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Cardiovascular exercise is known to promote the consolidation of newly acquired motor

skills. Previous studies seeking to understand the neural correlates underlying motor

memory consolidation that is modulated by exercise, have relied so far on using traditional

statistical approaches for a priori selected features from neuroimaging data, including

EEG. With recent advances in machine learning, data-driven techniques such as deep

learning have shown great potential for EEG data decoding for brain-computer interfaces,

but have not been explored in the context of exercise. Here, we present a novel

Convolutional Neural Network (CNN)-based pipeline for analysis of EEG data to study

the brain areas and spectral EEG measures modulated by exercise. To the best of our

knowledge, this work is the first one to demonstrate the ability of CNNs to be trained

in a limited sample size setting. Our approach revealed discriminative spectral features

within a refined frequency band (27–29 Hz) as compared to the wider beta bandwidth

(15–30 Hz), which is commonly used in data analyses, as well as corresponding brain

regions that weremodulated by exercise. These results indicate the presence of finer EEG

spectral features that could have been overlooked using conventional hypothesis-driven

statistical approaches. Our study thus demonstrates the feasibility of using deep network

architectures for neuroimaging analysis, even in small-scale studies, to identify robust

brain biomarkers and investigate neuroscience-based questions.

Keywords: motor learning, convolutional neural network (CNN), cardiovascular exercise, deep learning, EEG

1. INTRODUCTION

A single bout of cardiovascular exercise, when performed in close temporal proximity to a session
of visuomotor skill practice has been shown to facilitate motor memory consolidation (Roig
et al., 2013; Dal Maso et al., 2018). The positive effects of exercise on motor memory have been
associated with a variety of events at the molecular and systems level. These involve an increased
concentration of neurotrophin molecules such as brain-derived neurotrophic factors (BDNF),
vascular endothelial growth factor (VEGF) and insulin-like growth factor (IGF-1). In turn, these
factors mediate downstream effects like neurogenesis and synaptogenesis, which form the basis
of events underlying neuroplasticity. Increased corticospinal excitability has also been observed
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during the memory consolidation period and is thought to
facilitate synaptic transmission between neuronal networks
involved in motor skill practice (Ostadan et al., 2016). However,
the precise contribution of distinct brain areas and networks
associated with the positive effects of exercise on motor memory
consolidation remain largely unknown. Understanding how the
brain is altered by exercise could hold the key to designing
therapies that could optimize the neurophysiological changes
associated with motor memory consolidation for varied purposes
(Hendricks et al., 2002).

Electroencephalography (EEG) is a technique used to study
the electrical activity originating in different brain areas. The
EEG signal arises from synchronized postsynaptic potentials
of neurons that generate electrophysiological oscillations in
different frequency bands. During movement, the EEG signal
power spectrum within the alpha (8–12 Hz) and beta (15–
29 Hz) range decreases in amplitude and this is thought to
reflect increased excitability of neurons in the sensorimotor
areas (Salmelin et al., 1995; Crone et al., 1998; Neuper and
Pfurtscheller, 2001; Pfurtscheller et al., 2003). This phenomenon
is termed Event-Related Desynchronization (ERD). Various
studies have reported that alpha- and beta-band ERD patterns
are modulated during motor skill learning (Zhuang et al., 1997;
Boonstra et al., 2007; Houweling et al., 2008). There is also
converging evidence toward an association between cortical
oscillations in the motor cortex and neuroplasticity events
underlying motor memory consolidation (Boonstra et al., 2007;
Pollok et al., 2014). Using EEG, we recently described the
oscillatory patterns in brain electrical activity while subjects
performed a handgrip task (Dal Maso et al., 2018). Using
a time-frequency decomposition-based analysis pipeline, we
found a significant decrease in post-exercise beta-band ERD
in EEG electrodes located over the sensorimotor area in both
hemispheres. Additionally, changes in beta-band ERD were
associated with better skill retention 24 h after motor practice.
These results suggest that changes in brain oscillatory patterns
occur when motor learning is combined with acute exercise and
that some of these changes have implications for skill retention.
However, as these inferences were drawn from a hypothesis-
driven approach, whereby standard EEG frequency bands from
pre-selected electrodes were considered, the existence of more
subtle, fine-scale neurophysiological features that are modulated
by a single bout of exercise cannot be excluded.

Neural network models, particularly deep learning
(DL) models, have been successful in identifying optimal
discriminative features in a given dataset (LeCun et al., 2015).
Convolutional Neural Networks (CNN) and Recurrent Neural
Networks (RNN) have been applied to computer vision and
speech processing datasets (Krizhevsky et al., 2012; Graves et al.,
2013; Karpathy et al., 2014; Zhang and LeCun, 2015) with great
success. These approaches have also been used in the context of
neuroimaging to identify features for structural and functional
magnetic resonance imaging data analysis (Plis et al., 2014) and
EEG data decoding (Bashivan et al., 2015; Thodoroff et al., 2016;
Schirrmeister et al., 2017b) among others.

CNNs are artificial neural networks that can learn low-level
patterns in a given dataset by using convolution operations as

a key component. CNN architectures may range from shallow
architectures with just one convolutional layer (Abdel-Hamid
et al., 2014), deep CNNs with multiple sequential convolutional
layers (Krizhevsky et al., 2012) to very deep architectures with
over 1,000 layers (He et al., 2015). CNNs have an edge over other
machine learning models as they are well suited for end-to-end
learning, i.e., learning from raw data without any a priori feature
selection and they can exploit hierarchical structures that may be
present in the data.

Although the field of EEG signal decoding has recently
seen a surge of papers (Tjepkema-Cloostermans et al., 2018;
Yannick et al., 2019; Yuan et al., 2019) involving the use
of DL, the applicability of DL models has been primarily
restricted to the classification of EEG data segments into
known categories. The usefulness of CNNs to improve our
understanding of the neural substrates underlying observed
behaviors is less straightforward, primarily due to the difficulty
associated with the visualization and interpretation of the
feature space learned by DL architectures, e.g., CNNs. For
instance, Schirrmeister et al. (2017b) proposed a systematic CNN
framework for EEG decoding, including the impact of various
architectural considerations on decoding performance. However,
they presented a feature validation approach to understand which
a priori selected features were used by the CNN rather than a
feature discovery approach.

In this context, the aim of the present study was to develop
a data-driven approach for studying the positive effects of
exercise on motor learning by investigating the EEG-based ERD
patterns during an isometric motor grip execution in healthy
young subjects. We aimed to identify specific EEG spectral
features modulated by exercise and further investigate if these
features were related to skill retention performance. The subjects
performed a repetition of isometric handgrips before and after
a session of intense cycling exercise (exercise group) or rest
for the same period (control group). In addition to isometric
handgrips, subjects also practiced a new motor tracking task
with their dominant hand in close proximity to the exercise
or rest session. To identify the neurophysiological substrates
underlying the positive effects of exercise, we used a CNN-
based deep network architecture to identify exercise-induced
changes in neural activity from EEG signals recorded during the
handgrip task. Since neural networks are known to be universal
function approximators (Hornik et al., 1989), with the capability
of identifying linear as well as non-linear boundaries in high-
dimensional data spaces, this allowed us to differentiate the
exercise and control groups in the EEG time-frequency data
space. The training was carried out in a hierarchical structure—
initially in the time-frequency domain and subsequently for
topographical maps of ERD pattern. Visualizing the features
after each stage of training allowed us to identify frequency
bands as well as the corresponding brain regions modulated
by the positive effects of acute exercise on motor learning.
Moreover, the majority of previous related DL studies used
datasets comprising of hundreds of subjects for training purposes
(Plis et al., 2014; Schirrmeister et al., 2017a). Therefore, one of
our main goals was to develop a DL-based method that is suitable
for neuroimaging studies with smaller subject numbers, which is
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FIGURE 1 | Data preprocessing pipeline outlining the preparation of data to be used as input to the deep network.

frequently the case. To this end, we added a regularizer (adversary
component) to the CNN, which prevented the latter from
learning subject-specific features, thus favoring the identification
of group-specific features. The proposed approach revealed that
the CNN-extracted features were strongly correlated to the
improvement in motor learning scores. Visualizing these features
revealed finer frequency bands and corresponding brain regions
where ERD patterns were modulated by exercise. Therefore,
the proposed analysis provided observational evidence for the
identified frequency band-related ERD to be associated with the
positive effects of exercise on motor memory consolidation.

2. DATASET

The experiment and data collection are described in detail in
Dal Maso et al. (2018). Briefly, 25 right-handed healthy subjects
were recruited and assigned to the Control (CON, n = 13
subjects) or Exercise (EXE, n = 12 subjects) groups in matched
blocks. The blocks of subjects were created with similar age,
gender, body mass index, working and episodic memory as well
as cardiorespiratory fitness. All subjects signed a written consent
form according to the research protocol that complied with the
recommendations of the declaration of Helsinki for investigation
of human participants and was approved by our local ethics
committee (CRIR-1134-0116).

Each subject reported to the laboratory on four occasions
as described in Dal Maso et al. (2018). Visit 1 required the
participants to go through a Graded Exercise Test (GXT), which
was used to determine their cardiorespiratory fitness. Visit 2
was conducted at least 48 h after the GXT to avoid potential
long-term effects of exercise on memory (Berchtold et al., 2005;
Hopkins et al., 2012). EEG recordings were collected at baseline
(before the exercise session) while subjects performed repetitions
of visually cued isometric handgrips with their dominant right
hand using a hand clench dynamometer (Biopac, Goleta, CA,
USA). Each contraction was maintained for 3.5 s at 15% of each
participant’s maximum voluntary contraction (MVC). This was

followed by a 3–5 s rest period. The baseline assessment was
followed by the practice of a visuomotor tracking task (skill
acquisition), which was used to calculate themotor learning score
of each subject. Following the training period, participants were
randomly assigned to two groups. The EXE group performed a
bout of high-intensity interval cycling of 15 min, while the CON
group rested on the cycle ergometer for the same amount of time.
EEG recordings similar to baseline were repeated 30, 60, and 90
min after the exercise or rest period. During visits 3 and 4, two
blocks of the visuomotor tracking task were performed 8 and 24
h after the exercise or rest period.

EEG activity was recorded using a 64-channel ActiCap
cap (BrainVision, Munich, Germany) with electrode locations
arranged according to the 10–20 international system. The
electrical conductive gel was inserted at each electrode site to keep
impedances below 5 k�. EEG signals were referenced to the FCz
electrode and sampled at 2,500 Hz.

3. METHODS

The analysis pipeline was first applied to the time and frequency
domain data without incorporating spatial information.
Subsequently, it was applied to the data obtained by creating
topographical maps corresponding to the distribution of
activity within specific frequency bands across the cortex. The
entire pipeline consisted of 3 segments, i.e., Preprocessing,
CNN training, and cue-combination for Class Activation Map
(ccCAM) generation.

3.1. Time-Frequency (TF) Maps
3.1.1. Preprocessing
EEG data preprocessing was similar to that described previously
(Dal Maso et al., 2018) and was performed using the
BrainstormMatlab toolbox (Tadel et al., 2011). The preprocessing
pipeline is summarized in Figure 1. Briefly, EEG signals were
bandpass-filtered between 0.5 and 55 Hz and average-referenced.
The data were visually inspected and signal segments with
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FIGURE 2 | Modified deep network architecture with an adversary component (bottom right). The adversary component makes it feasible to use CNNs for identifying

subject-invariant features in neuroimaging studies with a limited number of subjects. Dimensions corresponding to the obtained TF maps are also shown.

artifacts were rejected. Independent component analysis (ICA)
was subsequently applied (total number of components: 20)
and eye-blink related components were rejected based on
their topography and time signatures (Delorme and Makeig,
2004). The resulting data were epoched with respect to the
period of time (3.5 s) corresponding to the appearance of
the visual cue that triggered the initiation of the isometric
handgrips (n = 50/subject). Finally, each epoch was visually
inspected and those containing artifacts were manually removed.
EEG electrodes with atypical power spectrum density were
interpolated using spherical splines.

Morlet wavelet (wave number = 7) coefficients between 1
and 55 Hz with 1 Hz resolution were extracted to obtain
time-frequency decompositions of the EEG data (Tallon-Baudry
et al., 1996). The time-frequency data for each electrode were
normalized with respect to their spectral power before the start of
the grip event, using a window of 0.5 s. An average over all trials
was then calculated in order to obtain a single time-frequency
map for each electrode. Subsequent analysis was performed on
the EEG recording segment corresponding to 0.5–3.5 s after
the appearance of the visual cue, i.e., during the handgrip task.
Finally, one time-frequency map was obtained for each electrode
for each session (baseline, 30 min, 60 min or 90 min after
exercise) and for each subject.

3.1.2. CNN Training
The proposed CNN architecture is shown in Figure 2. The
preprocessed data for each session was rearranged to form 2D
matrices comprising of the frequency spectra for all electrodes at
a given time instant t. Each matrix had a dimension of 64 × 55
(64 electrodes × 55 frequency bands). For training the network,
a pair of matrices was used—the first corresponding to time
point t from the baseline session and the second corresponding
to the same time point t from the post-intervention session.
Each pair was labeled based on the respective group allocation

(EXE or CON). Structuring the data in this fashion allowed
the network to take into account the inter-subject variability in
baseline measures and therefore did not require the experimenter
to adopt techniques for normalizing the EEG signal from the
post-intervention session with respect to the baseline session.
Thus, the network was expected to capture the EEG features that
were modulated by the effects of acute exercise.

3.1.2.1. Dataset notation

B and A represent the entire data tensor at baseline and post-
intervention, respectively. Each data tensor consists of data
matrices from all 25 subjects and timepoints. For subject s, the
goal was to classify whether the tuple containing the matrices Bst
and As

t (where t denotes timepoint) belongs to the EXE or CON
groups. Matrices Bst and As

t were arranged so that they belonged
to the set R64X55, where 64 is the number of electrodes and 55 is
the number of frequency bands.

To identify EEG features modulated by exercise, we used a
deep CNN that was trained to discriminate between EEG data
from EXE and CON group. The network architecture is similar to
the one described in Agrawal et al. (2015). Features frommatrices
Bst and A

s
t were extracted using a network termed Base CNN. The

difference between the obtained feature vectors was passed to a
discriminator network, termed Top NN, to predict the correct
group to which each pair belonged to. The schematic view of
the architecture is shown in Figure 2 and the details for each
network’s architecture are provided inTables S1, S2, respectively.
Using a sampling frequency of 2,500 Hz and a time period of
interest of 3 s duration, each tuple input to the CNN was of the
form (Bst ,A

s
t) where timepoint t ∈ [1,7500] and subject s ∈ [1,25].

The convolutions performed in the Base CNN were with
respect to the frequency direction and not the electrode (sensor)
dimension. This is done because the frequency dimension was
by definition arranged in terms of increasing frequencies, as
opposed to the electrode dimension, which was not arranged in
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terms of the spatial locations of the electrodes in a meaningful
manner. Consequently, the features extracted by the Base CNN
corresponded to the frequency bands significantly affected by
exercise. Therefore, all convolutional filters in the Base CNN
were implemented as 1 × n 2D filters, where n is the extent
of the filter in the frequency domain. The same holds for the
Max-Pooling layers.

Initially, a network that did not include an adversary loss
component (Figure S1A) was used; however, it was found that
this network was able to learn subject-specific features as opposed
to subject-invariant, exercise-related features. This is illustrated
in Figure S2 and Table 2. In most neuroimaging studies
examining the effect of exercise, the number of participants
scanned was relatively low (Gutmann et al., 2015; Robertson
and Marino, 2015; Huang et al., 2017), which typically prevents
deep networks from learning subject-invariant features. To
address this issue, we followed a domain adaptation approach.
Specifically, each subject was considered as a separate domain
comprising of subject-specific features along with subject-
invariant, exercise-related features. Since our goal was to
learn features mainly related to the effect of exercise on the
consolidation of motor memory, we incorporated the domain
confusion strategy (Tzeng et al., 2015) to train the network,
thus adding the subject discriminator as an adversary (Figure 2,
bottom right). Specifically, we included this network in parallel
to the Top NN with similar model capacity (see Table S3 for
architecture details).

3.1.2.2. Network architecture notation

The feature extractor operation and parameters of the Base
CNN are denoted as fθf and θf , respectively, the Top NN
feature discrimination operator and its parameters by hθt and
θt , respectively, while the subject discrimination operator and its
parameters by hθs and θs, respectively. The input tuple is denoted
by x and its corresponding group and subject labels by yg and
ys, respectively. We used the Negative Log Likelihood (NLL) loss
for each classifier with the Adam optimizer (Kingma and Ba,
2014) in Torch (Collobert et al., 2011) for training the network.
The Subject Discriminator was trained to minimize the subject
prediction loss given by

Js(θs, θf ) = −[

m∑

i=1

logh
(y

(i)
s )

θs
(fθf (x

(i)))] (1)

The Top NN was trained to minimize the group prediction loss
given by

Jg(θt , θf ) = −[

m∑

i=1

logh
(y

(i)
g )

θt
(fθf (x

(i)))] (2)

We trained the feature extractor (Base CNN) to extract features
that would be agnostic to the originating subject; therefore,
the target distribution for the subject prediction network had a
uniform distribution. Hence, we used the domain confusion loss
(Tzeng et al., 2015) over the gradient reversal layer (Ganin et al.,
2016). We also used the Kullback-Leibler (KL) divergence from
the uniform distribution over 25 classes (25 subjects) as our loss

TABLE 1 | Comparison of CNN performance with alternative machine learning

methods.

Method Average validation

accuracy over 10 folds (%)

Random forests 59.97 ± 5.21

Random forests with frequency bands 60.14 ± 5.59

Random forests with common spatial patterns 43.23 ± 4.44

CNN without baseline normalization architecture 56.59 ± 4.04

CNN without subject adversary 59.29 ± 4.61

CNN with subject adversary (proposed) 74.85 ± 5.65

Proposed CNN with labels shuffled at subject level 62.57 ± 3.92

Bold values highlight the method with the best performance on the validation set.

metric. Conclusively, the Base CNN was trained to minimize the
loss given by

Jf (θf , θt , θs) = −[

m∑

i=1

logh
(y

(i)
g )

θt
(fθf (x

(i)))]

+λ[

m∑

i=1

KL(U, hθs (fθf (x
(i)))] (3)

where KL(P,Q) denotes the KL divergence between distributions
P & Q, U denotes the uniform distribution, m denotes the total
number of training examples, and λ is a hyperparameter that
determines the weight for the subject discrimination regularizer.
Here, we used a 80-20 split of the data set, whereby 80% was used
for training and 20% was used for validation.

For our experiments, we used two different cross-validation
strategies (1) a train-validation split at the timepoint level and
(2) a train-validation split at the subject level. In the timepoint
level split strategy, 80% of all the data from all timepoints
(aggregated from all subjects) were used for training the network.
Therefore, the network was exposed to data from all subjects
during training. This training strategy was used to observe the
network’s behavior during training, the effect of the subject
adversary and further investigate the features extracted by the
network. Contrastingly, the subject level split strategy used data
from 23 subjects for training the network and the held-out 2
subjects were used to evaluate the network’s performance on
unseen or “novel” subjects. This strategy was used to assess
the network’s generalizability across subjects and compare it to
other EEG decoding methods (10-fold cross-validation accuracy
was compared across methods in Table 1). In addition, we
added a random label-shuffling analysis within the subject level
split strategy to check for selection bias in the results of our
proposed methods.

3.1.3. ccCAM
An innovative contribution of the present work is the
development of a novel method for the visualization of the
features that guide the proposed network’s decision. Although
well-known techniques used in the computer vision literature
include Global Average Pooling (GAP) (Zhou et al., 2016) and
grad-CAM (Selvaraju et al., 2016), they are not well suited to
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FIGURE 3 | ccCAM generation pipeline outlining the procedure for obtaining CAMs from the trained deep network.

the neurophysiological paradigm considered here. For instance,
GAP requires averaging the activations of each filter map, i.e.,
each channel of the extracted feature tensor. This leads to loss of
information related to electrode positions, as convolutions were
performed only in the frequency domain. Consequently, we were
unable to obtain adequate classification accuracy (≈ 56%) with a
GAP layer in the network. Grad-CAM is sensitive to the absolute
scale of variability in the features in the input data and, as a result,
it yielded results that were biased toward frequency bands with
higher power-values, i.e., the lower frequency bands (<10 Hz).

Given the above limitations in existing analytic methods,
we used the linear cue-combination theory applied in human
perception studies (Ernst and Banks, 2002) to develop a method
that improves the interpretability of the network’s decisions. Let
us consider, for example, a CNN with only 2 channels, i.e., filter
maps, in the final feature tensor extracted after convolutions.
Each of these filter maps preserves the spatial and/or semantic
structure of the input data. Each of these filter maps acts as a cue
to the network’s classifier layers, denoted as c1 and c2. These cues
guide the network’s prediction. If we denote the desired class label
as y1 and assuming c1 and c2 to be independent to each other, we
can use Bayes’ Theorem to write

P(y1|c1, c2) =
P(c1, c2|y1)P(y1)

P(c1, c2)
=

P(c1|y1)P(c2|y1)P(y1)

P(c1)P(c2)

=
P(y1|c1)P(y1|c2)

P(y1)
(4)

If the likelihood for predicting y1 due to cue ci is Gaussian with
mean µi and variance σ 2

i , the maximum likelihood estimate
(MLE) yields the combined cue, denoted by c∗, that summarizes
the important features on which the network bases its decisions.
Therefore, the combined cue, c∗, is the desired Class Activation
Map (CAM).

c∗ =

2∑

i=1

wiµi where wi =
1/σ 2

i

2∑
i=1

1/σ 2
i

(5)

Since the network is trained, µi = ci. To calculate the values
of σi, we used the NLL loss values. The NLL loss when a cue
was removed from the network provided an estimate of the σ

associated with that specific cue, as shown in Equation (6).

ǫ = −logP(y1|c1, c2)

= −logP(y1|c1)− logP(y1|c2)+ logP(y1) [From eq 4]

ǫ1 = ǫ|c1=0 = −logP(y1|c1 = 0)− logP(y1|c2)+ logP(y1)

ǫ1 − ǫ = logP(y1|c1)− logP(y1|c1 = 0)

=
µ2
1

2σ 2
1

Therefore,
1

σ 2
1

=
2(ǫ1 − ǫ)

µ2
1

(6)

σi is estimated over the entire dataset as shown in Equation (7).

1

σ 2
i

=

m∑

j=1

2[(ǫi − ǫ)](j)

[µ2
i ]

(j)
(7)

Using the estimated σi, the CAM corresponding to the correct
class for each input was obtained. Since in the present case µi

corresponded to a 2D matrix, the denominator in Equation (7)
was replaced by the mean-squared value of the corresponding
matrix. A summary of the process of generating a CAM is
outlined in Figure 3. The resulting CAM was a 2D matrix
with each row corresponding to an electrode and each column
corresponding to a frequency band. To obtain the contribution
of each frequency band in determining the correct class, we
averaged the CAM along the row dimension to yield a vector
corresponding to the importance of each frequency band power
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across the whole brain. This vector was generated at each
timepoint t, depicting the importance values of each frequency
band at timepoint t. Since the subject was exerting a fixed force
during the entire time period of the EEG segment that was
considered, we expected important frequency bands to exhibit
pronounced differences at all timepoints. Consequently, we
considered a frequency band to be reliably modulated by exercise
only if the corresponding CAM value was high for all timepoints.
Therefore, we followed a procedure similar to the bootstrapping
technique to estimate the reliability of each frequency band
(Efron et al., 1996; McIntosh et al., 1996; McIntosh and Lobaugh,
2004). Specifically, we calculated the bootstrapped ratio (BSR)
of the CAM values for each band and subject by dividing the
mean of CAM values across time by its standard deviation. The
obtained BSR values were subsequently group-averaged to extract
frequency bands that contained features characteristic to each
group (CON and EXE).

3.2. Topographical Maps
Topographical maps were created using the frequency bands
obtained from the ccCAM corresponding to the TF-maps
following the same procedure as described in Bashivan et al.
(2015). Specifically, the 3D position of the electrodes on the EEG
cap was projected to a 2D space to construct a 64 × 64 image.
The image intensities corresponded to the respective electrode’s
spectral power within the frequency band of interest at time
point t. Since this procedure yielded a sparse matrix, cubic
interpolation was used to obtain a continuous image depicting
the distribution of activity within each frequency band over the
entire scalp. A total of three such matrices were concatenated to
form a 3×64×64 tensor corresponding to activity maps at three
consecutive timepoints (say t, t + 1 and t + 2, respectively). The
entire data tensor for a given subject was created by taking non-
overlapping time windows. Hence, the total number of tensors
for each subject was equal to 2,500.

Similar to the analysis of TF-maps, we trained a CNN-based
network to classify each data tensor into the CON and EXE
groups. Since the inputs were 2D image tensors, we used 2D
convolutional filters in the Base CNN (see Tables S4–S6 for more
details). Following training, ccCAM was applied to obtain CAMs
for each subject at each time instant during task execution.

3.3. Statistical Analysis for TF Curves and
Topographical Maps
To estimate the statistically significant frequency bands in the
resultant ccCAM maps for the two groups, we employed one-
way ANOVA on a point-by-point basis. This yielded a series of
p-values, each corresponding to a frequency bin in the ccCAM
map. Since these tests were not mutually independent, we chose
the Simes method (Simes, 1986; Sarkar and Chang, 1997) for
correcting the obtained p-values as done in Loizides et al. (2015).
This method was better suited to our problem compared to
the standard Bonferroni correction, as several highly correlated
statistics were involved. The method is based on the ordered
p-values in a sliding window of length Lwith the p-value we want
to correct being in the center (L = 2w+1). The corrected p-value
is given by

p′j = min
1≤i≤L

Lp(i)

i
(8)

Given the employed convolutional kernel sizes for the TF and
topographical maps, we chose the corresponding window lengths
for the Simes method to be 5 for TF maps and 3 × 3 for the
topographical maps. All points with corrected p-values less than
0.05 were considered to be significant.

4. RESULTS

The results presented here illustrate the differences between the
baseline and 90 min post-exercise/rest datasets. The network
architecture details for each type of data (TF and Topographical)
map are presented in the Supplementary Material, along with
details regarding the chosen hyperparameters.

4.1. Comparison to Alternative EEG
Decoding Methods
We compared the performance of the proposed CNN to
alternative machine learning methods on a leave-two-out cross-
validation strategy by using 23 subjects for training themodel and
2 subjects (1 fromCON and 1 from EXE) for validating themodel
performance on unseen data. Initially, we compared the proposed
CNN architectures to random forests (RF) (Breiman, 2001) and
support vector machines (SVM) (Steinwart and Christmann,
2008) given the same input data. The proposed CNN with a
subject adversary component clearly outperformed RF and SVM
(Table 1). A feature importance analysis showed that RF was
unable to account for the pink noise characteristics of EEG in
the frequency domain (Dumermuth and Molinari, 1987) and
therefore assigned more importance to lower frequencies. To
control for this, the data were normalized by multiplying power
in each frequency bin by the frequency value itself before being
fed to the RF but this did not yield significant improvement.

Subsequently, the data were binned into pre-specified
frequency bins, as done widely in EEG decoding techniques
(Bashashati et al., 2007), and used as input in a RF. Although
this improved the RF prediction performance, the resulting RF
prediction accuracy was lower than the obtained CNN prediction
accuracy (Table 1). Interestingly, the RF prediction accuracy was
very similar to an adversary-less CNN. We also compared the
performance using the common spatial pattern technique, which
is widely used in EEG decoding for brain-computer interfaces
(Ang et al., 2008). However, the prediction accuracy was far
below the CNN prediction accuracy. Overall, these results imply
that the CNN architecture with subject adversary was able to
generalize better across subjects compared to the alternative,
widely used EEG decoding methods. The CNN leave-two-out
prediction accuracy was equal to 74.85%. The summary of the
results is presented in Table 1.

To ensure a fair comparison among the different considered
methods, we fixed the random seed that determined the
subjects in the train-validation split for the 10 folds across all
methods. The random seed was also responsible for the network
initialization. By fixing the random seed, we initialized the deep
network in the same state for each fold. This ensured a fairer
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comparison while doing the ablation experiments, where we
removed certain components of the network and evaluated its
performance (experiments without subject adversary or baseline
normalization architecture). The average accuracy along with the
standard error in accuracy for each method is shown in Table 1.
To ensure reproducibility of the results, we have included the
list of subjects in the validation set for each fold and the Github
repository of our code base in the Supplementary Material.

The cohort size of our dataset was relatively small compared
to other EEG decoding studies using deep learning. In lieu of
this problem, we were unable to keep a separate test set in our
analysis as this would imply having fewer subjects in the training
set. Furthermore, in our experiments, we observed that there
was a significant decrease in the validation accuracy when 20
subjects were kept in the training set. Instead, we used a random
labeling strategy to perform a safety check against selection
bias. When the labels were shuffled at the time-point level, the
network was unable to converge to a solution and therefore
yielded accuracy around 50% (chance prediction level). We
believe that this occurred because consecutive time-points are
highly correlated. Specifically, having different labels for highly
correlated training data restricts the network from learning a
suitable decision boundary. Therefore, we shuffled the labels at
the subject level. We assigned any random combination of 13
subjects to be in the CON group and the rest in the EXE group.
Following this analysis, the network trained and converged to a
decision boundary but yielded a prediction accuracy of 62.57% at
the time-point level. We have added these results to Table 1. The
results of these experiments suggest that the accuracy achieved
by our proposed CNN is not caused by a selection bias. Instead,
the network recognizes the difference in EEG activity between
the control and exercise groups. We believe that adding more
subjects would further improve the model’s performance, and
thereby increase the reliability of the results. However, collecting
more data or evaluating the model on other EEG datasets is
beyond the scope of the current work.

4.2. Time-Frequency Maps
We observed that the features extracted by the Base CNN,
without any subject prediction regularizer, were able to perfectly
identify the subject corresponding from the obtained time-
frequency patterns. As the subject discriminator regularization
was given more weight by increasing λ, the Base CNN learned
to extract features that were agnostic to the originating subject.
However, for very high λ values, the extracted features could not
be used to discriminate the EXE andCONgroups, suggesting that
the Base CNN was unable to learn any discriminative feature.
The loss values obtained post-training for four different values
of λ are shown in Table 2. The choice of an optimal value for λ

depends on two factors—group prediction accuracy and subject
prediction accuracy. To identify subject-invariant features, we
sought for a value of λ that achieved good group prediction
accuracy and poor subject prediction accuracy (i.e., a good
tradeoff between the two prediction accuracies). According to
this procedure, the model corresponding to λ = 13 was used for
the ccCAM generation. The average loss over a batch for subject
prediction was around 2.6 (Table 2), which roughly predicted

TABLE 2 | Variation of Loss values with λ after training network on TF maps.

λ Group prediction

loss (NLL)

Subject prediction

loss (NLL)

KL divergence loss from

Uniform distribution

0 ≈ 0 ≈ 0 ≈ 0.3

10 ≈ 0.1 ≈ 1.5 ≈ 0.07

13 ≈ 0.4 ≈ 2.6 ≈ 0.004

15 ≈ 0.68 ≈ 3.2 ≈ 0.0002

the correct subject with probability of 1
13 (Since −log( 1

13 ) ≈

2.6). The group prediction accuracy was 99.984% (99.969% for
CON and 100% for EXE) when evaluated using a train-test
split strategy following 80-20 split of all timepoints from all
subjects. Since we aimed to obtain a model that best explained
the recorded EEG data, we focused on timepoint-level accuracy,
instead of subject-level accuracy as before (Table 1). Therefore,
we trained on 80% of timepoints from all subjects and validated
the model performance on 20% unseen timepoints from all
subjects. For λ = 13, the extracted features achieved excellent
group prediction, while all subjects in the group were predicted
with roughly equal probability (CON and EXE consisted of 13
and 12 subjects, respectively).

As one of the main goals of this study was to identify
the frequency bands that contained significant discriminative
information between the CON and EXE groups, we calculated
the BSR of the CAM values for each frequency bin as described
above. The difference obtained using ccCAM BSRs is shown
in Figure 4. The bold lines denote the group-mean and the
shaded regions span 1 standard error over all subjects in the
group. The two plots are significantly different within the band
23–33 Hz. A statistical significance analysis between the two
curves with Simes correction revealed that the band 27–29 Hz
lies below the significance threshold of 0.05. The uncorrected
and corrected p-values for each frequency bin are shown in
Figure 4. The aforementioned band lies within the beta-band
and agrees with findings in Dal Maso et al. (2018), where beta-
band desynchronization was found to be significantly modulated
by exercise. Note that Figure 4 corresponds to the differences
between the 90 min and baseline EEG recordings. In addition,
the features extracted by the CNN were found to be strongly
correlated to the motor skill retention improvement between the
8 and 24 h session (Figure 5).

The CNN was trained to classify the EXE and CON groups
given the baseline EEG and 90min post-exercise EEG recordings.
To observe how the discriminative features evolved over time
(30 and 60 min post-exercise), we used the t-SNE algorithm
(Maaten and Hinton, 2008) to obtain a lower dimensional
(2D) representation of the feature vectors extracted by the
trained CNN for all sessions and subjects. Figure 6 shows the
corresponding plot with each point representing one session
from one subject, color-coded with respect to session and group.
The differences between the features extracted from the 90 min
post-exercise and baseline sessions were more pronounced as
compared to the EXE group as compared to the CON group.
Also, the difference between the two groups becomes prominent
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FIGURE 4 | TF map ccCAM averaged over electrodes and subjects showing discriminative frequencies. (A) Bootstrap ratio of TF map ccCAM averaged over

electrodes and subjects showing discriminative frequencies. Bootstrapping is done using ccCAM values obtained for each timepoint to establish the reliability of the

ccCAM values during the task period. The two groups exhibited different BSRs within the range 23–33 Hz. (B) Uncorrected and Simes corrected p-values
corresponding to the difference between the bootstrapped ratio (BSR) values of the ccCAM TF maps obtained in CON aUncorrected and Simes correctedhe BSR

values between 27 and 29 Hz was found to be statistically significant (p < 0.05).

from the 30 min post-exercise session itself, with the feature
trajectories being considerably different for the two groups.

4.3. Topographical Maps
Topographical maps were created to study the distribution of the
activity within the 23–33 Hz frequency band across the cortex.
Since we used a convolutional filter of size 5 in the BaseCNN for
TF-maps, we selected the wider 23–33 Hz instead of the finer 27–
29Hz band, and projected this band-limited activity on the cortex
to obtain topographical maps. After training a network to classify
the CON and EXE groups from the resulting topographical maps,
a classification accuracy of 98.70% (98.94% for CON and 98.43%
for EXE) was obtained for λ = 5. Generating ccCAMs for the
topographical maps revealed brain areas where the activity was

notably different between the CON and EXE groups. The BSR
values were obtained to estimate the reliability as in the case
of TF maps and the results are shown in Figure 7. Statistical
analysis to highlight areas with significantly different activity
within the 23–33 Hz band is shown in Figure 7. Notable areas
that exhibited significant differences include the contralateral and
ipsilateral sensorimotor areas, the contralateral prefrontal area
and the occipital areas. The observed differences in occipital
areas are not surprising as the occipital cortex is primarily
responsible for visual information processing and the task under
consideration is a visuomotor task. Therefore, these differences
could also highlight a change in functional connectivity between
the sensorimotor and occipital cortices. Findings in sensorimotor
and prefrontal areas are in strong agreement with those reported
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FIGURE 5 | Scatter plot showing the motor skill retention improvement and a representative feature extracted by the final layer of CNN (Layer 3 of TopNN)

from TF maps. The dotted line shows a linear fit between the two variables. The extracted feature is strongly correlated to the motor skill retention (correlation

coefficient = −0.57).

FIGURE 6 | t-SNE plot of Top NN Layer 3 outputs (time-averaged) for the TF

maps for all subjects and sessions. The EXE subjects (circles) move further

away from baseline with time compared to the CON group (crosses),

indicating exercise-induced changes on the underlying electrophysiological

signals. Also, the feature trajectories across time are very different for the two

groups starting from the 30 min session, which indicates that exercise-induced

changes surface right after the session of acute exercise.

in Dal Maso et al. and therefore suggest that the proposed
method was able to identify the modulatory effect of exercise
(Dal Maso et al., 2018). In addition, the topographical features
extracted by the CNN were strongly correlated to the motor
skill retention improvement between the 8 hr and 24 hr sessions
(Figure 8), indicating a possible association of these features to

the observed motor learning improvements in the EXE group
(Dal Maso et al., 2018).

5. DISCUSSION

In the present work, we used a novel DL approach to
investigate the effects of acute cardiovascular exercise on
brain activity during the early stages of motor memory
consolidation while subjects performed isometric handgrips.
The proposed methodological approach does not require the
specification of a priori features and included a novel feature
visualization technique to highlight the neurophysiological
patterns modulated by exercise. Our approach addressed existing
caveats related to the application of DL architectures, such as
CNNs, to EEG data recorded from a relatively small number of
subjects by means of three novel contributions.

1. We used two parallel feature extraction streams to identify
informative features from EEG data before and after a session
of cardiovascular exercise and subsequently characterize the
modulatory effect on these baseline-corrected features rather
than on the raw EEG data;

2. We incorporated a subject prediction adversary component
in the network architecture to learn subject-invariant, group-
related features instead of subject-specific features;

3. We developed a novel feature visualization method,
termed cue-combination for Class Activation
Map (ccCAM).

Previous studies using DL in the context of structural and
functional neuroimaging (Plis et al., 2014; Bashivan et al.,
2015; Thodoroff et al., 2016; Schirrmeister et al., 2017b)
have been primarily restricted to classification tasks and
have relied on a large cohort of subjects for training. The
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FIGURE 7 | Topographical map ccCAM averaged over subjects showing brain areas with discriminative activity. (A) Bootstrapped ratio of the topographical map of

ccCAM values averaged over subjects in the CON and EXE groups showing regions with difference in activity before and 90 min after rest/exercise. Bootstrapping

was performed using ccCAM values obtained for each timepoint to establish the reliability of the ccCAM values during the task period. (B) Topographical maps of

significantly different ccCAM bootstrapped ratio values between the CON and EXE groups. Instead of p-values, −log(p) is color coded to delineate significant regions

(yellow) more clearly. Non-significant regions are shown in blue. Significantly different activity was observed over the sensorimotor, occipital, and frontal areas.

interpretation of the results obtained from these studies and their
usefulness for investigating neuroscientific questions has been
less straightforward, primarily due to the difficulty associated
with the visualization and interpretation of the feature space
learned by the employed DL architectures. Schirrmeister et al.
proposed a feature validation approach to understand which a
priori selected features were given importance by a CNN that
was trained to decode imagined or executed tasks from raw EEG
(Schirrmeister et al., 2017b). Specifically, their method relied
on calculating correlations between the output of each unit or
layer of the network and EEG power in specific frequency bands.
This allowed them to verify if the network used the power in
a priori decided frequency bands for its predictions. Additional
studies involving CNNs for EEG decoding have extended the

deep dream algorithm (Mahendran and Vedaldi, 2015, 2016) for
identifying discriminative features in EEG time segments (Putten
et al., 2018). However, this algorithm was found to be sensitive
to the scale of features and therefore may not be applicable to
a diverse range of neuroimaging studies. The proposed ccCAM
methodology is a feature discovery technique that is less sensitive
to the feature scale and thereby allows extending the applicability
of CNNs beyond classification tasks. Furthermore, our study
introduced a novel adversary component to prevent the CNN
from exclusively learning subject-specific features. This allowed
the DL pipeline to learn group-specific features from the EEG
data and therefore improved the generalizability of the CNN
from a limited cohort size. Overall, to the best of our knowledge,
our study is the first to investigate neuroscience-based questions,
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FIGURE 8 | Scatter plot showing the motor skill retention improvement and a representative feature extracted by the final layer of CNN (Layer 3 of TopNN) from

topographical maps. The dotted line shows a linear fit between the two variables. The extracted feature is strongly correlated to the motor skill retention (correlation

coefficient = −0.53).

specifically related to motor learning, from a limited cohort size
using a DL approach.

Our analysis using CNNs outperformed alternative
machine learning and EEG decoding methods with regards
to differentiating between previously unseen EXE and CON
subjects, thus indicating the improved generalization properties
of the proposed method. The proposed ccCAM method was
able to identify a finer frequency band (27–29 Hz) that was
modulated by exercise, as opposed to the entire beta band
reported in Dal Maso et al. (2018), without using any prior
knowledge. Applying ccCAM to the topographical patterns
of the electrophysiological activity between 23 and 33 Hz
revealed the specific brain areas (the contralateral and ipsilateral
sensorimotor areas, contralateral prefrontal area and occipital
areas) that were mostly impacted by exercise in agreement to
previous studies (Dal Maso et al., 2018). Correlation analysis
between the extracted features and the motor learning scores
yielded further evidence that these features are plausible
neurophysiological substrates underlying the positive effects of
exercise on motor learning.

5.1. Comparison to Alternative EEG
Decoding Methods
A comparison of the proposedDL pipeline to alternativemachine
learning methods, such as RF showed that it yielded improved
generalization performance to unseen subjects (Table 1). In turn,
this suggests that the DL pipeline was able to learn features
that were specific to the exercise intervention. Specifically,
the performance of RF was close to that of CNNs without
an adversary. This suggests the importance of the adversary
component in learning subject-invariant, group-specific features.
A feature importance analysis for the RF models indicated that
higher importance was assigned to features corresponding to

lower frequency bands, which are more generally associated with
cognitive behaviors (Jensen and Tesche, 2002). Therefore, the
absence of an adversary component possibly caused the examined
machine learning models to assign higher importance scores to
these subject-specific features, which were more likely reflective
of the cognitive state of the subject while performing the task.
In turn, this may explain their more limited generalizability to
unseen subjects.

The CNN leave-two-out prediction accuracy was equal to
74.85%, which was lower compared to the accuracy achieved
by CNNs in computer vision or motor imagery EEG datasets
(Schirrmeister et al., 2017b). We believe that the main reason
for this is the number of subjects and that adding more
subjects would yield improved accuracy. Furthermore, we did
not compare the classification accuracy of CNN architectures
that have been popularly used for EEG decoding because those
networks were designed specifically for raw time-series data
(Schirrmeister et al., 2017b; Lawhern et al., 2018). Themain focus
of our work was to train a CNN that could discriminate the
two groups from their spectral EEG patterns before and after an
exercise session.

5.2. Time-Frequency Maps
The ccCAM approach was able to identify the frequency bands
that were significantly different in terms of ERD patterns between
the EXE and CON groups (Figure 4). Specifically, the frequency
band between 27–29 Hz, which is a subset of the wider beta band
(15–29 Hz) typically used in previous studies related to motor
activity-associated ERD, yielded the most significant differences.
This finding is in agreement with Dal Maso et al. (2018) and
implies that decreased neural excitability was needed to perform
the handgrip task after exercise. The p-value calculated from the
obtained time-frequency data within the 27–29 Hz frequency
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band was equal to 0.0044. This suggests that if the band of
interest in Dal Maso et al. (2018) had been chosen to be 27–
29 Hz, instead of the entire beta-band (15–29 Hz), similar
statistically significant results would have been obtained. The
standard error values in the ccCAM reliability plots (Figure 4)
indicate that the frequency band modulated is variable among
subjects. Overall, the proposed DL-based analysis was able
to identify a narrower frequency band modulated by exercise
without using any prior knowledge. This finding has particular
importance for the development of targeted interventions, such
as non-invasive stimulation protocols, whereby it is desirable to
modulate the frequency band of interest without interfering with
other frequencies.

The trajectory of the extracted features was significantly
different for the CON and EXE groups (Figure 6), indicating that
the effects of exercise were observable during the consolidation
period. However, it cannot be concluded from these results
whether these changes are short- or long-term. Measuring the
brain activity of the subjects at a later timepoint (e.g., 24 h later)
may reveal further insights about the evolutionary patterns of
exercise-induced changes during the retention period.

An important goal of the present study was to identify
whether there was an association between the identified brain
features and the learning scores of each subject. The features
indeed were found to be strongly correlated to the motor
learning improvement assessed by the difference between the skill
retention scores at 8 and 24 h after motor practice (Figure 5). As
reported by Dal Maso et al. (2018), these effects probably indicate
the effect of sleep on motor memory consolidation (King et al.,
2017). This strongly suggests that the features extracted by the
CNN corresponded to exercise-induced changes while carrying
predictive information about the subject’s motor skill retention
abilities following a period of sleep.

5.3. Topographical Maps
The distribution of the discriminatory 23–33 Hz band power
across the brain was found to be localized instead of being
widespread across the brain (Figure 7), suggesting that activity
in specific brain regions was modulated by exercise. Notable
areas with differential activity included the contralateral and
ipsilateral sensorimotor areas, contralateral prefrontal area and
occipital areas. These results are in strong agreement with the
inferences drawn in Dal Maso et al. (2018). Interestingly, the
analysis pipeline employed in the present work uncovered the
areas that were differentially activated in the two groups, whereas
the same inferences required the use of 3 different metrics in the
standard analysis performed by Dal Maso et al. Specifically, in
Dal Maso et al. (2018) the differences in ERD were observed in
the sensorimotor areas, differential functional connectivity was
observed among the sensorimotor and occipital areas and the
ERD in contralateral prefrontal area electrode activity was shown
to have strong correlations to motor score. In comparison, using
only the ERD values from the baseline and post-exercise sessions,
the proposed DL approach was able to identify the brain regions
modulated by exercise without any a priori knowledge.

Similar to what was reported in Dal Maso et al., we
found reduced ERD in the sensorimotor areas as well as the

contralateral prefrontal area, suggesting a more efficient use of
neural substrates involved in motor memory consolidation (van
Wijk et al., 2012). Consequently, these results indicated that after
exercise, reduced neural excitability in these areas was required
to perform the fixed force handgrip task. As discussed in Dal
Maso et al., the observed decrease in ERD could also be indicative
of a reduction in gamma-aminobutyric acid (GABA) inhibitory
activity due to exercise (Singh and Staines, 2015). Given that
the task was a visuomotor one, we also expected changes in the
visual areas. Dal Maso et al. reported these changes by using
functional connectivity analysis within the beta band. However,
using a finer band revealed ERD changes in these areas and
these could be indicative of changes in visual attention activity
and perception. The range of beta band activity commonly used
in visual studies is 15–25 Hz and is thought to be a carrier
for visual attention, whereas gamma band (30–60 Hz) activity
is thought to be responsible for visual synchronization and
perception (Wróbel, 2000). Interestingly, the range of frequencies
uncovered by our analysis included high beta activity and low
gamma activity. Therefore, the proposed DL pipeline highlighted
a modulation of these properties by a session of exercise.
As we used a visuomotor task, it is difficult to delineate the
modulation effects in visual areas from motor areas and thereby
draw conclusive inferences about findings in visual areas. The
significantly different activity in the prefrontal area aligns well
with prior literature demonstrating the role of the dorsolateral
prefrontal cortex in motor memory consolidation (Galea et al.,
2010). Therefore, it is plausible that acute cardiovascular
exercise promotes the efficient distribution of neural resources
in the prefrontal area (Dietrich, 2006), thus reducing neural
demands of cognitive processes that underlie the consolidation of
motor memory. Interestingly, the CNN-extracted topographical
features are well correlated to motor learning improvement
measured after a period of sleep (Figure 8), i.e., once the
memory has been well consolidated (Roig et al., 2016). Taken
together, the identified features are indicative of the resultant
consolidated memory and not necessarily behavior during the
memory consolidation period.

The presented results provide observational evidence
for the extracted features to be considered as candidate
neurophysiological substrates underlying motor memory
consolidation. As argued by Tonegawa et al. (2015), observational
studies demonstrate a correlation between specific neural activity
and behavior and therefore act as preliminary evidence for
establishing causality. Future studies need to target loss-
of-function and gain-of-function experiments to establish
a causation link between neurophysiological mechanisms
and motor memory consolidation. The proposed method
achieved the identification of more specific, narrower frequency
band activity modulated by cardiovascular exercise that
was unique to each subject. To establish a stronger causal
link between frequency band-related ERD and the positive
effects of exercise, future studies could modulate activity
in these subject-specific bands by non-invasive electrical
stimulation techniques and subsequently assess motor learning
behavior. Our analysis pipeline also has clinical relevance
as it could potentially be used to estimate the efficacy of
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rehabilitation strategies for individual subjects, e.g., stroke
patients. Neurophysiological features modulated by the
intervention could be extracted using the presented DL
pipeline and subsequently used to obtain improvements
in performance. Therefore, the proposed methodology
yields significant potential for designing of patient-specific
neurorehabilitation therapies that can significantly improve
upon a “one-size-fits-all” approach.

5.4. Limitations
A major limitation of the CNN-based approach lies in
computational demands. CNNs require more time and
specialized hardware, namely GPUs, to train. In our case,
CNNs were trained on a GeForce GTX 960 and required
around 7 h to train. The training demands and consequently
required time would increase with more subjects. Therefore,
the operational cost of using the presented methodology
is expected to be higher as compared to alternative
state-of-art methods.

The sample size used in this work was limited to 25
subjects. Due to this, we were unable to keep a separate
test set while evaluating the network’s performance. We
observed that there was a significant decrease in the validation
accuracy when 20 subjects were kept in the training set.
Therefore, we persisted with a leave-two-subjects-out cross-
validation strategy and were unable to hold out a separate
test set. We believe that adding more subjects would further
improve the model’s performance and test it on a separate
test set, thereby increasing the overall reliability of the
results. However, collecting more data or evaluating the
model on other EEG datasets is beyond the scope of the
current work.

6. CONCLUSION

The present work introduces a deep learning architecture for
the analysis of EEG data and shows promising results in
terms of discriminating the effects of an acute bout of high-
intensity exercise/rest in close temporal proximity to performing
a motor learning task on the brain activity of participants. The
proposed approach outperformed alternative machine learning
methods in terms of the classification of CON and EXE
subjects. Importantly, it also enabled us to visualize the features
learned by deep networks such as CNNs, which may in turn
yield better feature interpretation. The results are in general
agreement with those reported in a previous study using
standard statistical analysis using a priori selected features on
the same dataset (Dal Maso et al., 2018), with our analysis
revealing a narrower, more specific frequency band associated
with exercise-induced changes. In addition, our method revealed
localized regions of the differential activity. Therefore, our
approach demonstrates the feasibility of identifying subtle
discriminative features in a completely data-drivenmanner using
deep learning.

The proposed method is not restricted to the EEG modality
and dataset described here. Hence, it paves the way for applying

similar methods to other neuroimaging datasets of differing
cohort sizes. This, in turn, yields promise for using deep
learning as a tool toward the identification of neurophysiological
changes associated with a variety of neurological disorders and
ultimately lead to the design of optimized and individualized
intervention strategies.
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