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In the face of limited computational resources, bounded rational decision theory predicts

that information-processing should be concentrated on actions that make a significant

contribution in terms of the utility achieved. Accordingly, information-processing can

be simplified by choosing stereotypic actions that lead to satisfactory performance

over a range of different inputs rather than choosing a specific action for each input.

Such a set of similar inputs with similar action responses would then correspond

to an abstraction that can be harnessed with possibly negligible loss in utility, but

with potentially considerable savings in information-processing effort. Here we test this

prediction in an identification task, where human subjects were asked to estimate

the roundness of ellipses varying from a straight line to a perfect circle. Crucially,

when reporting their estimates, subjects could choose between three different levels of

precision corresponding to three levels of abstraction in a decision-making hierarchy. To

induce changes in level selection, we manipulated the information-processing resources

available at the perceptual and action stages by varying the difficulty of identifying the

stimulus and by enforcing different response times in the action stage. In line with

theoretical predictions, we find that subjects adapt their abstraction level depending

on the available resources. We compare subjects’ behavior to the maximum efficiency

predicated by the bounded rational decision-making model and investigate possible

sources of inefficiency.

Keywords: bounded rationality, absolute identification, decision-making, abstraction, information

1. INTRODUCTION

Consider the following guessing game where you have to identify different animals drawn from
a sample set of photographs. Assume that the sample set includes specimens, such as different
kinds of cats (e.g., Persian, Siamese), dogs (e.g., German Shepherd, Rottweiler), snakes (e.g., Ball
Python, Corn Snake), lizards (e.g., Chameleon, Leopard Gecko), frogs (e.g., Poison Dart Frog,
European Tree Frog), and salamanders (e.g., Axolotl, Fire Salamander). When shown a particular
exemplar, you can choose to respond with the precise name of the specimen (e.g., Rottweiler) or
you can content yourself with identifying a subset corresponding to an abstract category (e.g.,
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Dog) or even a larger subset corresponding to a more abstract
super-category (e.g., Mammal, Reptile, or Amphibian). Let
us assume that a precise identification is rewarded with $1,
identifying a category with $0.8, and naming a super-category
with $0.6. A misclassification results in no payment. Such a
payment scheme naturally affords different levels of abstraction,
since it allows for generic responses for various subsets of
exemplars. The degree of abstraction can be measured by the
amount of Shannon information contained in each subset,
ultimately counting the effective number of possibilities. For
example, in our sample set with 12 possibilities, identifying
a specimen requires ∼ 3.6 bits of information, identifying a
category ∼ 2.6 bits of information, and selecting a super-
category distinguishes between three possibilities, i.e., ∼ 1.6
bits of information. Clearly, in the absence of information-
processing limitations—in our example the availability of at least
3.6 bits—the best response is to always identify each exemplar by
its exact name.

Limitations in information-processing can have many
reasons, such as limited processing time or limited memory
capacity (Hick, 1952; Fitts, 1954; Miller, 1956; Slovic, 1972).
These limitations can affect both perceptual and action
processing, as it requires processing resources to identify an
object as well as to select between different action alternatives.
Also the fact that a decision-maker may not have learned yet
about a particular specimen can be considered as a resource
limitation, as learning about it might exceed the available
response time. Abstractly, we can model limited information-
processing capacity by bounding the availability of information.
For instance, a decision-maker with only 2.6 bits of information
available in the above example would benefit from naming
categories with a reward of $0.8 instead of guessing exact names
with an expected reward of only 1

2 × $1 = $0.5. Similarly, a
decision-maker with even less resources (e.g., 1.6 bits) may have
to abstract even more and simply distinguish between mammals,
reptiles and amphibians with a reward of $0.6, rather than
randomly guessing categories ( 12 × $0.8 = $0.4) or exact object

names ( 14 × $1 = $0.25). In general, we can phrase the problem
of choosing the right level of abstraction as the question of how
to trade off utility and information.

The trade-off between utility and information lies at the heart
of information-theoretic bounded rationality (Braun et al., 2011;
Ortega and Braun, 2011, 2013; Genewein et al., 2015) which
encompasses a wide range of previous information-theoretic
models of perception-action systems (McKelvey and Palfrey,
1995; Mckelvey and Palfrey, 1998; Mattsson and Weibull, 2002;
Sims, 2003; Körding and Wolpert, 2004; Still, 2009; Todorov,
2009; Feldman and Friston, 2010; Friston, 2010; Friston et al.,
2010; Tishby and Polani, 2011; Kappen et al., 2012). In these
models the information-processing cost is measured by the
relative Shannon information between a prior and posterior
distribution corresponding to the state of knowledge before
and after information-processing, respectively. The change in
Shannon information can be thought to reflect the costs of
information-processing, since any expenditure of computational
resources improves the discriminability between alternatives.
When applying this framework to our introductory example,

we not only obtain an optimal efficiency frontier for utility
and information, but we also obtain an optimal distribution for
selecting the right level of abstraction (see Figure 1).

Here, we address the question of how efficiently human
subjects can abstract in a hierarchical decision-making task,
where subjects (i) select a partition with a given level of
abstraction, and (ii) select the correct response inside the
partition. As a behavioral assay we use an absolute identification
task where subjects are offered multiple levels of precision
in which they identify ellipses depending on their degree
of roundness. This way we can manipulate the bounds of
information-processing both by making the perceptual task
more difficult by distorting the visual stimulus and by varying
the processing time allowed in the action selection stage.
Absolute identification tasks lend themselves for the study of
limited information capacity, because of their finite number of
states allowing for intuitive information measures. Accordingly,
absolute identification tasks have been extensively studied in the
literature in the context of information theory (Norwich, 1981;
Treisman, 1985; Sims, 2016). The main novelty in our study is
to manipulate the information capacity in order to investigate
the effect on level selection and abstraction. In the following, we
first describe the experimental paradigm and then the theoretical
framework for modeling bounded rational decision-making. In
the results, we measure subjects’ efficiency with respect to the
bounded rational optimum and investigate a number of possible
sources of subjects’ inefficiency.

2. METHODS

2.1. Experimental Methods
2.1.1. Participants
Eleven subjects, six females and five males, participated in this
study. The lead author was one of the subjects (S7). All other
participants provided written informed consent for participation
and were remunerated with a base payment of 8 Euros per hour
plus an extra incentive according to performance up to 12 Euros
per hour in total. The participants were undergraduate students
with normal or corrected to normal vision and no known
motor deficits.

2.1.2. Setup
The task was run through a graphical user interface based on
Psychtoolbox in MATLABTM R2017a and displayed on a touch
screen (Dell 27 Monitor-Touch-P2714T, 27′′, 68.6 cm VIS) with
maximum refresh rate of 60Hz. During the experiment subjects
were seated in front of a desk where the touch screen was placed
and tilted up at 60◦.

2.1.3. Trial Sequence
The experiment was divided into a training phase to facilitate
subjects’ adaptation and the subsequent evaluation stage. Both
together required around 7 h per subject to be completed,
distributed along 2 consecutive days to avoid performance loss
due to fatigue.
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FIGURE 1 | The bounded rational model of abstraction in the guessing game. In our introductory example there are twelve possible world states w occurring with

equal probability p(w) = 1/12. The action a consists in choosing one of the twelve object names, one of six category names, or one of three super-category names,

i.e., in total there are 21 possible actions. (A) The utility function of the guessing game. (B) The efficiency frontier for utility and information in the guessing game. The

more information that is available, the higher the utility that can be achieved. (C) Average level selection along the efficiency frontier. The more information is available,

the higher the level of concreteness. Shaded areas indicate confidence intervals given by the directed standard deviations (10). (D) Posterior action distributions for

bounded-optimal decision-makers with varying degrees of information resources. The most limited bounded rational decision-makers have a response distribution

p(a|w) that is confined to the lowest level (most left panel). The fully rational decision-maker chooses its actions in the top level (most right panel). The six distributions

correspond to the six dots in (B,C).

2.1.4. Experimental Design
Subjects were asked to identify the roundness of animated ellipses
presented to them in short video clips. They could provide their
response by tapping differently sized touch screen buttons on
a response panel. The panel represents intervals on a linear
roundness scale with hierarchical organization reflecting three
different levels of precision decreasing from top to bottom
in three stacked rows (see Figure 2A). On the linear scale,
roundness increased from an almost vertical line on the left
to an almost perfect circle on the right. The twelve buttons
on the top level of the scale would identify the roundness of
the stimulus most precisely into twelve possible classes, whereas
the three big buttons on the bottom of the scale would give

the coarsest identification. The six intermediate sized buttons
allowed for an intermediate precision for identification. Subjects
were given points for each correct identification with the prospect
that the points would later be converted into bonus payments.
For a correct identification on the most precise level, they were
given 1 point per trial, at the intermediate level 0.8 points and
at the bottom level 0.6 points, and zero points for incorrect
answers. This payoff scheme results in a utility function that is
analogous to the utility function in our introductory example (see
Figure 1A). Naturally, the three button sizes with their respective
payoffs correspond to three levels of abstraction. To investigate
how subjects’ choice of abstraction level depends on the degree
of their information boundedness, we manipulated both subjects’
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FIGURE 2 | Experimental setup. (A) After subjects observed a noisy stimulus—see exemplary stimulus frames on the bottom—they were shown a three-stacked

response panel, where each cell represents an interval of increasing roundness from left to right. At the same time, these cells are the response buttons for the

subject. The buttons with highest precision and highest payoff (1 point for correct identification) are on the top of the response panel. The buttons with intermediate

precision have a payoff of 0.8 points. The least precise buttons are on the bottom with a payoff of 0.6 points. (B) Utility function of the identification task. There are

twelve world states and 3+ 6+ 12 = 21 actions, where the magnitude of the utility is color-coded and given by the number of points. (C) The subject is modeled as

an information channel with certain capacity I(W;A). We manipulated the capacity in three perceptual conditions ranging from easy to hard and in two response time

conditions fast and slow.

perceptual and motor planning capacity by introducing easy,
medium and hard conditions for perceptual processing together
with slow and fast conditions formotor planning (see Figure 2C).

2.1.5. Stimuli
The set of world states in our task consists of twelve possible
ellipses whose major axis is vertically oriented with a constant
unit length that is later scaled up to ∼ 10cm on the display,
and whose minor axis varies for each world state ranging
from an almost vertical line to an almost perfect circle. In
particular we generated ellipses with vertical unit length from the
following equation

x2

a2
+

y2

b2
= 1

with b = 1
2 and a = 1

24 + 1
12 (i − 1) with i = 1, . . . , 12 so that

0 < a < 1
2 . Small values of a correspond to the most non-circular

vertically elongated ellipses, intermediate values of a would be
egg-shaped and large values of a close to 1/2 the most circular
shapes. Note that we can define the roundness w = a

b
where a

perfect circle requires a = b or equivalently w = 1.
The stimuli are generated from the twelve world states

by creating video clips showing a (∼12×12cm2) square filled

with black moving dots on a gray background. In order to
manipulate subjects’ perceptual information-processing capacity,
the majority of dots are random dots following random
movement paths and representing noise, with a small fraction
of dots (signal dots) moving along the boundary of the invisible
ellipse which is always placed at the center of the touch
screen. To increase the difficulty of the task, in each video
frame a certain percentage of randomly selected dots—given
by the replacement rate—is removed from the ellipse’s path
and replaced by surrounding random dots that incorporate
themselves smoothly into the coherent movement. Subjects have
to identify from a set of randomly moving dots the signal dots
that follow a systematic movement in order to recognize the
ellipse’s shape. Bymanipulating the number of signal and random
dots and the replacement rate as indicated in Table 1, we create
three conditions differing in perceptual difficulty: easy, medium,
and hard perception. Each video lasts 500ms and is produced
before the start of the experiment from 30 frames. For each
condition each video was only shown once.

Importantly, themanipulation of the perceptual difficulty does
not render the stimuli ambiguous, but only makes them more
difficult to process for human subjects. In all three perceptual
conditions the stimuli can, in principle, be identified perfectly,
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TABLE 1 | Stimulus parameters.

Perception Signal Random Replacement Video

level dots dots rate duration (ms)

Easy 100 250 35 500

Medium 75 400 40 500

Hard 50 450 40 500

as the identity of the stimulus is preserved. To demonstrate this
fact, we designed an automatic recognition algorithm for ellipses
with b = 1

2 that computes an estimate âw of the minor semi-axis

for every point with coordinates (x, y) and x ≤ 1
2 such that

âw =

√

b2y2

b2 − x2

where for points that are part of the ellipse âw ≈ 1
24 +

1
12 (w− 1),

whereas for points that are random âw will also be random. To
distinguish better between random and non-random points, the
recognition algorithm compares two consecutive video frames
with the idea that for pairs of non-random points the estimate
âw should be consistent, whereas for pairs of random points the
estimates for âw will differ. Pairs of points across two frames
are determined simply by minimum distance. We throw away
all pairs of points whose estimates for âw are larger than a
threshold value of 0.1. With the remaining points we create a
histogram of all values of âw over all frames. The stimulus w can
then be identified by selecting the most frequent âw. As shown
in Figure S1, this simple recognition algorithm achieves 100%
accuracy, which means that subjects’ uncertainty in identifying
the stimuli arises not due to ambiguity inherent in the stimulus,
but due to difficulty in perceptual processing.

2.1.6. Trial Design
In the top left corner of the screen subjects could activate a
start/pause button to commence each batch of trials. Each trial
involves two parts: a perception stage during which the stimulus
is displayed, and a subsequent action stage where subjects
indicate their response on the touch screen. The perception stage
starts with the presentation of a video clip according to one
of the above-mentioned stimulus conditions. After 500 ms the
video disappears and the response panel shown in Figure 2A

is displayed. There are two response conditions. In the slow
condition, subjects had 5 s to respond, whereas in the fast
condition they had to select a touch screen button within 450 ms.
During this deliberation time, they could freely choose both the
abstraction level and the response inside the level. If the stimulus
is identified correctly, then the pressed button turns green,
otherwise it turns red. If subjects are too slow and exceed the
response time or tap the touch screen outside the response panel,
then the trial is skipped and repeated randomly at a later point
in time. At any moment in time, subjects can inspect their total
accumulative point score and the trial number. Subjects could
pause the experiment any time by activating the pause button.

TABLE 2 | Experimental conditions.

Perception Reaction

Task level time (ms)

easySlow Easy 5,000

easyFast Easy 450

mediumSlow Medium 5,000

mediumFast Medium 450

hardSlow Hard 5,000

hardFast Hard 450

2.1.7. Trial Sequence
The design of three perceptual processing conditions and two
response time conditions leads to a total of six conditions:
easySlow, easyFast, mediumSlow, mediumFast, hardSlow, and
hardFast. Subjects were exposed to these six conditions in this
exact order to allow for enough practice to master the more
difficult conditions. As one might expect improvement over
time due to learning, this sequence order allows us to attribute
any decrement in performance observed in later trial blocks to
resource constraints of the experimental condition, even though
it is possible that the differences between conditions would be
even larger if subjects had been trained more extensively in the
beginning. Each condition consisted of 600 trials made up of six
batches with 100 trials each. Accordingly, subjects experienced
each world state 50 times per condition represented with different
video clips to avoid over-fitting.

2.1.8. Pre-training
First, subjects are allowed to experience a linear roundness scale
where they can observe how their horizontal finger position
is mapped continuously into the roundness of an ellipse with
0 ≤ λ ≤ 1. Second, subjects are exposed to stimuli of the
easy perceptual condition with a duration of 2× 500ms together
with a maximum response time of 10 s. To ensure subjects
gathered experience with all possible abstraction levels, in these
pre-training trials level selection was enforced and marked by
enhancing the color of the lines surrounding a level. The levels
were selected randomly with a uniform distribution. Feedback
is provided in a supervised manner across all three levels. That
is, if the correct response is provided the pressed button turns
green and also the correct responses in the other two levels
are displayed in green. If an incorrect response is provided, the
button turns red and simultaneously the correct button for each
of the three levels is shown in green. The repetitions of the world-
states are equally assigned over the three levels, where each one of
the twelve ellipses is displayed twenty times, which makes a total
of 720 trials for the whole pre-training stage. The total of trials
is randomly divided into a series of six runs of 120 trials each,
between which subjects can take longer pauses.

2.2. Theoretical Methods
2.2.1. Information-Theoretic Bounded Rationality
Subjects are presented with a stimulus w ∈ W for which they are
required to find an action a ∈ Awhose pay-off is indicated by the
utility functionU(w, a). In our experiment, 0 ≤ w ≤ 1 represents
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ellipses with different degrees of roundness, and a corresponds to
21 possible intervals of roundness (three partitionings of [0, 1]
with 3, 6, and 12 evenly sized partitions) that can be used to
classify the circularity of a given ellipse. A perfectly rational
decision-maker with unlimited resources would choose actions
according to a∗(w) = argmaxa U(w, a), which can be obtained
as the unbounded limit case of a bounded rational decision-
maker with information constraints (Ortega and Braun, 2011;
Ortega et al., 2014; Genewein et al., 2015) choosing according to
a distribution given by

p∗(a|w) = argmax
p(a|w)

{

Ep(w,a)[U(w, a)]
∣

∣

∣
DKL

(

p(a|w)‖p0(a)
)

≤ K
}

,

(1)
where p0(a) represents the prior choice strategy before processing
the stimulus w, and p(a|w) is the posterior policy depending
on the input w. The decision-maker aims to maximize the
expected utility E[U] but is limited by the upper bound K on
the number of information bits the decision-maker can afford to
deviate from the prior strategy, measured by the relative entropy
DKL(p‖q) =

∑

x p(x) log(p(x)/q(x)) between prior and posterior.
The constrained optimization problem in Equation (1) can be
reformulated by (i) using a Lagrange multiplier β to obtain the
unconstrained optimization problem

p∗(a|w) = argmax
p(a|w)

{

Ep(w,a)[U(w, a)]−
1

β
DKL(p(a|w)‖p0(a))

}

,

(2)
and (ii) by choosing the optimal prior p(a) =

∑

w p(w)p∗(a|w)
instead of an arbitrary prior p0(a), which results in

p∗(a|w) = argmax
p(a|w)

{

Ep(w,a)[U(w, a)]−
1

β
I(W;A)

}

, (3)

where I(W;A) = Ep(w)[DKL(p(a|w)‖p(a))] measures the mutual
information between stimuli w and actions a. Intuitively, the
mutual information measures how many bits are minimally
required to process the world state w when determining the
action a, given that the decision-maker wants to achieve a
strategy p(a|w). The solution to Equation (3) can be obtained by
iterating the set of equations,







p∗(a|w) = 1
Z(w)

p(a)eβU(w,a)

p(a) =
∑

w
p(w)p∗(a|w)

(4)

with partition sum Z(w) =
∑

a p(a)e
βU(w,a), which results in

a Blahut-Arimoto-type algorithm well-known in rate-distortion
theory (Cover and Thomas, 2006). The parameter β is
determined from the bound K and plays the role of a resource
parameter that interpolates between a decision-maker without
any resources that has to choose the actions according to its prior
strategy (β → 0), and a perfectly rational decision-maker with
unlimited resources (β → ∞).

2.2.2. The Efficiency Frontier
By traversing β from zero to infinity in Equation (4) we
generate a family of bounded rational solutions p∗β (a|w) with

expected utility Ep∗β (a|w)p(w)
[U(w, a)] and information resources

Iβ (W;A) = Ep(w)[DKL(p
∗
β (a|w)‖p(a))], resulting in a pareto-

optimal efficiency frontier (see Figure 1B). The resulting rate-
utility curve indicates the lowest information processing rate
that is required to reach a certain level of expected utility
and, conversely, the highest expected utility that is achievable
given a certain rate. Decision-makers that optimally trade
off expected utility against their computational resources lie
exactly on the curve. Decision-makers lying above the curve are
infeasible. Decision-makers lying below the curve are suboptimal
considering that they could achieve a higher expected utility
given the available information or, conversely, they could obtain
the same benefit by investing less informational resources. In
order to compare subjects’ performance with respect to the
efficiency frontier, we need to determine two measures from the
experiment, namely the mutual information

Iexp =
∑

w

p(w)
∑

a

pexp(a|w) log

(

pexp(a|w)

Ep(w)[pexp(a|w)]

)

(5)

between stimuli w and subjects’ responses a, and the
average utility

Uexp = Epexp(a|w)p(w)[U(w, a)]. (6)

Both quantities can be determined by estimating subjects’
response probabilities pexp(a|w) for each stimulus w. In our
scenario with discrete variables, these estimates are simply
given by the empirical distributions. Consequently, subjects’
performance can be represented by the tuple {Iexp,Uexp} in the
utility-information-plane, as shown in Figure 3. Additionally, we
can quantify subjects’ efficiencies by

ǫ =
Uexp − Umin

Umax − Umin
≤ 1, (7)

whereUmin is the highest feasible theoretical utility in the absence
of computational resources, and Umax indicates the maximal
theoretical utility of a channel whose information processing rate
is equal to Iexp.

2.2.3. Abstraction and Level Selection
The optimization problem in Equation (3) penalizes
computational complexity in terms of the mutual information
between actions and stimuli. An action that is exclusively selected
for a particular stimulus, and that is not chosen under other
circumstances, is expensive in terms of mutual information.
One way to reduce informational costs while optimizing the
expected utility consists in selecting an action that yields a “good
enough” expected utility for many different inputs. In other
words, different world states end up being treated as if they
were the same. This is the essence of abstraction (Genewein
and Braun, 2013). Consequently, the decision-maker does
not invest its resources in discriminating among different
stimuli from a subset of world states, but rather uses the same
action for the entire subset. Importantly, these abstractions
are shaped by the nature of the task, which is represented by
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the utility function U(w, a). The different levels of abstraction
become apparent when formulating the decision problem as an
equivalent two-step decision, where the action a is conceived as
a tuple (l, al). The high-level decision with distribution p(l|w)
determines the abstraction level l which corresponds to choosing
a partition with a particular granularity and distribution
p(al|l,w). For example at the lowest level l = 1, we would
have the choice of a1 ∈ {Mammal, Reptile, Amphibian}.
At the intermediate level l = 2, we would choose
a2 ∈ {Dog, Cat, Snake, Lizard, Frog, Salamander}. And at
the highest resolution l = 3, we would choose one of the twelve
specimen, e.g., a3 = Rottweiler. Since the level is part of the
decision, it is treated as a random variable L, and thus we may
drop the index l from the action variable, so that A = a given
L = l corresponds to al = a, in particular p(w, l, al) = p(w, l, a).

Mathematically, the decision-making problem (3) can be
equivalently reformulated as

argmax
p(l|w),p(a|w,l)

{

Ep(w,l,a)[U(w, l, a)]−
1

β
I(W; L)−

1

β
I(W;A|L)

}

,

(8)
which trades off expected utility against computational costs of
the abstraction level selection I(W; L), and the cost of the within-
level decision I(W;A|L) for each level. The bounded-optimal
solution can be obtained by iterating

p∗(a|w, l) =
1

Z(w, l)
p(a|l)eβU(w,l,a)

p∗(l|w) =
1

Z(w)
p(l)eβ1F(w,l),

where p(a|l) and p(l) are marginals of p(w, l, a) =

p(w) p(l|w) p(a|w, l), Z(w, l) and Z(w) are normalization
constants, and 1F(w, l) : = 1

β
logZ(w, l) is given by

1F(w, l) = Ep∗(a|w,l)[U(w, l, a)]−
1

β
DKL(p

∗(a|w, l)||p(a|l)). (9)

The marginal p(a|l) serves as a prior distribution on each level,
shaping the high-level partitioning of the search space. In our
example, these would be uniform distributions over the actions
of a given level, because of the symmetry of the utility function
inside each level. More precisely, from U(w, l, a) = ul δa,a∗(w,l),
where ul ∈ {0.6, 0.8, 1.0}, Nl ∈ {3, 6, 12} and a∗(w, l) denotes the
unique action with non-zero utility for world state w at level l as
shown in Figure 1A, it follows that in our example the high-level
utility 1F(w, l) is independent of the world state. In fact,

1F(w, l) =
1

β
log

Nl
∑

al=1

1

Nl
exp

(

β ul δal ,a∗(w,l)
)

=
1

β
log

1

Nl

(

eβ ul + Nl − 1
)

,

and accordingly the choice of the abstraction level l is the same
for all world states and only depends on the general performance
and processing cost inside each level. We can then measure the

mean level of abstraction simply by E[L] =
∑

w,l l p(w)p(l|w) =
∑

l l p(l) as in Figure 1C. However, since the distributions p(l|w)

are generally asymmetric, in addition to the mean l̄ : = E[L], we
also leverage the directed variances

σ 2
+ =

∑

l≥l̄

p(l)
∑

l′≥l̄ p(l
′)

(

l− l̄
)2

σ 2
− =

∑

l≤l̄

p(l)
∑

l′≤l̄ p(l
′)

(

l− l̄
)2 (10)

to characterize the level transitions, as indicated by the shaded
region in Figure 1C.

2.2.4. Modeling Sources of Inefficiency
When we measure subjects’ efficiency based on Equation (7)
and find a substantial deviation from the efficiency frontier,
we can ask what causes may underlie this inefficiency. In
general, one could argue that there might be more specific
constraints that we have not (yet) considered in the basic
form of the bounded rational model—for example, the generic
distributions p(a|w) ∈ P� we are searching could be further
constrained to be of Gaussian shape pθ (a|w) with parameters
θw = (µw, σw). Formally, such constraints are represented by
restricting the search space in the optimization problems (1)–(3)
to a permissible subset Ŵ, i.e.,

p∗(a|w) = argmax
p(a|w)∈Ŵ

{

Ep(w,a)[U(w, a)] −
1

β
DKL

(

p(a|w)‖p0(a)
)

}

,

(11)

where

Ŵ =
{

pθ (a|w) ∈ P�

∣

∣ ∃θ p(a|w) = pθ (a|w)
}

. (12)

By solving (11) in the constraint set Ŵ for different values of
the Lagrange multiplier β and determining the corresponding
expected utilityE[U] andmutual information I(W;A), we obtain
the efficiency frontier under the additional constraints given by
the parametrization. In the case when the parameter space is
one-dimensional [e.g., when θ is given by the variance σ of a
single Gaussian as in (19)], the efficiency frontier can also be
generated by scanning through the parameter θ itself. We can
compare subjects’ performance to this constrained curve that
will lie beneath the unconstrained efficiency frontier. In total,
Equation (11) suggests three possible sources of inefficiency that
we consider in the following:

(i) Non-adaptive priors p0(a).
(ii) Subjective utility functions V 6= U (different from the one

stipulated by the experimenter) with

– utility distortion of the actual payoffs (e.g., risk attitude),
or

– utility that allows for neighborhood relationships (e.g.,
Shepard’s similarity).

(iii) Constraints Ŵ ⊂ P� on the shape of permissible
distributions, modeling
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– irreducible perceptual or motor execution noise, or
– parameterized decision strategies with fixed

noise structure.

Note that in contrast to Equations (1)–(3), Equation (11) does in
general not allow for analytical solutions.

(i) Non-adaptive priors. Instead of the optimal prior
distribution p(a) =

∑

w p(w)p(a|w) that is adapted to the
experimental conditions, subjects could hold arbitrary non-
optimal prior beliefs p0(a) that do not change across conditions,
for example the uniform distribution

p0(a) =
1

21
. (13)

The prior that is uniform across levels would be

p0(a) =











1
9 if a ∈ {1, 2, 3},
1
18 if a ∈ {4, . . . , 9},
1
36 if a ∈ {10, . . . , 21}.

(14)

Instead of uniform priors, subjects could of course also have
arbitrary prior beliefs across levels

p0(a) =











q1 if a ∈ {1, 2, 3},

q2 if a ∈ {4, . . . , 9},

q3 if a ∈ {10, . . . , 21},

(15)

where the probabilities of the levels are related according to
3q1 + 6q2 + 12q3 = 1. When assuming a fixed prior, we can
find the best-fit values of qi for each subject and all conditions.
Necessarily, all these priors will induce inefficiency compared to
the utility-information efficiency frontier under optimal priors.

(ii) Subjective utility. A subjective utility V is often expressed
as a non-linear function of the objective function U, for example
V(x) =

[

U(x)
]α
. For concave utility functions, decision-makers

are risk-averse, for convex utility functions they are risk-seeking.
Since we only have four utility values {0, 0.6, 0.8, 1} in our
experiment, we can also explore the space of all possible local
distortions by replacing 0.6 with V0.6 ∈ (0, 1) and 0.8 with V0.8 ∈

(V0.6, 1). This way, the subjects can express locally different risk
attitudes, while the order of the utilities is preserved and only
their absolute and relative values to each other change.

More radically, the subject could have a completely different
utility function than the one stipulated by the experimenter in
the task. In particular, we consider blurring the utility function as
a direct way of introducing neighborhood relationships between
world states. This presumes that in subjects’ minds it is better to
have a close miss than a distant miss. A simple way to obtain a
blurred utility function V(w, a) from the original utility function
U(w, a) is to assume a kernel k(·) that describes the decay in utility
when moving away from the best action for a given stimulus,
such that

V(w, a) = k(a− a∗(w, a))U(w, a∗(w, a)),

where a∗(w, a) denotes the unique action with non-zero utility
that belongs to the same level as a. Here, we consider two kernels

that belong to the family of Shepard’s similarity functions, an
exponential and a Gaussian kernel, i.e.,

k1(t) ∝ e−θ |t| k2(t) ∝ e
− 1

2
t2

θ2 . (16)

Applying the same kernel parameter θ across the three levels
implies that a near-miss of a button leads to the same relative
reduction in utility in all levels.

(iii) Search space constraints. In the basic bounded
rationality model, we assume that subjects can choose according
to an arbitrary strategy p(a|w) as long as the distribution does
not undercut the entropy barrier. However, the kind of strategies
subjects can implement may be further restricted in shape. In
particular, we may assume that strategies can be indexed by a
parameter θ , for example in Gaussian strategy profiles

pθ (a|w) = N (µw, σw)(a), (17)

with θ = {(µw, σw)}w. Since decision noise cannot be optimally
exploited in this case, such decision-makers will be inefficient.
Note that, just like in (16), parameterized decision strategies may
introduce neighborhood relationships.

More sophisticated parameterized models can be obtained by
assuming decision-makers with internal states. We consider a
decision-maker that is not fully able to identify the state of the
worldw, but is capable of forming an internal percept x according
to a fixed transducer pθ (x|w) whose noise characteristics are
parameterized by θ . To infer the world state from a particular
percept, the decision-maker can apply Bayes’ rule pθ (w|x) ∝

pθ (x|w)p(w) and choose the optimal action according to a∗θ (x) =
argmaxa Vθ (x, a), where Vθ (x, a) : = Epθ (w|x)[U(w, a)]. Over
many trials, the average response of the decision-maker to a
particular world state w is then given by

pθ (a|w) =
∑

x

pθ (x|w)δa,a∗θ (x). (18)

As a possible transducer model we consider a truncated
Gaussian model,

pσ (x|w) =
1

Z(w)
e
− 1

2
(x−w)2

σ2 H(x)H(1− x), (19)

where H(x) is the Heaviside function to ensure truncation at
the boundaries 0 and 1. In this model, which is also known
as the Thurstonian model, the internal perceptual space is a
copy of the world space but the mapping between world states
and their representation is explicitly noisy. Moreover, as another
transducer model we consider a binomial model motivated from
Bayesian inference, where the roundnesses are treated like the
success probabilities of a Bernoulli experiment that is repeated
T times, so that the internal representation x corresponds to the
number of successes with binomial distribution

pT(x|w) =

(

T

x

)

wx(1− w)T−x. (20)

Thus, T plays the role of a resource parameter (see Gottwald
and Braun, 2019) that controls how well the world state can be

Frontiers in Neuroscience | www.frontiersin.org 8 November 2019 | Volume 13 | Article 1230

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Lindig-León et al. Abstraction and Hierarchical Decision-Making in Bounded Rationality

perceived. Here, the Bayesian inverse is easily computed by using
the fact that the conjugate prior of a Bernoulli likelihood pT(x|w)
is the Beta distribution. More precisely, if the prior p0(w) is a
beta distribution with parameters a and b (e.g., a = b = 1 for
a uniform prior), then the Bayesian posterior p(w|x) is a Beta
distribution with parameters a+ x and b+ T − x. An important
side effect of having perceptual noise distributions of the form
(19) and (20) is the emergence of neighborhood relationships.
If two world states are so close to each other that they can be
confused, their expected utility will be similar.

In the case of additional execution noise, we may assume
that the observed action a is not the intended action that we
denote by x, but that the planned action x is contaminated
during the execution phase of the movement according to some
fixed execution noise model p(a|x). During motor planning
such a decision-maker can only optimize the expected utility
V(w, x) = Ep(x|a)[U(w, a)] for the intended action x∗(w) =

argmaxa V(w, x). Over many trials the average response of the
decision-maker is

p(a|w) =
∑

x

p(a|x)δx,x∗(w).

Unlike in our previous study (Schach et al., 2018), we regard
execution noise effects as negligible in the current study due to
the generously sized touch screen buttons in our experiment.

3. RESULTS

Our experiment is a hierarchically organized absolute
identification task involving two information-processing stages,
stimulus perception and action planning, where action planning
again consists of two stages, choosing a level of abstraction
and identifying the stimulus given that level. This way we can
manipulate the information processing capacity both in the
perception and action channel to determine the relationship
between overall information resources and abstraction through
level selection. During stimulus presentation subjects are faced
with a video clip representing the world state w, showing
randomly moving dots, some of which trace the shape of an
ellipse with roundness w = λ ∈ (0, 1). After processing this
information, subjects are required to select an action a that
represents an interval on the roundness scale which they deem
compatible with the roundness of the perceived stimulus. The
action space is organized in three levels allowing subjects to
choose to make decisions with more or less precision (see
Figure 2A). Each level is associated with a certain number
of points subjects can earn for a correct identification, which
defines a utility function whose values decrease with the size of
the response intervals (see Figure 2B). As the action consists in
choosing both a level of abstraction and an identification inside
the level, the hypothesis is that lower computational resources
imply more abstraction, which means in our task subjects should
prefer lower levels as task demands become more difficult. We
manipulate computational resources in two ways: by corrupting
the stimuli with different levels of noise (easy, medium, and
hard), and by constraining the reaction time of the decision

process to fast and slow responses (see Table 2 for details). The
research question in our study is how close to optimal subjects
choose the level of abstraction for different ranges of information
resources, and to quantify the degree of sub-optimality we
might encounter.

We evaluate subjects’ performance by their average utility
E[U] under their experimentally recorded response distribution
pexp(a|w), which indicates the probability that subjects choose
action a when presented with world state w. The recorded
response distributions pexp(a|w) for all subjects are shown in
Figure 3, where each row belongs to one subject. The six columns
correspond to the six experimental conditions with easy, medium
and hard perception and slow and fast reaction time. The
stimulus-response pattern is visualized with the stimulus on
the abscissa and the corresponding distribution over actions on
the ordinate. The roundness of the stimulus increases from left
to right. The actions correspond to choosing intervals on the
roundness axis, where the twelve top level actions choose the
roundness most precisely, and the six medium and three bottom
actions less precisely, respectively. We see from this data that
there is a substantial variability across subjects regarding level
selection, but that overall subjects tend to choose more low-level
actions as the experimental conditions become more difficult.

In Figure 4 we can see the change in level selection averaged
over all subjects. The top row shows the hit and miss rates
for all six conditions, where the hit rates for the easy and
medium perceptual conditions range on average around 70%,
and for the hard perceptual condition around 60%. These rates
are achieved by subjects operating on different levels, with
lower levels prevailing in the hard conditions, and higher levels
dominating the easy conditions. The same picture is obtained
when analyzing the average score achieved by subjects depending
on the precision level, with higher precision levels having a higher
utility contribution in the easier conditions. The expected utility
decreases only slightly across conditions. In the bottom row,
we can see the average level selected by subjects, and how this
average clearly decreases as the conditions become more difficult
in terms of information-processing. In the following we proceed
to quantify subjects’ choice efficiency with respect to a bounded
rational decision-making process.

3.1. Subjects’ Performance Compared to
the Efficiency Frontier
In the first part of the study we compare subjects’ performance
against the normative performance of a bounded rational
decision-maker with information constraints. To this end,
we determine subjects’ average utility E[U] and the mutual
information I(W;A) between world states and actions. When
considering the subject as an information channel, the mutual
information represents the computational resources available to
the subject, as more overall information-processing resources
should allow for more specific stimulus-response relationships,
and hence for higher mutual information and utility. The
mutual information can be determined from the experimentally
known distribution p(w) over stimuli and the recorded response
probabilities pexp(a|w), as indicated in Equation (5). As expected,
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FIGURE 3 | Subjects’ response distributions. Estimated response distributions pexp(a|w) for all subjects across the six different experimental conditions with easy,

medium and hard perception, and slow and fast reaction time. The roundness of the stimulus ellipses increases from world state 1 to world state 12. The actions are

organized in three levels of abstraction: low (1–3), medium (4–9), and high (10–21).
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FIGURE 4 | Subjects’ performance depending on abstraction level across conditions. (A) The big opaque bars in the top row show the hit (green) and miss (red) rates

for all six conditions. The dainty bars inside the big bars indicate the relative contribution of each level to the overall number of hits or misses, respectively, such that

the added height of the dainty bars equals the height of the big bar. (B) The opaque bars in the middle row depict the average utility achieved by subjects in the six

different conditions, the dainty bars show the contribution of each level to the total utility score. (C) The bottom row indicates the average level selected by subjects

across conditions.

FIGURE 5 | Changes in mutual information and expected utility. (A) Subjects’ changes in expected utility and mutual information across conditions, in particular

comparing slow/fast reaction time conditions, and easy/medium and medium/hard perceptual conditions. The solid line shows the linear regression fit with a

correlation value of r2 = 0.78. (B) Changes in expected utility predicted by a bounded rational decision-making model that is afforded the same changes in mutual

information as the subjects. The solid line shows the linear regression fit with a correlation value of r2 = 0.93.

we found that mutual information in subjects’ stimulus-response
pattern decreases systematically when perceptual processing
becomes more difficult, and similarly when reaction time is more
limited (p < 0.01 for all comparisons between conditions,
Wilcoxon ranksum test). The accompanying changes in expected

utility are more subtle and only significantly decrease as
perceptual processing becomes more difficult (p < 0.01, for all
comparisons between perceptual conditions, Wilcoxon ranksum
test). A summary plot of the changes in expected utility and
mutual information across conditions is shown in Figure 5A.
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As both expected utility and mutual information increase when
the task becomes easier, we find that almost all data points
are in the first quadrant of Figure 5A. Moreover, the points
lie on an almost perfect line, suggesting that an increase in
mutual information leads to a proportionate increase in expected
utility. From the results, it becomes apparent that the perceptual
difficulty (especially when changing from medium to hard) has
a bigger impact on available information than the reaction
time limitation, notwithstanding that the combination of both
constraints causes a further information reduction (compare
Figure S2) for a separate accounting of changes in mutual
information and expected utility due to perceptual difficulty and
reaction time. In summary, we may therefore conclude that our
variation of task difficulty was successful in manipulating both
mutual information and expected utility.

The main result comparing the absolute values of mutual
information and expected utility to the bounded rational
optimum are presented in Figure 6 for all subjects. The
solid line in Figure 6A depicts the efficiency frontier of the
bounded rational decision-maker that achieves the maximum
expected utility for any particular level of mutual information,
or conversely, minimizes the mutual information for any
given level of expected utility. The individual data points
indicate subjects’ performance for each experimental condition
marked by different symbols. Equation (7) quantifies subjects’
performance with respect to the bounded optimum and we
obtain efficiencies of ∼ 70% in our experiment (see Table S1 for
details). In line with the bounded rational decision framework
we find an increased use of the lower levels of the action space for
the more difficult conditions with less stimulus-response mutual
information. This can be seen in Figure 6B, where the solid line
depicts the mean level selected by a bounded rational decision-
maker. We can also quantify the average utility obtained by each
subject in each condition given the average level they selected
in that condition (see Figure 6C). Naturally, higher levels are
predicted to be accompanied by higher average utilities, which is
fulfilled by most data points (p < 0.01, regression slope unequal
to zero). Figures 6D,E show stimulus-response distributions
for different levels of information resources, where panel E
shows an exemplary subject (S09) across the six conditions, and
panel D depicts the theoretical stimulus-response distributions
corresponding to several points along the efficiency frontier that
are closest to the subject’s data points in terms of the norm
distance between the two distributions.

When comparing the theoretical curves and experimental
data points, it appears that there is a systematic performance
gap in Figures 6A,B. In particular, when comparing the
stimulus-response distributions a few conspicuous differences
become apparent. First, the theoretical distributions only
ever spread across two adjacent levels at any one time,
whereas the experimental distributions can spread across
all three levels. Second, while the theoretical distribution
consists of homogeneous probability blocks with clear diagonals
corresponding to correct identifications, the experimental
distributions are more blurry, indicating an increased tendency
to respond in the neighborhood of the correct stimulus.
Third, in the theoretical distributions, due to the symmetry of

the utility values, there is no probability differences between
stimulus-response pairs inside a particular level, whereas in the
experimental data we observe that subjects prefer higher levels
for stimuli close to the boundaries. This is a direct consequence of
the previously reported bow effect, where extreme stimuli can be
identified more reliably, which is usually explained as a boundary
effect in the presence of neighborhood relationships (Kent and
Lamberts, 2005; Sims, 2018). Interestingly, though, while subjects
are inefficient in terms of absolute levels of performance, they
are practically optimal in terms of marginal performance, that is
the extra utility they achieve given an extra amount of mutual
information in simpler conditions—compare Figure 5B. In our
task subjects afforded on average an extra 0.22 ± 0.02 units of
utility for every additional bit of information, which is practically
identical to the theoretical optimum of 0.21± 0.01. This offset in
performance hints at more specific constraints that we have not
considered in the basic information-theoretic model. Therefore,
in the following we consider several possible sources for subjects’
inefficiency and corresponding deviations from the bounded-
optimal solution (11): (i) non-optimal prior distributions, (ii)
subjectively distorted utility functions reflecting neighborhood
relationships and risk attitudes, and (iii) constraints on the shape
of subjects’ response distributions due to maladaptive noise with
fixed structure in the sensorimotor system.

(i) Non-optimal priors. For the efficiency frontier in Figure 6

it was assumed that subjects would adapt their choice prior p0(a)
for each condition optimally to p(a) =

∑

w p(w)p∗(a|w) as in
Equation (3). Contrary to this assumption subjects might not
adapt their choice priors optimally over the training course—
for example, because of the limited number of training trials—
and maintain a fixed prior throughout the experiment. As
described in section 2.2.4, we test three different fixed priors
p0(a), either giving more weight to the higher levels, or equal
weights across levels, or more weight to the lower levels. The
latter case is depicted in Figure 7, as it is the only prior where
subjects start entirely at the bottom level in the absence of
informational resources. The effects of the other two priors
can be inspected in Figures S3, S4. Figure 7A shows that the
efficiency frontier moves closer to the data under the sub-optimal
prior, especially for data points with higher mutual information.
However, Figures 7B,C show the prediction that subjects should
only ever leave the first level when they perform perfectly in the
lowest level both in terms of utility and required information.
In reality, however, subjects leave the lower level much earlier,
as would be predicted by a bounded optimal decision-maker
with adaptive prior. While it is possible to simultaneously cover
all three levels with the sub-optimal prior, it is not possible to
exclusively cover the intermediate level (see Figures 7D,E).

(ii) Subjective utility. Subjects’ inefficiency could also be a
consequence of their risk-attitude, as higher level actions have a
higher chance to fail than lower level actions. Risk-attitude can
be modeled by characteristic distortions of the utility function,
where concave distortions between subjective and objective
utility functions represent risk-averse choice behavior and convex
distortions capture risk-seeking choice behavior. To test whether
such utility distortions might be able to explain the efficiency
gap in our experiment, we distorted the relative utility values
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FIGURE 6 | Subjects’ choice efficiency. (A) Utility-information efficiency frontier. The solid line corresponds to the optimal efficiency of a bounded rational

decision-maker and indicates the best possible expected utility achievable with a given level of mutual information between actions and world states. Each data point

corresponds to a subject in a particular condition. The six emphasized data points correspond to subject S09 for who the stimulus-response distribution is shown

below. (B,C) Level selection. The solid line in (B) shows the mean level selected by a bounded rational decision-maker with a given stimulus-response mutual

information. The solid line in (C) shows the utility that it is expected to be obtained by the bounded rational actor when selecting a given level. Each data point

corresponds to a subject in a particular condition, with the same subject S09 emphasized. The shaded region indicates the confidence interval given by the directed

standard deviations (10). (D) Theoretical stimulus-response distributions for different points along the efficiency frontier closest to the data points of subject S09. (E)

Stimulus-response pattern of subject S09 for comparison against the theoretical distributions. The fits of the remaining subjects can be seen in the

Figures S8B–S17B.

in the [0, 1]-interval so as to best fit the experimental response
distributions. The resulting distorted utility values for a particular
subject can be inspected in Figure 8A. Changing the relative
utility values affects of course the efficiency frontier and the
predicted level selection. In general, we found that subjects’
behavior with high hitting rates is best explained with utility
distortions that are close together, whereas subjects’ behavior
with lower hitting rates is best explained with high differences
in subjective utility, such that the zero-utility of a miss can be
compensated. Consequently, many subjects achieve a distorted
utility that lies considerably below the theoretical optimum in
each level (see Figures 8C,D as an example). While the absolute
performance gap is narrowed down under a distorted utility

(see Figure 8B), the subjects’ average efficiency according to
Equation (7) is close to 60%, and thus even lower than the
efficiencies with undistorted utility. Since distorting utility values
does not introduce neighborhood relationships, optimal behavior
has a block structure with no preference for extreme stimuli,
which does not fit subjects’ behavior (see Figures 8E,F).

A slightly more radical reason why subjects’ behavior might
seem inefficient could always be that they optimize a completely
different utility function than proposed by the experimenter. One
example, is the valuation of a near-miss. The basic bounded
rationality model with discrete stimuli and actions does not care
whether we miss by a small or large margin, however subjects
may feel that it is better to have a near-miss than a far-miss.
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FIGURE 7 | Non-optimal priors. (A) Utility-information efficiency frontier. The solid gray line corresponds to the optimal efficiency of a bounded rational decision-maker,

the solid green line shows the efficiency frontier with the fixed prior of Equation (15). The six emphasized data points correspond to subject S09 for who the

stimulus-response distribution is shown below. (B,C) Level selection. The solid line in (B) shows the mean level selected by a bounded rational decision-maker with

non-optimal prior from Equation (15). The solid line in (C) shows the utility that it is expected to be obtained by the bounded rational actor with non-optimal prior in

each level. Each data point corresponds to a subject in a particular condition, with the same subject S09 emphasized. The shaded region indicates the confidence

interval given by the directed standard deviations (10). (C) Level selection. The solid line shows the mean level selected by a bounded rational decision-maker with

non-optimal prior from Equation (15). Each data point corresponds to a subject in a particular condition, with the same subject S09 emphasized. The shaded region

indicates confidence intervals given by the directed standard deviations (10). (D) Theoretical stimulus-response distributions for different points along the green

efficiency frontier closest to the data points of subject S09 fitted according to Equation (15). (E) Stimulus-response pattern of subject S09 for comparison against the

theoretical distributions. The fits of the remaining subjects can be seen in the Figures S8C–S17C.

We therefore consider blurred utility functions generated by
the kernels in Equation (16), thereby creating neighborhood
relationships by assigning positive utility to near misses. The
blurred utility with exponentially decaying utility is depicted in
Figure 9A. As can be seen in Figure 9B, the absolute distance
between subjects’ data points and the efficiency curve is small
for the difficult conditions, but with high stimulus-response
mutual information the efficiency gap remains. In the hard
conditions, a blurred utility allows to efficiently populate a broad
neighborhood in action space with decision noise, but when
decision noise is reduced under higher rationality parameters
only the maximum of the utility function matters, such that the

blurred utility gives almost the same efficiency frontier than the
precise utility in this regime. It is therefore not too surprising
that the relative distance to the frontier given by the efficiencies
in Equation (7) remains around 70% across all conditions. The
difference to subjects’ behavior becomes particularly apparent
for level selection, as shown in Figures 9C,D. Because subjects
receive utility for near-misses, there is a much stronger incentive
to choose higher levels, even for the hard conditions. Since
blurring the utility also introduces neighborhood relationships
that produce higher expected utilities at the boundaries, this
model can in principle explain the bow effect of preferring
higher levels for extreme stimuli (see Figures 9E,F), but also
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FIGURE 8 | Subjective utility distortion. (A) Assuming a subjective distortion of the utility function changes the relative utility of each level. The depicted utility function

represents a risk-seeking attitude and is chosen so as to maximize subjects’ efficiency. (B) Efficiency frontier under utility (A). Each data point corresponds to a subject

in a particular condition. The six emphasized data points correspond to subject S09 for who the stimulus-response distribution is shown below. (C,D) Level selection.

The solid line in (C) shows the mean level selected under a given stimulus-response mutual information. The solid line in (D) shows the utility that it is expected to be

obtained in each level. Each data point corresponds to a subject in a particular condition, with the same subject S09 emphasized. The shaded region indicates

confidence intervals given by the directed standard deviations (10). (E) Theoretical stimulus-response distributions for different points along the efficiency frontier

closest to the data points of subject S09. (F) Stimulus-response pattern of subject S09 for comparison against the theoretical distributions. The fits of the remaining

subjects can be seen in the Figures S8D–S17D.

predicts level changes for isolated stimuli a bit further away
from the boundary. A similar picture is obtained if we choose
a Gaussian kernel function instead of the exponential kernel
(compare Figure S5).

(iii) Search space constraints. The bounded rational
decision model assumes that subjects can adapt their behavior
to arbitrary distributions that satisfy a mutual information
constraint. However, subjects’ behavioral strategies may be
constrained to be of a certain shape or structural form due to
neighborhood relationships in the action space, for example,
which may entail a certain limitation in terms of efficiency.
For instance, subjects could be limited to Gaussian strategies as
proposed in Equation (17). In this case, we can find Gaussian
distributions that optimize the utility information trade-off, but

may differ from non-Gaussian optimal strategy distributions.
Figures 10A–C show the inefficiency induced by such a model.
While it looks like the restriction to Gaussian distributions might
explain some of the inefficiency, the predicted level selection
characteristics are far off subjects’ data. The model predicts
changing to a higher level only when performance is perfect,
whereas subjects choose higher levels much earlier. Due to the
neighborhood induced by the Gaussian response profile, the
model can in principle explain the selection of high levels for
boundary world states (bow effect), but wrongly predicts higher
levels for center world states too (see Figures 10D,E).

Other search space constraints like perceptual noise with a
fixed structure or neighborhood relationships in perceptual maps
could further compromise performance, leading to a decrement
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FIGURE 9 | Subjective utility with neighborhood relationships. (A) Assuming a blurred utility function using an exponential similarity kernel of the shape k1 in

Equation (16) with a decay constant of θ = 2.05 leads to non-zero off-diagonal entries. (B) Efficiency frontier under utility (A). Each data point corresponds to a subject

in a particular condition. The six emphasized data points correspond to subject S09 for who the stimulus-response distribution is shown below. (C,D) Level selection.

The solid line in (C) shows the mean level selected under a given stimulus-response mutual information. The solid line in (D) shows the average utility achieved in each

condition depending on the mean level selected. Each data point corresponds to a subject in a particular condition, with the same subject S09 emphasized. The

shaded region indicates confidence intervals given by the directed standard deviations (10). (E) Theoretical stimulus-response distributions for different points along

the efficiency frontier closest to the data points of subject S09. (F) Stimulus-response pattern of subject S09 for comparison against the theoretical distributions. The

fits of the remaining subjects can be seen in the Figures S8F–S17F.

both in expected utility and in mutual information. A standard
model for perceptual noise is the Thurstonian model (19) that
assumes internal states x = w + ǫ that represent the stimulus
w without bias but with additive Gaussian noise ǫ. Given a
perceptual noise model with a single one-dimensional parameter,
such as (19) and (20), we can generate a new parametric family
of response distributions with a performance curve that lies
below the utility-information efficiency frontier from Figure 6A

by modulating the perceptual noise parameter—for example, for
the Gaussian we may scan through different levels of variance.

We can see subjects’ behavior quantified with respect to this
constrained performance curve in Figure 11A. The Thurstonian
model predicts in Figure 11B that subjects should move to the
upper levels only when considerably more mutual information

is available than in the plain information constraint scenario
of Figure 6B, which does not agree with subjects’ actual level
selection. When comparing the stimulus-response distributions
between the Thurstonian model and subjects’ data, it can be seen
that neighborhood relations and blurry response profiles can be
accounted for, but never across all three levels at once. Moreover,
we can see that the model is able to identify extreme stimuli
with higher precision, as required by the bow effect. However,
this feature provides only a qualitative fit for the most extreme
stimuli, and not the stimuli adjacent to the extremes.

In the Gaussian model (19) we need to artificially truncate
the hypothesis space which introduces asymmetry, as roundness
is only defined on the unit interval [0, 1]. We therefore also
consider an inference model (20) that is slightly more abstract,
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FIGURE 10 | Process-dependent noise: Gaussian responses. (A) Assuming Gaussian decision strategies according to Equation (17) with varying standard deviation

imposes a new efficiency frontier (solid green line) that lies below the bounded rational efficiency frontier (solid gray line). Each data point corresponds to a subject in a

particular condition. The six emphasized data points correspond to subject S09 for who the stimulus-response distribution is shown below. (B,C) Level selection. The

solid line in (B) shows the mean level selected by the Gaussian strategy profile with a given stimulus-response mutual information. The solid line in (C) shows the

average utility achieved in each condition depending on the mean level selected. Each data point corresponds to a subject in a particular condition, with the same

subject S09 emphasized. The shaded region indicates the confidence intervals given by the directed standard deviations (10). (D) Theoretical stimulus-response

distributions for different points along the efficiency frontier closest to the data points of subject S09. (E) Stimulus-response pattern of subject S09 for comparison

against the theoretical distributions. The fits of the remaining subjects can be seen in the Figures S8G–S17G.

but naturally constrained on the unit interval. In particular,
we investigate a Binomial model, where the latent variable
θ ∈ [0, 1] can be thought to reflect the unobserved roundness
of an ellipse, and where the observation is given by binary
strings, i.e., sequences of 0 and 1 outcomes, reflecting round
and non-round cues present in the stimulus. Naturally, this is
not a mechanistic model of perceptual processing, but simply
phenomenological. Accordingly, the variance of the distribution
is elevated for medium roundness values, and smaller for extreme
roundness values, which makes it easier to identify extreme
stimuli. The Bayesian belief p(w|x) can be expressed analytically
by a Beta distribution, where the length T of the binary
observation string determines the noise level. Just like in the
Gaussian noise model, we can scan through different values of
the noise parameter T to generate a new parameterized response

distribution with a constrained efficiency frontier that lies
below the utility-information efficiency frontier from Figure 6A.
Subjects’ behavior quantified with respect to the constrained
performance curve (solid green line) of the Binomial model is
depicted in Figure 12A. Subjects’ level selection is better captured
by the Binomial noise model as shown in Figures 12B,C.
When comparing the stimulus-response distributions between
model and experiment in Figures 12D,E, the model captures
both neighborhood relations and blurry response profiles, even
across all three levels for a single condition. The model also
reproduces the bow effect, this time including both extreme
stimuli and their close vicinity. Only for very large mutual
information values, the model seems to break down, as
subjects’ data in this regime lie below the green efficiency line
in Figure 12C.
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FIGURE 11 | Process-dependent perceptual noise: Thurstonian model. (A) Assuming additive Gaussian noise for perception with different levels of variance imposes

a new efficiency frontier (solid green line) that lies below the bounded rational efficiency frontier (solid gray line). Each data point corresponds to a subject in a particular

condition. The six emphasized data points correspond to subject S09 for who the stimulus-response distribution is shown below. (B,C) Level selection. The solid line

in (B) shows the mean level selected by a Thurstonian decision-maker with a given stimulus-response mutual information. The solid line in (C) shows the average

utility achieved in each condition depending on the mean level selected. Each data point corresponds to a subject in a particular condition, with the same subject S09

emphasized. The shaded region indicates confidence intervals given by the directed standard deviations (10). (D) Theoretical stimulus-response distributions for

different points along the efficiency frontier closest to the data points of subject S09. (E) Stimulus-response pattern of subject S09 for comparison against the

theoretical distributions. The fits of the remaining subjects can be seen in the Figures S8I–S17I.

3.2. Model Comparison
In order to assess the adequacy of our models in a quantitative
manner, we have performed a 10-fold cross-validation over
the empirical posteriors p(a|w) of each experimental condition
with all the models proposed. By using a cross-validation
procedure we test the models’ strength to predict unseen
data while avoiding overfitting and/or selection bias (Cawley
and Talbot, 2010). We used the same grid search over
the parameters space that was used to find the best-fitting
response distributions in Figures 6–12 to obtain the minimal
mean absolute error between subjects’ response frequencies
and predicted choice probabilities. The exact parameter ranges
of the grid search can be found in Table S2. Figure 13A

shows the mean absolute error across all folds, conditions

and subjects. The best models are the two process-dependent
perceptual noise models. Comparing the models for each
subject separately gives a similar picture. We found that the
two perceptual models were amongst the top three fitting
models for 9 out of 11 subjects (see Figures S20–S30). The
best fit parameter values for the two perceptual models are
heterogeneous across subjects and vary across two orders of
magnitude, but are consistent within subjects across conditions
(see Figures S18, S19). Finally, we performed a similar model
comparison for level selection, where we applied a cross-
validation considering the predicted probability of subjects’
choice of abstraction level. This can be seen in Figure 13B. Again
the best models from the set of models considered so far are
the two perceptual noise models. However, in terms of level
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FIGURE 12 | Process-dependent inference noise: Binomial model. (A) Assuming the unit interval as the hypothesis space in a Binomial likelihood model with different

observation lengths imposes a new efficiency frontier (solid green line) that lies below the bounded rational efficiency frontier (solid gray line). Each data point

corresponds to a subject in a particular condition. The six emphasized data points correspond to subject S09 for who the stimulus-response distribution is shown

below. (B,C) Level selection. The solid line in (B) shows the mean level selected by a Binomial inference machine with a given stimulus-response mutual information.

The solid line in (C) shows the average utility achieved in each condition depending on the mean level selected. Each data point corresponds to a subject in a

particular condition, with the same subject S09 emphasized. The shaded region indicates confidence intervals given by the directed standard deviations (10). (D)

Theoretical stimulus-response distributions for different points along the efficiency frontier closest to the data points of subject S09. (E) Stimulus-response pattern of

subject S09 for comparison against the theoretical distributions. The fits of the remaining subjects can be seen in the Figures S8J–S17J.

selection they are outperformed by the hierarchical model that
we consider next.

Instead of selecting between 21 actions (l, a) at once, the
decision-making process could also be split into two steps, where
we either first select the level l and then the action a inside
the level, or decide about the action a first and then about our
confidence in this choice by selecting the level l. The first case
can be thought of as a hierarchical decision-making problem
as in Equation (9), except that both decision steps would have
their own constraints (parameterized by β1 and β2, respectively),
thereby optimizing

E[U]−
1

β1
I(W; L)−

1

β2
I(W;A|L).

Crucially, such a hierarchical model allows modeling the
precision of choosing a level specific for each world state, that
could for example reflect the decision-maker’s ability to estimate
the effective utility 1F(w, l) reflecting the trade-off between
expected utility and level-specific information-processing costs.
For our utility function from Figure 1A, the effective utility does
not depend on the world state, so that I(W; L) is zero under the
optimal prior p(l) and the entire constraints can be captured by
one β . In case of neighborhood relationships (either introduced
directly in the utility function or through process-dependent
search space constraints), the hierarchical model can modulate
world-state specific level selection for high β1 across all three
levels (see Figure 14), which is impossible to achieve with a single
constraint. In our experiment, however, subjects’ level selection
was more consistent with low and intermediate values of β1, as
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FIGURE 13 | Model cross validation. (A) Mean absolute error between subjects’ response frequencies and predicted choice probabilities. Error bars indicate standard

error across subjects. Lower values indicate better predictions. (B) Average predicted probability of subjects choice of abstraction level. Higher values indicate better

predictions. The asterisks indicate significant differences in mean (two-factor repeated measures ANOVA) between pairs of models: ***p-values < 0.001, **p < 0.01,

and *p < 0.05.

they rarely spread across all three levels, and if so, then only with
high stochasticity (compare Figure S6).

4. DISCUSSION

In this study we have argued that the theory of bounded
rationality with information constraints provides a conceptual
and normative framework to reason about abstraction and
hierarchical decision-making. We have demonstrated the
application of this theory to an absolute identification task where
subjects could not only identify a given stimulus on a scale, but
also choose the precision of that scale, which corresponds to
different levels of abstraction. In order to encourage subjects
to change their chosen abstraction levels, we manipulated
information resources in two ways, by corrupting the stimuli and
thereby aggravating stimulus identifiability and by constraining
reaction time. This allowed for testing subjects’ efficiency of
identifying different stimuli and selecting the appropriate level of
abstraction across a broad range of information conditions. We
found a systematic efficiency gap in subjects’ behavior across that
range (∼ 70% efficiency), which implies that with the measured
amount of choice uncertainty it would in principle be possible
to achieve considerably better performance (see Figure 6A).
Consequently, subjects’ level selection is also sub-optimal
without considering further constraints on perceptual and action

processes. In particular, while subjects generally obtained close-
to-optimal utility in each level (see Figure 6C), they generated
more information than necessary (see Figure 6B). As possible
explanations for this efficiency gap we consider non-optimal
prior distributions, subjective utility functions, and search space
constraints in the sensorimotor system.

The assumption of bounded rationality with fixed priors is
amongst the worst explanations of subjects’ choice behavior and
the efficiency gap—see cross validation results in Figure 13A.
All models with fixed priors fail completely in explaining
the adaptation of subjects’ level selection across the different
conditions. Similarly, allowing subjective distortions of the
payoffs provided in the experiment, does not provide a
satisfactory explanation of subjects’ behavior. While the distorted
utility model fitted subjects’ responses slightly better than the
undistorted model in Figure 13A, subjective utility distortion
does not lead to preferences of world states inside a level, and
so the block structure of predicted responses remains exactly
the same as in the original undistorted model, which is in
contradiction to the experimentally recorded responses showing
a bow effect. A natural way to allow for different precisions for
different world states, is to introduce neighborhood relationships.
This can be done, for example, by assuming a blurred utility
function (see Figure 9A)—whose boundary naturally leads to
higher precision for extreme world states. Such a blurred utility
can be regarded as an effective utility that lumps together all
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FIGURE 14 | Hierarchical decision models. (A) Experimental stimulus-response profile of subject S08 for the fast condition with medium perceptual difficulty. (B) The

bounded rational model with Gaussian response function spreads only over two levels. (C) The hierarchical bounded rational model with Gaussian response function

can spread over three levels.

neighborhood constraints that are not otherwise considered in
a simple bounded rationality model with just two variables.
The blurred utility can explain subjects’ preference of near
misses, especially in the low-information range, but in the high-
information range the model posteriors concentrate on the
maximum utility just as in the original utility without blur. While
the blurred utility leads to an increase in mutual information
because responses are more concentrated within the blur, it also
becomes more attractive to advance to higher levels early, as
high utilities can also be achieved for near misses. These two
effects compensate each other, and level selection in relation to
available information remains suboptimal in the sense that choice
variability is smaller and more biased than it would need to be.

Finally, we analyze process-dependent search space
constraints, where the nature of the constraint depends on
the particular framework under consideration, such as Markov
Chain Monte Carlo planning or particular reinforcement
learning models (Wang and Sandholm, 2002; Ortega et al., 2014;
Viejo et al., 2015). Here we study process-dependent constraints
in the context of a bounded rational analysis of information
and utility by limiting the admissible set of distributions based
on particular parameterizations that introduce neighborhood
relationships either in the perception or action path, but with
the veridical utility given by the payoffs in the experiment. In the
action path, we assumed for example, that subjects’ responses
are normally distributed, centered around the correct response,
and that the bounded rational decision-maker effectively has a
bound on by how much the variance of these Gaussians can be
reduced. The discrepancy between this model and subjects’ data
with respect to level selection is evident in Figures 10B,C. In
the perception path we assumed parameterized distributions like
the Gaussian and the Binomial distribution, to map inputs to an
internal state and to use Bayesian inference for recovering a belief
over inputs. These two models provide a good explanation of
the efficiency gap in utility-information space and also correctly

describe the relation between information and level selection
in the low information regime, as both models introduce
neighborhood relationships through their likelihood models
in the internal state. However, in the high information regime,
in particular with the Binomial distribution, the top level is
only predicted for very high precisions. In contrast, subjects
already populate the top level with considerably less precision in
the experiment.

From our models, the two perceptual models are the best
fittingmodels explaining subjects’ responses in a cross-validation.
Prima facie, it seems natural to classify these inference models
as perfectly rational decision-making models under uncertainty.
However, the perceptual uncertainty in our experiment was
not a result of ambiguity inherent in the stimuli, but a result
of imperfect perceptual processing. Instead of conceptualizing
the decision-maker as a composite system of noisy perception
and perfect action selection, where the action selection stage
is trying to undo the noise induced by perception by doing
inference, we may thus regard the inference process as an
instance of bounded rational decision-making under information
constraints, where the noise parameter effectively plays the
role of a rationality parameter. This can be seen as follows.
Given a parameterized distribution pθ (a|w) with a single one-
dimensional parameter θ describing the noise level, there is a
one-to-one mapping between θ and the rationality parameter β :
we may find the optimal θ for each β value when maximizing
the free energy functional, or we may simply scan through all
the values of θ and determine the corresponding β , utility and
information values based on θ . Consequently, what is called
perfect rationality under uncertainty may generally be regarded
as bounded rationality where the uncertainty is conceptualized
as some kind of information constraint. So what additional
insights can the bounded rationality perspective contribute?
It allows us to compare behavior to the theoretical optimum
with limited information independent of a particular process
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or the physical implementation of a decision-maker. If this
optimum is not reached, it allows to quantify the efficiency gap,
which then spurns research into the question what properties
or constraints—expressed by the permissible subset Ŵ ⊂ P�

in the optimization problem in Equation (11)—of a system
are responsible for not reaching the optimum. In our analysis
we found that subjects’ level selection was close to optimal in
terms of utility, but subjects also showed bias in the information
produced at each level because of neighborhood relationships
that are neglected in the basic model.

It has been previously criticized (Luce, 2003) that one
of the major shortcomings of information theory is that
information is defined over a set of unstructured elements
without neighborhood relationships, which would make it
unsuitable for many questions in behavioral psychology and
neuroscience. However, this problem is alleviated in a bounded
rational analysis, because the basic elements of choice are also
assigned a utility, which can be used to introduce neighborhood
relationships either directly—as in the case of the blurred
utility—or indirectly—for example, by defining expected utilities
on a finer grained mash. But of course, the initial definition of
the choice space is critical. In our task subjects faced 12 possible
world states and 21 possible actions. Under a uniform prior
distribution, choosing one action therefore generates log2 21 ≈

4.4bits. One might argue, however, that this overstates the
number of possibilities in some sense because these 21 actions
are not independent and, in fact, represent only 12 possible
actions with varying degree of granularity. In this interpretation,
pressing a large button in the bottom is equal to pressing 4
of the 12 actions with uniform distribution, and pressing a
medium sized button to pressing 2 out of 12 actions with
equal probability. In this case, a random action selection would
generate log2 12 bits for a small button and log2 3 bits in case
of a large button. We could then pose a new optimization
problem, where the decision-maker maximizes expected utility
over the space of probability distributions over 21 actions, but
where the information constraint is determined as if there were
only 12 actions. However, the efficiency gap widens under this
assumption which results in a decrement in the cross validation
performance compared to the original information cost, both in
action and level selection (see Figure S7).

Another possible criticism is that our experimental design
conflates bounded rationality with the study of confidence in
decision-making (Fleming and Daw, 2017). The fact that subjects
not only had to identify a stimulus, but also had to choose the
precision of their choice, may be construed as subjects making a
confidence judgement by selecting the level of precision. Instead
of subjects’ first choosing a level and then selecting an action
inside this level, one could assume that subjects first identify the
stimulus—which corresponds to choosing an internal action—
, and then choose the level of abstraction according to their
confidence. Such confidence judgements have recently been
investigated in a number of psychophysical tasks (Pallier et al.,
2002; Aitchison et al., 2015; Spence et al., 2016; Kennedy and Bai,
2019). Confidence, in contrast to uncertainty, is often defined as
the probability that a chosen action is correct (Pouget et al., 2016).
It can be shown that in many sequential decision-making tasks

it is enough for the decision-maker to reason about confidence
instead of a full uncertainty analysis, for example in post-decision
wagers (Persaud et al., 2007; Clifford et al., 2008; Middlebrooks
and Sommer, 2012; Konstantinidis and Shanks, 2014; Vo et al.,
2014). However, in our task the different levels are associated
with different utilities, such that an optimal decision requires
to consider the probability for each level, that is a simple
confidence judgement would not be suitable. Some of the effects
reported in the confidence literature may nevertheless be relevant
for our study, for example the Dunning-Kruger effect (Kruger
and Dunning, 1999; Dunning, 2011), where inexperienced
subjects with a bad performance tend to be unaware of their
incompetence and be overly confident. Such subjects might
choose inadequately high levels in our task.Moreover, confidence
misjudgments may also be influenced by continued processing or
new evidence (Moran et al., 2015; Yu et al., 2015).

5. CONCLUSION

Our study is part of a large body of research that has investigated
absolute identification with information-theoretic means in tasks
involving judgements on figures (Lacouture and Marley, 2004;
Stewart et al., 2005), tones (Mori and Ward, 1995), tastes
(Shepard et al., 2016), and odors (Laing, 1991; Schab and Cain,
1991). Often information limits are investigated depending on
the number of discriminable objects, in particular the bow effect
of enhanced discriminability at the boundaries and sequence
effects from one trial to the next. For the absolute judgement
of different sets of line lengths, for example, information
constraints have been investigated in dependence of different
loss functions for misidentification, which may be regarded
as a direct application of Shannon’s rate distortion theory
(Rouder et al., 2004; Sims, 2016). Previous analyses based on
rate distortion theory have usually focused on the concept of
optimal coding in perception—how many bits does it take to
encode a stimulus—, but the same argument can also be applied
to action selection—how many bits does it take to generate
an action from a distribution (see MacKay, 2003). As pointed
out in the methods, rate distortion is mathematically equivalent
to a two-step bounded rational analysis with information
constraints when optimizing the action prior. The novelty in
our study is therefore not the quantification of information
efficiency in absolute identification, but in the hierarchical
design of our experiment with multiple levels of abstractions
and the application of a bounded rational decision analysis to
this design.

The formation of partitions, categories and abstractions
has a long history in the psychological sciences (Reznikova,
2007; Braun et al., 2010). Peter Gardenfors has proposed, for
example, that concepts are formed by convex sets, with the
idea that a discretized perceptual space speeds up learning
(Gärdenfors, 2000). Categorical perception would be a case in
point, where an individual cannot distinguish anymore between
some stimuli that are close together in perceptual space, so
they form a discriminative unit against other stimulus groups.
In our case, subjects’ ability to discriminate also depends on
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the stimulus, where extreme stimuli can be distinguished well
and are abstracted on a higher level than equivocal stimuli
that are abstracted on a lower level—in our introductory
example this may correspond to easily separable items (e.g.,
Rottweiler) and equivocal items like a xoloitzcuintle that we
may simply call dog. However, unlike categorical perception
the distinction of two stimuli in action space may still exist,
even if identification is barely above chance level. Moreover, in
our experiment we preordained the levels of abstraction in the
utility function and the design of the experiment, where in the
future it may be interesting to study how abstractions develop
just from a given set of choice options without pre-specifying
the levels.
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