 2015), and
reductions in high frequency heart rate variability (a marker
of cardiac vagal tone) in healthy adolescents following puberty
(Tanaka et al., 2000). Puberty is also associated with increases in
blood pressure (Tanaka et al., 2000; Deda et al., 2015), although
this occurs to a much lesser extent in females than in males
(Moran et al., 2008), with associated decreases in arterial stiffness
during puberty in females, but not in males (Ahimastos et al.,
2003). Cerebral blood flow is higher in children than in adults,
and decreases markedly during puberty, with the peak reduction
occurring in mid-adolescence (aged 15–17 years) – coinciding
with the timing of peak incidence of syncope (Satterthwaite
et al., 2014). In females, there is a partial recovery of cerebral
blood flow in late puberty such that in adulthood, cerebral blood
flow is greater in females compared to males (Satterthwaite
et al., 2014) – coinciding with a time at which the particularly
high incidence of onset of syncope in female adolescents begins

to decrease. Some of these alterations in cerebral blood flow
may reflect alterations in carbon dioxide levels. Higher end
tidal carbon dioxide levels (PETCO2) act as a potent cerebral
vasodilator, increasing cerebral blood flow (Norcliffe et al., 2002;
Claydon and Hainsworth, 2003). Young women breathe with an
increased minute ventilation compared to young males (White
et al., 1983), thus resting PETCO2 is significantly higher in
young males relative to young females (Dhokalia et al., 1998).
This may render young women more susceptible to cerebral
hypoperfusion and syncope, particularly in the face of orthostatic
activation of the respiratory muscle pump and further associated
increases in ventilation.

Qualification of Pubertal Stages in
Females
Tanner staging is a universally accepted means of qualifying
pubertal development, with five proposed stages described by
written criteria and illustrations (Marshall and Tanner, 1970;
Swerdloff and Odell, 1975; Table 3). Tanner stage I refers to
the preadolescent stage, while Tanner stage V represents the
mature state (Marshall and Tanner, 1970). Normal timing of
puberty varies and a child’s chronological age is not necessarily
an accurate measure of pubertal development. Therefore, where
possible, hormone levels are compared based on biological
maturation stages rather than age. Given that sex hormones
fluctuate in females depending on the phase of the menstrual
cycle, overall changes in pubertal hormones will be considered
independently of menstrual timing. A summary of the key
hormones involved in the regulation of female puberty is
provided in Figure 2.

Initiation of Puberty
Given the common coincidental timing of onset of symptoms of
autonomic impairment and puberty, it is pertinent to consider
the factors at play in initiating puberty, as well as the pubertal
hormones that are involved as puberty progresses. The ultimate
trigger for the onset of puberty is the initiation of profound
increases in pulsatile GnRH secretion from the hypothalamus.
The pulsatile nature of GnRH secretion with the onset of puberty
is important, tonic GnRH administration does not induce
luteinizing hormone (LH) or follicle stimulating hormone (FSH)
secretion and so prevents ovulation (Marshall and Tanner, 1970).

TABLE 3 | The Tanner stages of puberty in females.

Tanner
stage

Description

I Preadolescent

II Breast budding; early labial hair growth

III Increased breast size with palpable glandular tissue; no separating of
breast contours; moderately dark coarser labial hair over mons pubis

IV Further enlargement of breasts with projection of areola above breast
plane; lateral spread of pubic hair

V Adult breast size and pubic hair distribution

Typical stages of puberty in girls are defined according to breast development and
distribution of pubic hair. Adapted from Swerdloff and Odell (1975).

Frontiers in Neuroscience | www.frontiersin.org 5 November 2019 | Volume 13 | Article 1197

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-13-01197 November 8, 2019 Time: 17:48 # 6

Coupal et al. Puberty and the ANS

FIGURE 2 | Key regulatory hormones involved in female puberty. Blue boxes denote hormones and their source of release (bold). Orange boxes denote end organ
responses. Solid lines indicate positive feedback. Dashed lines indicate negative feedback. ∗Negative feedback from the ovaries on FSH secretion is primarily
mediated via inhibins secreted by ovarian follicles. †GH secretion is stimulated by estrogen and thyroid hormones. ACTH, adrenocorticotrophic hormone; CRH,
corticotropin releasing hormone; CNS, central nervous system; E2, estradiol; GH, growth hormone; GHRH, growth hormone releasing hormone; GnRH,
gonadotropin releasing hormone; IGF-1, insulin-like growth factor-1; P, progesterone, TRH, thyrotropin releasing hormone; TSH, thyroid stimulating hormone; T3,
triiodothyronine; T4, thyroxine.

Numerous complementary mechanisms have been proposed to
initiate the rise in pulsatile GnRH secretion (Figure 3). One key
player is the loss of sensitivity to inhibition of GnRH secretion
by ovarian sex steroids (such as estrogen and inhibins) (Gill
et al., 2002; Shaw et al., 2010). Even very low levels of estrogen
and inhibins block GnRH secretion in young children (Winter
and Faiman, 1973). During puberty the levels of sex steroids
required to block GnRH become progressively higher and this is
permissive to increases in pulsatile GnRH, but not sufficient to
trigger puberty (Messinis, 2006).

There may be a role for nutritional status and leptin in
initiating puberty. Puberty starts earlier in overweight girls,
and menstruation ceases with severe weight loss (Baker, 1985).
Adiposity is linked to high leptin levels, and in animals leptin
supplementation advances the onset of puberty compared to
pair-fed animals (necessary because of the impact of leptin on
appetite) – with leptin being permissive but not sufficient for the
initiation of puberty (Cheung et al., 2001). This permissive role is
likely via the indirect action of leptin (mediated via decreases in
the antigonadotropic hormone, GnIH) on kisspeptin-expressing
neurons that regulate GnRH secretion from the hypothalamus
(Cunningham et al., 1999; Rhie, 2013). The arcuate nucleus
contains abundant kisspeptin, a protein that is encoded by the
Kiss1 gene, a GnRH pulse generating gene (Avendaño et al.,
2017). Release of kisspeptin is inhibited until puberty when it rises

and initiates increased pulsatile GnRH secretion. While it is likely
that kisspeptin plays a major role in initiating puberty, the trigger
for increased kisspeptin is unclear, with regulation suggested
through either an internal “pubertal clock,” or a “somatometer”
that monitors somatic (perhaps skeletal) development and
triggers kisspeptin secretion once a key developmental threshold
is reached (Avendaño et al., 2017).

Melatonin secretion from the pineal gland also seems to
regulate pubertal onset. Melatonin release occurs during sleep
and darkness, with higher secretion during the winter when
there are reduced daylight hours (Brainard et al., 1982). The
human pineal gland produces a substance (s) that keeps sexual
maturation in check, which may be melatonin and/or GnIH
(Silman et al., 1979). Indeed, destructive tumors of the pineal
gland are associated with precocious puberty, and hypersecretory
tumors with delayed puberty (Kitay, 1954; Silman et al., 1979).
At the onset of puberty, melatonin levels decrease and this
is associated with initiation of pubertal development (Silman
et al., 1979). Indeed, in children living near the equator, who
have lower levels of melatonin because of the long daylight
hours, puberty occurs earlier than in those at higher latitudes
(Dossus et al., 2013), perhaps reflecting the role of melatonin
in initiation of puberty (Murcia et al., 2002). Interestingly, the
onset of pulsatile secretion of GnRH during puberty initially
occurs only during rapid-eye-movement sleep (Shaw et al., 2015).
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FIGURE 3 | Key hormones involved in the initiation of puberty. Ultimately, puberty is initiated by profound increases in gonadotropin releasing hormone (GnRH) that
initiate cyclic synthesis and release of gonadotropins, which then regulate reproduction, reproductive behaviors and secondary sexual characteristics, and sex
steroid levels. Several factors may promote the increase in GnRH that precedes puberty, including: reduced sensitivity to inhibition of GnRH secretion by the sex
steroids; increased leptin, which reduces inhibition of gonadotropins and their releasing hormones by the gonadotropin inhibiting hormone (GnIH); decreases in
melatonin, with an associated reduction in GnIH production; and increases in kisspeptin, perhaps triggered by a “somatometer” or “pubertal clock,” which acts to
further increase GnRH secretion. Orange boxes denote pubertal triggers. Blue text indicates sites of action or hormone release. Solid lines indicate positive
feedback. Dashed lines indicate inhibitory influences.

The stimulus for this is unknown, but may involve nocturnal
melatonin secretion or possibly a genetically programed state of
maturity of GnRH secreting neurons – evidence for the latter
is not yet available, but has been hypothesized given the strong
correlation between the age of menses onset between mother and
daughter (Kolarov et al., 2005).

Many of these key hormonal cues thought to be involved in
the initiation of puberty also continue to be involved as puberty
progresses, largely through their role in influencing the HPG axis.

The Hypothalamic-Pituitary-Gonadal
Axis
Once puberty is initiated and the HPG axis is activated, GnRH
is released from the hypothalamus (Figure 2), with peak levels at
the onset of menstruation, after which its release becomes cyclical
according to the phase of the menstrual cycle (Limonta et al.,
2018). GnRH acts on the anterior pituitary to stimulate increases
in LH and FSH production that induce sexual dimorphic changes
in appearance as well as characteristic female behaviors (Limonta
et al., 2018). The recent discovery of GnRH receptors in the
ovary and endometrium raises the possibility of a role for GnRH
outside of its hypothalamic functions (Limonta et al., 2018). LH
and FSH levels increase with increases in GnRH pulse frequency
and pulse amplitude during puberty. Levels of LH and FSH
continue to increase until stage V for LH and stage IV for FSH,
initially starting with undetectable levels of LH in prepubertal
girls at stage I while low levels of FSH are detectable at this

stage (Burger et al., 1988; Figure 4). During puberty, LH and
FSH stimulate sex hormone secretion and regulate the menstrual
cycle. LH acts on the ovaries to produce estrogen and facilitate
egg maturation, while FSH is involved in follicle development
and estrogen production (Limonta et al., 2018). LH also indirectly
increases progesterone levels, secreted from the corpus luteum of
mature follicles. Both LH and FSH appear to have indirect effects
on the ANS, largely mediated through their effects on circulating
estrogen and progesterone levels.

Estrogen
Increased activity of the gonads stimulated by LH and FSH
during puberty results in an associated increased production
of estrogen. During puberty, estrogen levels initially mirror LH
and FSH changes, with the lowest levels in prepubertal girls at
stage I (Wennink et al., 1990; Figure 4). However, similar to
LH, estrogen levels continue to increase until stage V, during
which time FSH levels begin to decline (Wennink et al., 1990).
Estrogen is a sex steroid hormone that is secreted by the ovary and
binds to estrogen receptors (Wennink et al., 1990). It contributes
to breast, vaginal, and uterine development, as well as female
fat distribution, linear growth velocity, and skeletal maturation
(Swerdloff and Odell, 1975). In this review we only consider
17-β estradiol (E2) because this is the most abundant, active,
and best studied form of estrogen (Rybaczyk et al., 2005; Lasiuk
and Hegadoren, 2007). Other natural estrogens, estrone (E1),
and estriol (E3), have weak estrogenic properties and must be
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FIGURE 4 | Changes in pubertal hormone levels according to Tanner stage and approximate age (mean ± standard error). Hormone concentrations for luteinizing
hormone (LH) (Burger et al., 1988). follicle stimulating hormone (FSH) (Burger et al., 1988), Estradiol (E2) (Wennink et al., 1990), progesterone (Apter, 1980), inhibins
(Wennink et al., 1990), growth hormone (GH) (Rose et al., 1991), insulin-like growth factor-1 (IGF-1) (Moran et al., 2002), insulin (Moran et al., 2002), triiodothyronine
(T3) (Elmlinger et al., 2001), thyroxine (T4) (Elmlinger et al., 2001), cortisol (Stroud et al., 2011), leptin (Ahmed et al., 1999), melatonin (Crowley et al., 2012) are shown
through the Tanner stages for females. Note that standard errors were not available for estradiol or melatonin data. Standard errors for LH, FSH and inhibins were
approximated based on data provided. Cyclical changes in hormone levels with menstruation are not reflected.
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converted to E2 to have full estrogenic action; accordingly, they
will not be considered further (Lasiuk and Hegadoren, 2007).

Estrogen Promotes Vasodilation and Hypocapnia,
and Reduces Plasma Volume
Estrogen acts to acutely regulate vasomotor tone through
endothelium-dependent and independent mechanisms
(Mendelsohn and Karas, 1999; Maranon and Reckelhoff,
2013). E2 directly inhibits the influx of extracellular calcium into
vascular smooth muscle via L-type calcium channels, preventing
contraction and promoting vasodilatation (Mendelsohn and
Karas, 1999). E2 also stimulates the opening of calcium-activated
potassium channels through the nitric oxide (NO) and cyclic
guanosine monophosphate-dependent pathways, relaxing
smooth muscle and promoting vasodilatation (Mendelsohn
and Karas, 1999). Lastly, E2 promotes rapid release of NO
(Mendelsohn and Karas, 1999) and hydrogen sulfide (Dous
et al., 2014), both of which are potent vasodilators. However,
in addition to the acute effects on vasomotor tone, E2 also
promotes chronic vasodilation through increased expression
of endothelial nitric oxide synthase (eNOS), the enzyme that
converts L-arginine to L-citrulline and NO, with a consequent
vasodilatory response (Mendelsohn and Karas, 1999). In addition
to promoting vasodilatation, E2 also acts to decrease plasma
renin concentrations and angiotensin-converting-enzyme (ACE)
with consequent reductions in plasma volume, accompanied
by suppression of renal sympathetic activity, and ion and
water reabsorption (Mendelsohn and Karas, 1999; Maranon
and Reckelhoff, 2013). E2 also reduces circulating levels of the
vasoconstrictor endothelin-1 (Mendelsohn and Karas, 1999).
The net effect of these E2-mediated increases in vasodilatation
and decreases in vasoconstriction and plasma volume, is a
reduction in blood pressure, with the largest impact during stage
V when E2 peaks. Interestingly, E2 enhances carotid vasomotor
baroreflex sensitivity (but not cardiac baroreflex sensitivity),
although this effect is likely mitigated by concurrent changes in
progesterone levels, which blunt vasomotor baroreflex sensitivity
(Brunt et al., 2013). Of note, estrogens have also been shown
to increase cerebral blood flow in both animals and humans
(Shamma et al., 1992; Belfort et al., 1995; Nevo et al., 2007),
and loss of estrogens during menopause is associated with
decreased cerebral reactivity (Matteis et al., 1998). The impact
of vasodilation in the cerebral circulation secondary to increases
in estrogen appears to be blunted in the face of estrogen and
progesterone induced increases in respiration and hypocapnia,
which would tend to reduce cerebral blood flow (Slatkovska
et al., 2006; Preston et al., 2009).

Estrogen Has Indirect Effects on Central Nervous
System Modulators That Regulate Behavior and
Cardiovascular Control
Estradiol may also play a key role in regulating central
nervous system factors that modulate adolescent behavior.
For example, E2 may have the ability to modulate dopamine
neurotransmission [dopaminergic neurons express estrogen
receptors and mRNA (Purves-Tyson et al., 2012; Sinclair et al.,
2014)], contributing to changes in dopamine signaling during

adolescence (Sinclair et al., 2014). Dopamine is a catecholamine
synthesized in dopaminergic neurons arising from the substantia
nigra pars compacta and the ventral tegmental area and binds
to dopamine receptor 1 (DR1) (Sinclair et al., 2014). Adult
levels of DR1 mRNA and protein are attained during late
adolescence/early adulthood, with coincidental timing to E2
levels (Sinclair et al., 2014). Dopamine influences control of
movement, the ability to experience pleasure and pain, and
emotional responses (Arain et al., 2013). In addition, dopamine
inhibits noradrenaline release, and so acts to further amplify the
vasodilatory effects of E2.

Increases in E2 have also been shown to increase serotonin
concentrations by increasing the rate-limiting step in serotonin
synthesis, as well as increasing the time that serotonin remains
in the synapse and interstitial space (Rybaczyk et al., 2005). The
latter is accomplished through the antagonistic action of E2 on
the serotonin reuptake transporter (SERT) and down-regulation
of SERT gene expression (Rybaczyk et al., 2005). Serotonin is an
amine known to act as a neurotransmitter that is synthesized
from tryptophan in serotoninergic neurons (Rybaczyk et al.,
2005). Serotonin plays a role in arousal, anxiety, mood alterations
and has also been shown to regulate various physiological
functions including vasodilation (Arain et al., 2013). Thus, as E2
levels increase during female puberty, it is likely that these CNS
modulators follow a similar increase, accounting for changes in
behavior, and potentially exacerbating the vasodilatory effects of
estrogen throughout puberty.

Progesterone
Progesterone secretion generally occurs in conjunction with
E2, as it is regulated by gonadotropins and secreted by the
ovaries and the placenta (Rossmanith et al., 1990). It binds
to progesterone receptors to thicken the lining of the uterus
and stimulate the formation of milk glands in the breast in
preparation for pregnancy (Regidor, 2014). Progesterone remains
at fairly low levels during childhood until adolescence where it
is shown to increase in a cyclic manner depending on the phase
of the menstrual cycle (Apter, 1980; Figure 4). Progesterone
levels continue to increase and peak premenopausally, declining
thereafter until reaching very low levels after menopause
(O’Connor et al., 2009).

Progesterone Causes Vasodilatation, Increases
Plasma Volume and Promotes Hypocapnia
The effects of progesterone in the absence of estrogen indicate
that it promotes vasodilatation, blunts sympathetic outflow and
increases plasma volume (Brunt et al., 2013). Progesterone
stimulates NO synthesis through transcriptional and non-
transcriptional pathways, promoting vasodilation (Miner et al.,
2011). However, progesterone also acts to counteract the effects
of estrogen on NO production, resulting in mixed evidence
concerning the net role of progesterone in controlling vasomotor
tone (Brunt et al., 2011). Progesterone also blunts carotid-
vasomotor baroreflex sensitivity (Brunt et al., 2013), but without
affecting the control of mean arterial pressure, perhaps because
of concurrent augmentation of baroreflex control of stroke
volume and/or the opposing action of estrogen on baroreflex
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sensitivity (Brunt et al., 2011, 2013). Further research is needed
to determine the precise role of progesterone in modulating
vasomotor tone. However, the reported blunting of sympathetic
outflow, which could account for decreases in heart rate and
impaired vasoconstriction, may become relevant, particularly
later in puberty.

Progesterone is a respiratory stimulant, with the consequence
that PETCO2 levels are reduced during times of high progesterone
levels. For example, ventilation is increased during the luteal
phase compared to the follicular phase of the menstrual cycle
(White et al., 1983). This effect is enhanced during combined
increases in both estrogen and progesterone (although estrogen
alone is not closely correlated with cyclic fluctuations in
ventilation during the menstrual cycle) (Regensteiner et al.,
1989). Accordingly, higher estrogen and progesterone levels
in younger women might contribute to their lower resting
PETCO2 in early life, and the age-related loss of estrogen would
explain higher levels of PETCO2 in later life (Regensteiner et al.,
1989). These respiratory effects of estrogen and progesterone
would be expected to promote reductions in PETCO2 during
puberty in females, particularly during the later stages, and might
contribute to the reductions in cerebral blood flow that occur
during female puberty.

Inhibins
Inhibin levels are increased at puberty due to increased FSH
stimulation of the granulosa cells of ovarian follicles, which are
the main source of circulating dimeric inhibins (Bergadá et al.,
2001). During puberty, a progressive rise in inhibins accompanies
an increased production of sex steroids (Bergadá et al., 2001)
with the highest levels reached during stages IV–V (Burger
et al., 1988; Figure 4). With the development of ovarian follicles,
inhibin levels increase where they act largely to suppress FSH
release (Bergadá et al., 2001). This negative feedback control of
FSH secretion only occurs once adult inhibin levels are reached
(Bergadá et al., 2001).

Inhibins Regulate Follicle Stimulating Hormone
Levels and Indirectly Affect Estrogen Levels
Once adult inhibin levels are reached at around stage IV, inhibins
indirectly modulate estrogen levels through negative feedback
control of FSH (Bergadá et al., 2001), with a theoretical impact on
cardiovascular regulation via estrogen (Figure 2). However, E2
continues to increase from stage IV to V, indicating that the role
of inhibin on overall estrogen levels is small. Inhibins play a key
role in regulating estrogen levels during the menstrual cycle, but
do not appear to affect the overall estrogen levels during the stages
of puberty. Direct effects of inhibins on cardiovascular regulation
have not been demonstrated, although they may play a role in
gestational hypertension and preeclampsia (Itoh et al., 2006).

Growth Hormone
Growth hormone (GH) increases substantially during the growth
spurt of adolescence. It is secreted by the anterior pituitary gland
in response to stimulation by GH releasing hormone from the
hypothalamus (Soliman et al., 2014). GH levels more than double

during puberty (Saenger, 2003), attaining peak levels at stage III–
IV in females (Rose et al., 1991; Soliman et al., 2014; Figure 4).
GH functions to promote lipolysis, increase protein synthesis,
regulate energy metabolism in liver, muscle and adipose tissue,
and is a potent insulin antagonist (Sakharova et al., 2008).
GH levels are exquisitely regulated, with secretion enhanced
by estrogen and thyroid hormones, and further regulation by
somatostatin, ghrelin, and insulin-like growth factor 1 (IGF-1)
levels. Circulating GH levels also regulate GH secretion through
negative feedback (Romero et al., 2012).

Growth Hormone Is a Vasodilator and Induces
Insulin-Resistance
Growth hormone acts as a vasodilator through activation
of an endothelium-dependent component involving the NO
pathway (Napoli et al., 2003) to improve arterial compliance,
flow mediated dilation, and endothelial function (Napoli et al.,
2003). Given its vasodilatory effects, GH would be expected
to contribute to blood pressure lowering, particularly during
stage III–IV where GH levels reach their peak. However, GH
also acts to antagonize the hepatic and peripheral effects of
insulin on glucose metabolism, preventing insulin uptake and
inducing insulin resistance, thus increasing circulating insulin
levels (Palmeiro et al., 2012). Furthermore, GH has a significant
influence on adipocyte metabolism, increasing adipokines such
as leptin (Palmeiro et al., 2012). Accordingly, GH contributes to
increases in both insulin and leptin, increasing their impact on
autonomic cardiovascular regulation.

Insulin-Like Growth Factor-1
Insulin-like growth factor-1 (IGF-1) production follows similar
patterns to GH secretion during puberty; it is stimulated by
GH in the liver and further enhanced by estrogen and thyroid
hormones (Rozario et al., 2000). In females, IGF-1 levels peak
during stage IV and are associated with increases in adiposity
at this time (Moran et al., 2002; Figure 4). IGF-1 binds to
the IGF-1 receptor and is a primary mediator of the actions
of GH, promoting growth in almost every cell in the body by
regulating cellular proliferation, differentiation and metabolism
(Rozario et al., 2000).

Insulin-Like Growth Factor-1 Is a Vasodilator and
Enhances Insulin Sensitivity
Insulin-like growth factor-1 induces vasodilation by enhancing
NO and potassium channel activity, both of which reduce
calcium release into vascular smooth muscle, blunting
vasoconstriction (Conti et al., 2004). IGF-1 interacts with
a tyrosine kinase membrane receptor that activates the
serine/threonine kinase Akt signaling pathway, which in
turn activates eNOS, increasing NO levels and promoting
vasodilatation (Conti et al., 2004). By facilitating widespread
vasodilatation, it is likely that IGF-1 reduces blood pressure,
particularly during stage III–IV when IGF-1 levels peak.
IGF-1 increases insulin sensitivity and prevents postprandial
dyslipidemia by suppressing plasma free fatty acid levels,
reducing fasting plasma triglyceride concentrations, and
increasing oxidative and non-oxidative glucose metabolism
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(Conti et al., 2004). Contrary to GH, IGF-1 helps to restore
insulin and leptin levels to normal values (Conti et al., 2004).
Thus, increases in IGF-1 are likely the result of, not the cause of,
insulin resistance in puberty (Kelsey and Zeitler, 2016).

Insulin
During female puberty insulin levels generally coincide with
changes in IGF-1 levels (Moran et al., 2002). Fasting insulin levels
are highest in stage III, occurring one stage earlier than peak IGF-
1 levels (Moran et al., 2002; Figure 4). Insulin is synthesized by
beta cells in the pancreas following stimulation by blood glucose
(Sliwowska et al., 2014)and primarily acts to facilitate cellular
glucose entry for energy utilization and growth (Sliwowska et al.,
2014). When this process is compromised, insulin resistance
can develop, and if left untreated it can progress to type 2
diabetes mellitus.

Puberty is associated with a marked decrease in insulin
sensitivity, on par with that seen during pregnancy. In otherwise
healthy youth, insulin sensitivity reaches a nadir in mid-puberty
(stage III) that recovers by stage V (Kelsey and Zeitler, 2016).
In patients with POTS, increases in serum resistin have been
documented, the significance of which is unclear, but it has been
previously associated with insulin resistance (Bai et al., 2017). It is
interesting to note that the decline in cerebral blood flow during
puberty is tightly linked to the concurrent decreases in glucose
metabolism (Satterthwaite et al., 2014).

In children with type 1 diabetes, profound insulin resistance
associated with puberty is well documented, although effects
on the ANS in these children are not well studied. In one
study evaluating 73 diabetic children, abnormalities in heart rate
variability (a marker of autonomic dysfunction) were correlated
with poor glycemic control in pubertal children. This relationship
was not seen in younger children (Massin et al., 1999).

Insulin Exhibits Opposing Roles in Regulating
Vasomotor Tone
Insulin exhibits both central and peripheral effects on the
ANS – insulin both promotes vasodilatation and prevents
vasoconstriction, while also having the ability to stimulate
sympathetic activity. Insulin diminishes arterial stiffness
(Vehkavaara et al., 2000) and acts as a vasodilator by binding to
an insulin receptor tyrosine kinase, activating the Akt pathway
and further stimulating eNOS to increase NO production
(Muniyappa et al., 2007). Insulin has further been shown to
attenuate vascular smooth muscle contraction and decrease
vasoconstrictor tone by inhibiting calcium influx (Muniyappa
et al., 2007). In contrast, insulin can stimulate sympathetic
activity and increase catecholamine levels (Muniyappa et al.,
2007). The opposing roles of insulin essentially lead to little
change in arterial diameter and blood pressure under normal
circumstances in healthy individuals (Muniyappa et al., 2007).
However, during acute increases in sympathetic nerve activity,
different parts of the vascular tree respond differently to
insulin, where distal arterioles vasodilate and proximal arterioles
constrict (Muniyappa et al., 2007). This could contribute to
enhanced venous pooling during sympathetic activation upon

standing. Increases in sympathetic activity and catecholamine
levels would tend to facilitate tachycardia.

Thyroid Hormones
The thyroid gland produces triiodothyronine (T3) and thyroxine
(T4), both of which are stimulated by thyroid-stimulating
hormone from the anterior pituitary gland secondary to release of
thyrotropin-releasing hormone from the hypothalamus (Shahid
and Sharma, 2019). The release of T3 and T4 from the thyroid
gland is influenced by growth factors and modulated by sex
steroids in females (Dunger et al., 1990). During puberty T3
increases, peaking during stage II, while T4 decreases at the
onset of puberty and continues to decrease before leveling
off after stage IV (Dunger et al., 1990; Elmlinger et al.,
2001; Figure 4). The decrease in T4 is likely a result of its
conversion into T3 in the periphery, as T3 is the more active,
bioavailable form of thyroid hormone (Jørgensen et al., 1994).
These hormones act to increase and regulate basal metabolic
rate, as well as to increase heart rate, cardiac output, and
ventilation, with decreases in peripheral resistance (Shahid and
Sharma, 2019). Additional effects on the central nervous system
and skeleton are crucial to normal development and growth
(Shahid and Sharma, 2019).

Thyroid Hormones Act as Vasodilators While
Increasing Heart Rate to Preserve Blood Pressure
Higher levels of thyroid hormones increase metabolism and heat
production stimulating hypothalamic reflex responses (Thomas,
1957). These hypothalamic responses initiate vasodilation of
arterioles, largely in the skin, to increase blood flow and
dissipate heat, while simultaneously increasing heart rate
and stroke volume to maintain a constant blood pressure
(Thomas, 1957). T3 enhances endothelium-dependent relaxation
through a cyclic adenosine monophosphate-mediated increase
in endothelium-derived hyperpolarizing factor (EDHF), as well
as through NO-mediated relaxation via up-regulation of eNOS
(Büssemaker et al., 2003). EDHF prevents calcium influx
through voltage-gated calcium channels, inhibiting contraction
of vascular smooth muscle. T4 directly inhibits vascular
contraction by inhibiting calcium/calmodulin-related regulatory
mechanisms (Ishikawa et al., 1989). Cerebral blood flow
remains unchanged during increases in thyroid hormones
(Thomas, 1957).

Cortisol
Baseline cortisol levels increase during puberty, peaking at
stage IV/V in females (Stroud et al., 2011; Figure 4). Cortisol
is released by the adrenal gland following stimulation by
adrenocorticotropic hormone, which is produced by the anterior
pituitary (Lee et al., 2015). Cortisol binds to cortisol receptors
and plays a role in maintaining blood glucose levels, central
nervous system function, and cardiovascular function during
fasting (Lee et al., 2015). Cortisol increases blood glucose levels
during stress at the expense of muscle protein and one of its most
important functions is to protect the body against self-injurious
inflammatory and immune responses (Lee et al., 2015).
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Cortisol Increases Plasma Volume and Increases
Blood Pressure
Acute increases in cortisol levels blunt autonomic reactivity
by suppressing the early effects of catecholamines in the
brain (Teixeira et al., 2015), with subsequent decreases in
arterial vasoconstriction (Theodorakis et al., 1998). However,
chronic elevations in cortisol induce hypertension, independent
of changes in sympathetic nervous system activity, likely
mediated via increases in plasma volume, extracellular fluid and
exchangeable sodium (Theodorakis et al., 1998).

Leptin
Leptin levels increase with the onset of puberty, but remain
fairly steady following this initial rise until a late surge
starting at stage IV in females (Ahmed et al., 1999; Figure 4).
Leptin is secreted by adipocytes and is hypothesized to act
on specific receptors at the level of the hypothalamus to
regulate appetite, energy expenditure, the neuroendocrine axis,
and weight (Ahmed et al., 1999). Differential changes in body
composition between males and females during puberty are
affected by the sexual dimorphism of leptin levels during
this period (Ahmed et al., 1999). In females, leptin increases
throughout puberty, with a prominent surge during stage IV–
V, to reach adult concentrations, while in males it increases only
transiently with the onset of puberty (Kelsey and Zeitler, 2016).

Leptin Activates the Sympathetic Nervous System
and Increases Insulin Sensitivity
Leptin activates the sympathetic nervous system through
hypothalamic mechanisms that are mediated by neuropeptide
systems, including the melanocortin system and corticotropin-
releasing hormone (Muniyappa et al., 2007). With increases in
sympathetic activity, increases in heart rate and vasoconstriction
are expected, particularly at stage V, when leptin levels peak.
Leptin also increases insulin sensitivity which helps to prevent
abnormally high levels of circulating insulin, and somewhat
counteracts the role of GH in inducing insulin-resistance
(Muniyappa et al., 2007). Higher leptin levels are also associated
with impaired heart rate variability (a sign of autonomic
dysfunction). In particular, increased low frequency heart rate
variability, and an increased ratio of low to high frequency heart
rate variability have been reported, suggesting that increased
leptin levels may result in an autonomic imbalance with a
sympathetic predominance in young females during puberty
(Van De Wielle and Michels, 2017).

Melatonin
In the early stages of female puberty (I and II) melatonin secretion
significantly decreases, with further successive decreases in the
later stages (Murcia et al., 2002; Crowley et al., 2012; Figure 4).
Melatonin is a lipophilic endocrine hormone that is synthesized
in the pineal gland (Murcia et al., 2002). Melatonin secretion is
largely regulated by light and dark information received by the
suprachiasmatic nucleus from retinal photosensitive ganglionic
cells (Murcia et al., 2002). It is secreted in a circadian pattern, with
the greatest secretions occurring at night (Murcia et al., 2002),
and functions in many regulatory processes including biological

rhythms, metabolism, intestinal reflexes, and protection against
inflammation (Chen et al., 2011).

Melatonin Inhibits Estrogen Receptor-Mediated
Transcription
Melatonin interferes with E2 signaling by impairing estrogen
receptor pathways via specific inhibition of E2-induced estrogen
receptor alpha (ERα) mediated transcription of both estrogen
response element and activator protein 1 containing promoters
(Del Río et al., 2004). By reducing the transcription of one of
the main estrogen receptors, ERα, the effects of estrogen are
reduced. As melatonin levels decrease as puberty progresses,
while estrogen increases, there is an inverse relationship
between melatonin and estrogen. Thus, the inhibitory effect
of melatonin on estrogen signaling is probably relatively
minor during puberty.

Kisspeptin and Gonadotropin Inhibiting
Hormone
Increases in kisspeptin levels and decreases in GnIH levels are
thought to contribute to the initiation of puberty (Figure 3).
However, data on kisspeptin and GnIH levels throughout

TABLE 4 | Impact of pubertal hormones on factors that predispose
to syncope events.

Factors predisposing
orthostatic intolerance

Pubertal hormones
that exacerbate

Pubertal hormones that
ameliorate

Vasodilatation Estrogen Progesterone (by inhibiting
action of estrogen)

Progesterone Melatonin (by inhibiting
action of estrogen)

Growth hormone

IGF-1

Insulin

Thyroid hormones

Impaired vasoconstriction Insulin Leptin

Progesterone

Hypotension Estrogen Cortisol

Growth hormone

IGF-1

Low sympathetic activity Progesterone Leptin

Insulin

Excessive venous pooling Insulin

Hypovolemia Estrogen Cortisol

Progesterone

Hypocapnia Estrogen

Progesterone

Decreased cerebral blood
flow

Estrogen and
progesterone (via
hypocapnia)

Estrogen

Excessive tachycardia Insulin Progesterone

Leptin

Thyroid hormones

Decreased baroreflex
sensitivity

Progesterone Estrogen

IGF-1, insulin-like growth factor-1.
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the phases of puberty, as well as any potential impact
on cardiovascular responses or susceptibility to syncope are
currently lacking.

PUBERTAL HORMONES AS POTENTIAL
CONTRIBUTORS TO VASOVAGAL
SYNCOPE AND POSTURAL
ORTHOSTATIC TACHYCARDIA
SYNDROME

There are numerous factors known to increase susceptibility
to syncope. One key contributor is excessive vasodilatation
and/or impaired vasoconstrictor responses, often associated
with hypotension and blunted sympathetic outflow (Brown and
Hainsworth, 2000; Bush et al., 2000). In addition, hypocapnia
and cerebral hypoperfusion (Claydon and Hainsworth, 2003;
Norcliffe-Kaufmann et al., 2007), hypovolemia (Cooper and
Hainsworth, 2008), excessive tachycardia (Sandroni et al., 1999),
or impaired baroreflex responses (Cooper and Hainsworth, 2002;

Gulli et al., 2005a), will all impair orthostatic cardiovascular
control. The potential impact of female pubertal hormones on
these predisposing factors is summarized in Table 4.

The implications for these hormones as possible contributors
to VVS and POTS can be considered based on the impact
each has on cardiovascular control (Table 4), and the timing
of their changes over the duration of puberty (Apter, 1980;
Burger et al., 1988; Wennink et al., 1990; Rose et al., 1991;
Ahmed et al., 1999; Elmlinger et al., 2001; Moran et al., 2002;
Stroud et al., 2011; Crowley et al., 2012; Figure 4). Hormones
promoting vasodilatation may exacerbate the inappropriate
reductions in blood pressure that occur during VVS or the
impaired vasoconstriction in POTS, placing increased reliance
on orthostatic tachycardia for maintenance of blood pressure
(Figures 5, 6). Thyroid hormones, GH and IGF-1 largely
act as vasodilators through their involvement with the NO
pathway. Along with releasing NO and hydrogen sulfide,
another vasodilator, E2 also promotes hyperpolarization in
vascular smooth muscle, and decreases renal renin release with
subsequent reductions in angiotensin-mediated vasoconstriction,
culminating in a potent vasodilatory influence. Baseline blood

FIGURE 5 | Potential mechanisms by which pubertal hormones exacerbate susceptibility to vasovagal syncope (VVS). The normal cardiovascular response to
orthostatic stress is shown (black text). In patients with VVS, hypovolemia and excessive venous pooling, particularly in the splanchnic vascular bed, combine to
produce particularly large orthostatic reductions in stroke volume and cardiac output. Impaired baroreflex responses, and blunted orthostatic increases in vascular
resistance and vascular capacitance fail to appropriately compensate, and ultimately blood pressure and cardiac output fall dramatically, with cerebral hypoperfusion
and subsequent presyncope or syncope. Impairments in cerebral autoregulatory control and excessive reductions in cerebral blood flow in response to the
hypocapnia during orthostasis further contribute to the decline in cerebral perfusion (blue text). Hormones that potentially exacerbate the impaired cardiovascular
responses to orthostatic stress in patients with VVS are indicated (orange text). GH, growth hormone; IGF-1, insulin-like growth factor-1.
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FIGURE 6 | Potential mechanisms by which pubertal hormones exacerbate susceptibility to the Postural Orthostatic Tachycardia Syndrome (POTS). The normal
cardiovascular response to orthostatic stress is shown (black text). In patients with POTS, excessive venous pooling, particularly in the splanchnic vascular bed,
contributes to particularly large orthostatic reductions in stroke volume and cardiac output. In those with hyperadrenergic POTS1 central sympathetic outflow is
excessive. In those with hypovolemic POTS2, plasma volume is low exacerbating the impact of the orthostatic venous pooling. Patients with neuropathic POTS have
impaired vasoconstrictor responses with compensatory tachycardia3. Those with noradrenaline transporter deficiency have a primary orthostatic tachycardia4. The
common feature of all subtypes is excessive tachycardia (either primary tachycardia or secondary tachycardia to compensate for other impairments) with low venous
return and stroke volume during orthostasis, reduced time for diastolic filling, and consequently low cardiac output. Cerebral perfusion is compromised and
symptoms of presyncope are common. Impaired orthostatic increases in vascular resistance and vascular capacitance exacerbate the orthostatic tachycardia. Some
patients with POTS are reported to have decreased cardiac mass, with low stroke volume, that also facilitates orthostatic tachycardia. Impairments in cerebral
autoregulatory control and excessive reductions in cerebral blood flow in response to the hypocapnia during orthostasis further contribute to the decline in cerebral
perfusion (blue text). Hormones that potentially exacerbate the impaired cardiovascular responses to orthostatic stress in patients with POTS are indicated (orange
text). Leptin, insulin and thyroid hormones may exacerbate orthostatic tachycardia. GH, growth hormone; IGF-1, insulin-like growth factor-1.

pressures increase during puberty, but to a lesser degree in
females than in males, suggesting that the vasodilatory actions
of female pubertal hormones promote lower blood pressures in
females, with an associated susceptibility to further orthostatic
blood pressure decrements (Shankar et al., 2005). The differential
influence of insulin in the presence of sympathetic stimulation
may account for the abnormal blood perfusion and splanchnic
pooling as a proposed mechanism of VVS and POTS (Figures 5,
6). In the presence of high insulin and sympathetic activity,
as seen with standing, distal vessels vasodilate while proximal
vessels constrict, likely increasing blood flow to distal extremities
while decreasing flow to the central regions of the body. This
effect would predominate during stage III when insulin levels

peak. Similarly, different organs in the body respond differently
to the vasodilatory effects of thyroid hormones, and this may
also promote splanchnic pooling (Figures 5, 6). The presence of
hypovolemia in POTS and VVS patients may be exacerbated by
E2 as it acts to decrease renin concentrations with consequent
decreases in blood volume mediated via the renin-angiotensin-
aldosterone pathway. High levels of E2 and progesterone may
promote hypocapnia and associated reductions in cerebral blood
flow, increasing susceptibility to further cerebral compromise
during orthostatic stress. While these hormones can account for
some of the similar predisposing factors and symptoms of VVS
and POTS, hormones that may contribute to the different profiles
of VVS and POTS should further be considered.
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The effects of these hormones on the ANS may be
more prominent in some individuals, leading to a greater
predisposition to POTS or VVS. As cortisol levels have been
shown to increase during vasovagal reactions in patients with
VVS (Stroud et al., 2011), peak levels of cortisol during stage IV/V
may play a role in the manifestation of VVS. Progesterone may
also be a contributor to VVS by blunting sympathetic outflow,
and impairing baroreflex responses, exhibiting its greatest effects
during stages IV–V, when progesterone is at its highest (Figure 5).

Central hyperadrenergic POTS and the abnormal heart
rate increases in POTS patients could be exacerbated by
hormones involved in increasing sympathetic activity and
elevating norepinephrine levels (Figure 6). Both insulin and
leptin have the ability to increase sympathetic activity and
stimulate catecholamine release, and increases in leptin and
insulin are associated with increases in heart rate. Insulin and
leptin peak during puberty in stages III and V, respectively, and
might be hypothesized to exacerbate orthostatic tachycardia at
these times. Thyroid hormones also play a role in increasing heart
rate to maintain blood pressure – with key rises in T3 during
pubertal stage II.

While it is certainly not possible to imply causality between
these pubertal hormone changes and disorders of orthostatic
tolerance in adolescents, the coincidental timing of these
profound hormonal changes – many of which have marked
cardiovascular effects - and the timing of onset of VVS and POTS,
together with the observation that many youth “grow out” of
their symptoms (Kizilbash et al., 2014), is suggestive of a link
between pubertal hormone changes and susceptibility to syncope
in females. Certainly, orthostatic tolerance increases in women
as they age, and is highest in postmenopausal women (Protheroe
et al., 2013). It is conceivable that pubertal increases in these
hormones, many of which have secondary actions to promote
vasodilatation, impair vasoconstriction, decrease blood volume,
promote hypocapnia and cerebral hypoperfusion, and contribute
to excessive tachycardia, unmask a susceptibility to disorders
of orthostatic intolerance in girls with a previously unknown
predisposition to poor orthostatic tolerance. Further insight into
the role of female sex hormones in susceptibility to VVS and
POTS can also be gleaned from a case series in which fifteen
women (including six adolescents) with refractory VVS/POTS
experienced symptomatic benefit with complete resolution, or

a marked reduction in the frequency, of orthostatic symptoms
following ovarian hormone therapy (Boehm et al., 1997).

CONCLUSION

Hormone changes during puberty have the potential to
impact cardiovascular autonomic control and as such may
play a role in predisposing adolescent females to autonomic
dysfunction, including disorders of orthostatic intolerance such
as POTS and VVS. The peak incidence of VVS and POTS
in young women occurs at approximately 10–15 years of age,
a time where many hormones involved in puberty, capable
of predisposing to disorders of orthostatic intolerance, are
at peak levels. These pubertal hormones can act to promote
vasodilatation, impair vasoconstriction, decrease plasma volume,
promote hypocapnia and cerebral hypoperfusion, and contribute
to excessive tachycardia. Additional research is necessary to
examine the potential role that puberty, and in particular
the hormonal changes that accompany it, may have in
predisposing young females to orthostatic intolerance and
autonomic dysfunction during their pubertal years.
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