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Objective: To determine the relationship between alterations in resting state functional
connectivity and social cognition dysfunction among patients with frontotemporal
dementia (FTD), Alzheimer’s disease (AD), Parkinson’s disease (PD), and healthy
controls (HC).

Methods: Fifty-seven participants (FTD = 10, AD = 18, PD = 19, and HC = 10)
underwent structural and functional imaging and completed the Awareness of
Social Inference Test-Emotion Evaluation Test (TASIT-EET), Behavioral Inhibition
System/Behavioral Activation System (BIS/BAS) scale, Revised Self-Monitoring Scale
(RSMS), Interpersonal Reactivity Index (IRI), and Social Norms Questionnaire (SNQ).
A multi-variate pattern analysis (MVPA) was carried out to determine activation
differences between the groups. The clusters from the MVPA were used as seeds for
the ROI-to-voxel analysis. Relationship between social cognition deficits and uncinate
integrity was also investigated.

Results: BOLD signal activation differed among the four groups of AD, PD, FTD,
and HC in the left inferior temporal gyrus-anterior division [L-ITG (ant)], right central
opercular cortex (R-COp), right supramarginal gyrus, posterior division (R-SMG, post),
right angular gyrus (R-AG), and R-ITG. The BOLD co-activation of the L-ITG (ant) with
bilateral frontal pole (FP) and paracingulate gyrus was positively associated with IRI-
perspective taking (PT) (r = 0.38, p = 0.007), SNQ total (r = 0.37, p = 0.009), and
TASIT-EET (r = 0.47, p < 0.001).
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Conclusion: Patients with neurodegenerative diseases showed alterations in
connectivity in brain regions important for social cognition compared with HCs.
Functional connectivity correlated with performance on social cognition tasks and
alterations could be responsible for some of the social cognition deficits observed in
all neurodegenerative diseases.

Keywords: neurodegeneration, social cognition, resting-state fMRI, neuroimage analysis, functional connectivity

INTRODUCTION

Neurodegenerative diseases consist of a heterogeneous group
of conditions, including frontotemporal dementia (FTD),
Alzheimer’s disease (AD), and Parkinson’s disease (PD), that
present with different clinical syndromes determined by the
different brain areas and circuits most often affected. The focus
of research in neurodegenerative disease has been the cognitive
domains of memory, language, executive, and visuospatial
function. Social cognition comprises many psychological
processes including perceiving and recognizing social and
emotional signals, evaluating the personal emotional relevance of
everyday information, maintaining and accessing common social
knowledge, processing information about beliefs and intentions,
and generating and selecting behavioral responses that enable an
individual to participate in social interactions. There is growing
awareness that social cognitive deficits, including disturbances of
emotion recognition, occur in the different neurodegenerative
diseases (Snowden et al., 2003; Shany-Ur and Rankin, 2011;
Sollberger et al., 2014; Poveda et al., 2017).

Frontotemporal dementia comprises a number of clinical
syndromes involving behavior, language, and motor dysfunction.
The main syndromes encompassed by the clinical term FTD
are behavioral variant (bvFTD), non-fluent variant primary
progressive aphasia (nfvPPA), and semantic variant primary
progressive aphasia (svPPA). The clinical expression of these
syndromes is determined by the selective injury of specific areas
of the brain, which leads to the diverse signs and symptoms.
Dramatic personality and behavioral changes with apathy,
disinhibition, prominent loss of social cognition, lack of empathy,
and inability to decipher other’s emotions, are hallmarks of
bvFTD (Gustafson, 1987; Neary et al., 1988, 1998). Social
cognition deficits are early signs of bvFTD. There are a number of
studies that have reported various social cognitive abnormalities
in bvFTD patients, including abnormalities in Theory of Mind
(ToM) detection of gaze direction, and recognition of facial
and/or prosodic emotional expressions, in particular negative
emotions such as fear and anger (Gregory et al., 2002; Keane
et al., 2002; Rosen et al., 2004; Lavenu and Pasquier, 2005; Diehl-
Schmid et al., 2007; Eslinger et al., 2007; Kessels et al., 2007;
Werner et al., 2007; Bediou et al., 2009). There is evidence
that bvFTD patients have difficulty identifying social concepts,
judging appropriate actions in social dilemmas, recognizing
sarcasm, and differentiating minor social transgressions from
serious moral violations (Mendez et al., 2005; Lough et al., 2006;
Eslinger et al., 2007; Grossman et al., 2010; Shany-Ur et al., 2012).
Although svPPA and nfvPPA are primarily identified as language

disorders, social cognition can also be affected (Neary et al., 1998;
Hodges and Miller, 2001; Multani et al., 2017) and loss of emotion
detection and decreased empathy has been reported in svPPA and
nvPPA (Multani et al., 2017).

Individuals diagnosed with AD often display episodic memory
dysfunction, accompanied by neuropathologic, metabolic, and
functional connectivity changes within the medial temporal lobe,
posterior cingulate cortex, precuneus, and lateral temporoparietal
areas, suggesting impairment throughout a posterior episodic
memory network (Greicius et al., 2004; Buckner et al., 2005).
In AD, social cognition has received less attention but there is
increasing evidence that patients with AD have impaired ToM
(Koff et al., 2004) as well as decreased ability to recognize
emotions (Hargrave et al., 2002; Burnham and Hogervorst, 2004;
Kohler et al., 2005; Bediou et al., 2009; Martinez et al., 2018).
Studies have also revealed that the social cognition deficits are
not necessarily correlated with cognitive deficits (Hargrave et al.,
2002; Bediou et al., 2009) although there is controversy over
this (Burnham and Hogervorst, 2004; Spoletini et al., 2008). One
notable study evaluated facial emotion expression recognition
and noted that the worst performers were not those with the
worst cognitive scores (Luzzi et al., 2007). The default mode
network, a prime target in AD, has been implicated in social
cognition so it shouldn’t be surprising that multiple studies are
demonstrating social cognitive deficits in AD (Torralva et al.,
2000; Bediou et al., 2009; Zhou et al., 2010).

Although PD is known for its motor impairments, non-
motor deficits including social cognitive deficits are likely due to
disruption of fronto-striatal circuits due to impaired dopamine
release (Zgaljardic et al., 2006; Sawamoto et al., 2008; Skuse
and Gallagher, 2009; Bodden et al., 2010). Several studies have
reported that PD patients have an impaired ability to recognize
facial, and to a lesser extent prosodic, expressions of emotion,
particularly disgust, fear, and anger (Kan et al., 2002; Mengelberg
and Siegert, 2003; Pell and Leonard, 2003, 2005; Yip et al.,
2003; Dujardin et al., 2004; Mimura et al., 2006; Kawamura and
Koyama, 2007; Benuzzi et al., 2008; Assogna et al., 2010; Martinez
et al., 2018), but this has not been a consistent finding (Biseul
et al., 2005; Pell and Leonard, 2005). Although the neural basis
of these deficits is not fully understood, various neural substrates
have been implicated in emotion recognition including amygdala,
orbitofrontal cortex (OFC), insula, and basal ganglia (BG)
(Adolphs, 2002; Adolphs et al., 2003; Hornak et al., 2003; Krolak-
Salmon et al., 2003; Sprengelmeyer et al., 2003; Yoshimura et al.,
2005; Fusar-Poli et al., 2009; Baggio et al., 2012). The BG, a major
site of dysfunction in PD because of its loss of dopaminergic
innervation, has been implicated in facial emotion recognition
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(Cancelliere and Kertesz, 1990; Adolphs et al., 2002) as well
as in emotion recognition from prosodic cues, where it acts in
conjunction with the right frontoparietal cortex and potentially
the amygdala (Cancelliere and Kertesz, 1990; Starkstein et al.,
1994; Adolphs et al., 2002). A few studies have demonstrated
emotion recognition deficits and bilateral orbitofrontal and right
amygdala atrophy in patients with PD (Ibarretxe-Bilbao et al.,
2009). PD patients have also shown impaired TOM although
it’s felt that cognition may be contributing to that impairment
(Saltzman et al., 2000; Yu et al., 2012).

These social cognitive changes that often include changes
in personality are a source of distress for caregivers (Martinez
et al., 2018) and their neuroanatomical correlates require further
investigation. Moreover, in addition to gray matter atrophy,
there is increasing evidence for network dysfunction and
functional connectivity alteration in neurodegenerative diseases
(Seeley et al., 2009). FTD encompasses behavioral and language
syndromes including behavioral variant FTD (bvFTD), semantic
variant PPA, and non-fluent variant PPA. The most frequently
studied FTD group with respect to networks is bvFTD and
alterations in the saliency network is the most consistent finding
(Zhou et al., 2010; Day et al., 2013; Farb et al., 2013; Filippi
et al., 2013; Caminiti et al., 2015). Some studies have reported
an increased default mode network connectivity in FTD (Zhou
et al., 2010; Farb et al., 2013; Rytty et al., 2013), but others
have reported reductions within the default mode network (Farb
et al., 2013; Filippi et al., 2013). Changes in connectivity of
executive control network, dorsal attention network, the auditory
network (Hafkemeijer et al., 2015), and the frontoparietal and
frontotemporal networks including the insular cortex (Farb et al.,
2013; Rytty et al., 2013; Sedeño et al., 2016) have also been
reported. Comparing patients with bvFTD and AD directly,
opposite patterns emerged with increased connectivity of default
mode network and disrupted saliency network in bvFTD and the
opposite pattern in AD (Zhou et al., 2010).

The default mode network, encompassing the posterior
cingulate, precuneus, inferior parietal cortex, OFC, medial
prefrontal cortex, ventral anterior cingulate (ACC), left
dorsolateral prefrontal cortex, left parahippocampus, inferior
temporal cortex, nucleus accumbens, and the midbrain (Raichle
et al., 2001; Greicius et al., 2003) are responsible for a baseline
state of the brain that represents self-reference, emotional
processing, memory, as well as spontaneous cognition and
aspects of consciousness (Raichle, 2015). Altered connectivity
within the DMN in particular connectivity of the precuneus,
posterior cingulate cortex, and the prefrontal cortex have been
implicated in AD (He et al., 2007; Sorg et al., 2007; Wang et al.,
2007; Gili et al., 2011; Wu et al., 2011; Agosta et al., 2012;
Binnewijzend et al., 2012; Filippi et al., 2013; Liu et al., 2013;
Weiler et al., 2014; Hafkemeijer et al., 2015; Zhou et al., 2015).
Based on the division into anterior and posterior default mode
network, it was found that connectivity reductions in the default
mode network are mainly found in the posterior default mode
network (Koch et al., 2014), but with altered connectivity to the
anterior default mode network (Jones et al., 2012).

Altered connectivity affecting motor regions including the
supplementary motor area, the premotor area, the primary motor

cortex, the cerebellum, BG, and thalamic connectivity have been
reported in PD (Wu et al., 2009, 2011; Kwak et al., 2010;
Hacker et al., 2012; Skidmore et al., 2013; Luo et al., 2014, 2015;
Szewczyk-Krolikowski et al., 2014; Canu et al., 2015; Rolinski
et al., 2015). Alterations in connectivity of amygdala to frontal,
occipital, and cerebellar locations have also been reported in PD
(Hu et al., 2015). Unlike in AD, no clear patterns regarding the
default mode network are present with some papers reporting
either no (Helmich et al., 2009; Krajcovicova et al., 2012) or
only few (Tessitore et al., 2012; Disbrow et al., 2014; Canu
et al., 2015) alterations of default mode network connectivity
although one paper found rather substantial alterations in PD
compared with healthy controls (HCs) (Chen et al., 2015).
Increased default mode network connectivity was also found
in some papers (Campbell et al., 2015; Gorges et al., 2015).
Widespread alterations of networks in PD, within and between
networks have been reported as well (Madhyastha et al., 2015;
Onu et al., 2015). An investigation of the executive control
network did not yield any differences in PD compared to healthy
adults (Disbrow et al., 2014), but another study found impaired
connectivity between the right central executive network and
the salience network in PD (Putcha et al., 2015). Disrupted
connectivity in frontal and parietal networks in PD with dementia
(Amboni et al., 2015; Borroni et al., 2015), as well as in the
dorsal attention network (Baggio et al., 2015) have been reported.
Several networks have been identified to play a key role in distinct
social cognitive functions. The default mode network, which
is altered in AD (Greicius et al., 2004), is hypothesized to be
involved in introspection. The salience network, on the other
hand, disrupted in bvFTD, plays a key role in directing attention
to behaviorally relevant salient information.

In recent years, diffusion tensor imaging (DTI) studies
have revealed significant white matter tract abnormalities in
addition to the previously known gray matter atrophy in
neurodegenerative diseases (Zhang et al., 2009; Caso et al., 2016;
Multani et al., 2016; Elahi et al., 2017). DTI allows in vivo
evaluation of white matter integrity by examining distribution
of water molecules within fiber tracts (Ciccarelli et al., 2008).
Decreased integrity of the right uncinate fasciculus (UF) has been
related to changes in emotion detection and cold-heartedness in
language variants of FTD (Multani et al., 2017).

Although certain network alterations have been identified in
these neurodegenerative diseases, it is unclear whether social
cognition relevant regions have altered functional activity
in these diseases. Previous studies highlight network-wide
(connectivity between multiple neuroanatomical regions)
connectivity dysfunction, which may potentially mask changes
in region-to-region (ROI-to-ROI) functional connectivity
(connectivity between two specific regions) and its association
with social cognition function. Furthermore, ROI-to-ROI
functional connectivity analysis can be used in conjunction with
DTI (structural) analysis to understand whether the observed
behavior or symptom is associated with functional or structural
dysfunction between the two regions.

Given the vast number of neuroanatomical regions involved
in social cognition, a whole-brain level functional connectivity
analysis can provide insight into particular brain regions
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that are altered in different neurodegenerative diseases. We
hypothesized that these whole-brain level disease-specific
alterations in functional connectivity could help identify
regions that would vary across AD, FTD, and PD, and
that these changes would relate to abnormalities in social
cognitive function.

MATERIALS AND METHODS

Study Participants
Subjects with neurodegenerative diseases, along with their
caregivers were recruited from the Memory Clinic and
Movement Disorders Clinic, Toronto Western Hospital. Subjects
qualified for the study if they had one of the following diagnosis:
(1) AD as outlined by McKhann et al. (2011) (N = 18); (2)
PD according to the PD Society Brain Bank Clinical Diagnostic
Criteria (Hughes et al., 1992) (N = 19); (3) ten patients with FTD
subtypes (svPPA N = 4), nfvPPA (N = 2) as outlined by Gorno-
Tempini et al. (2011), or bvFTD (N = 4) as per Rascovsky et al.
(2011) (Gorno-Tempini et al., 2011; Rascovsky et al., 2011); (4)
age and sex matched HCs with no history of neurological or
psychiatric disorders were also recruited (N = 10). Patients were
excluded from the study if they had any of the following: presence
of other neurological disorder, psychiatric illness, and visual or
auditory deficits requiring correction beyond corrective lenses
or hearing aids, respectively. The study received ethics approval
of the University Health Network Research Ethics Board and all
subjects provided written consent.

Measures
Participants (patients, caregivers, and HCs) completed The
Awareness of Social Inference Test-Emotion Evaluation Test
(TASIT-EET) to evaluate their ability to recognize emotions
(McDonald et al., 2003). Cognition was evaluated using the
Toronto Cognitive Assessment (TorCA) in all participants
(Freedman et al., 2018) and caregivers were interviewed on the
Clinical Dementia Rating (CDR) scale to assess dementia severity
in patients (Morris, 1993). Social cognition measures were
assessed using the following informant-based questionnaires:
(1) Behavioral Inhibition System/Behavioral Activation System
(BIS/BAS) scale (Carver and White, 1994) to measure behavioral
inhibition (sensitivity to punishment) and behavioral activation
(sensitivity to rewards) in individuals, (2) Revised Self-
Monitoring Scale (RSMS) (Lennox and Wolfe, 1984) in order to
measure the subjects’ awareness of their own social behavior (as
assessed by the informant), we obtained informant’s perspective
of the subject’s self-concern and self-focus using the Lennox and
Wolfe version of the RSMS informant-based reports (Lennox and
Wolfe, 1984). (3) Interpersonal Reactivity Index (IRI) (Davis,
1983) to measure empathy, which measures both the cognitive
and emotional aspects of empathy, and (4) Social Norms
Questionnaire (SNQ) (Rankin, 2008) to assess the subject’s ability
to assess social boundaries in the mainstream culture of Canada.
For participants with PD, these assessments were all performed in
the on drug state. Detailed descriptions of scales are available in
Supplementary Material.

Magnetic Resonance Imaging
Acquisition
All structural and resting state scans were performed on a 3
Tesla Magnetic Resonance Imaging (MRI) Scanner (GE Signa
HDx, Milwaukee, WI, United States) with a standard 8-channel
head coil. High resolution T1-weighted images were obtained
using inversion recovery fast spoiled gradient echo (IR-FSPGR),
with the following parameters: 176 slices with 1.2 mm thickness;
2.8 ms echo time (TE); 7.0 ms repetition time (TR); 400 ms
inversion time (TI); 11◦ flip angle; 26.0 cm field of view (FOV);
256 × 256 matrix size. T2∗-weighted functional data images
were acquired in an interleaved order (28–32 slices for the whole
brain), using the following parameters: slice thickness = 5 mm
with no gap, FOV = 240 mm, TR = 2 s. For each participant,
two 3-min scans were acquired. The scans were acquired in an
oblique orientation and each slice was perpendicular to the long
axis of the hippocampus. DTI scans were acquired in 8 min
with 55 directions, using the following parameters: 2D single-
shot EPI sequence, 60 contiguous slices, slice thickness = 2 mm,
TR = 800 ms, TE = 100 ms, b = 1000 s/mm2, base
matrix = 128× 128, and FOV = 240× 256 mm2.

Resting State fMRI Analysis
Resting state fMRI preprocessing and analysis was conducted
using the Conn Toolbox 17e1 (RRID:SCR_009550) (Whitfield-
Gabrieli and Nieto-Castanon, 2012). The preprocessing pipeline
for structural and functional images consisted of the following:
(1) slice-time correction in ascending order, (2) functional
realignment and unwarp, (3) co-registration of functional images
to structural images, (4) structural segmentation into gray matter,
white matter and cerebrospinal fluid, and normalization to MNI
space, (5) functional normalization to MNI space, (6) the Artifact
Detection Tools (ARTs) scrubbing method for global signal
outlier and motion detection, which were used as first level
covariates, and (7) functional smoothing (FWHM = 8 mm).

Since the purpose of the study was to examine differences in
functional connectivity and its association with social cognition
function, as the first step, an exploratory voxel-to-voxel analysis
was conducted to determine differences in peak blood oxygen-
level dependent (BOLD) activation between the four groups
(i.e., AD, PD, FTD, and HC groups). Once differences in
peak activations were established, we then used MVPA at
the group level to extract seeds to use for ROI-to-voxel
connectivity analysis as the second step. Since there is an intricate
relationship between neuroanatomical regions associated with
social cognition function, this approach enabled us to only
address regions whose functional activity is altered across the AD,
FTD, and PD groups. Therefore, the seeds from the MVPA, which
were associated with social cognition, were extracted as ROI
masks and were applied for ROI-to-voxel analysis to determine
differences in activation between the four groups. Lastly, ROI-to-
voxel Fisher’s Z-transformation scores were extracted to conduct
two-tailed partial correlations, while controlling for CDR-SoB
and sentence comprehension, with social cognition measures

1www.nitrc.org/projects/conn
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(TASIT-EET, SNQ total, BIS, IRI-EC, IRI-PT, RSMS-EX, RSMS-
SP). The ToRCA sentence comprehension score (language) was
used as a covariate when conducting partial correlations for
TASIT-EET and SNQ total as language comprehension may
impede performance.

Diffusion Tensor Imaging and Structural
Connectivity
The fMRIB Software Library (FSL) tools2 was used to conduct
DTI analysis. The DTI processing, region of interest definition for
the UF, and fiber tracking were performed as previously described
(Galantucci et al., 2011; Taghdiri et al., 2018). Four measures were
obtained for the UF: fractional anisotropy (FA), axial diffusivity
(AxD), radial diffusivity (RD), and mean diffusivity (MD).

Statistical Analysis
Statistical analyses were conducted using SPSS software (SPSS
Inc. v. 24). One-way ANOVA was conducted to determine
group differences on age, TorCA cumulative percentage, CDR
SoB, BIS, BAS-D, BAS-FS, BAS-RR, IRI-PT, IRI-EC, RSMS-
EX, RSMS-SP, SNQ total score, and the DTI measures (i.e.,
FA, AxD, RD, and MD) of right and left UF. Dunnett T3
(Shingala and Rajyaguru, 2015) analysis was carried out as a
post hoc analysis. One-way ANCOVA was carried out to examine
differences on TASIT-EET performance, while controlling for
TorCA sentence comprehension.

Since the frontal pole (FP) and the inferior temporal gyrus
(ITG) (anterior division) are structurally connected by the UF, we
carried out mediation analyses to explore the potential mediation
effects of the left UF on the relationship between “Group” (coded
as 1 = HC, 2 = PD, 3 = AD, and 4 = FTD) and the functional
connectivity between the bilateral FP and the left ITG and post-
cingulate gyrus (Model A). The right UF is also known to
contribute to social cognition (Oishi et al., 2015), so a similar
mediation analysis was conducted to investigate the potential
mediation effects of the right UF on the relationship between the
“Group” and the functional connectivity between the right ITG
and FP (Model B). To do so, we used the SPSS macro PROCESS
tool (Hayes, 2013) which is implemented in SPSS version 24.
We estimated the total, direct, and indirect effects as well as
their associated standard error (SE) and 95% confidence intervals
(CIs) (while controlling for age) using the 5000 bootstrap samples
(Hayes, 2009, 2013). Mediation ratio was also calculated for each
model as the ratio of direct effect to the total effect (Preacher and
Kelley, 2011). All mediation analyses adjusted for participants’
age. For each specific effect, if the interval did not contain zero, it
was considered statistically significant.

RESULTS

After correcting for multiple comparisons, a significant difference
was found between the four groups for TorCA cumulative
percentage, CDR SoB, and IRI-PT (Table 1). In addition, there

2https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FDT

was a trend toward significance in comparison of the SNQ total
score and TASIT-EET between the groups.

Voxel-to-Voxel Analysis
The following regions demonstrated a difference in peak BOLD
signal between the four groups (i.e., AD, PD, FTD, and HC): (a)
left ITG, anterior division (L-ITG, ant), (b) right central opercular
cortex (R-COp), (c) right supramarginal gyrus, posterior division
(R-SMG, post), and right angular gyrus (R-AG), and (d) right ITG
(R-ITG) (Supplementary Table 1 and Figure 1).

ROI-to-Voxel Analysis
The seed-to-voxel analysis exhibited group differences for
each seed extracted for voxel-to-voxel analysis (Supplementary
Tables 2A–D, 3A–D). The Fisher Z-transformation score for each
group is reported in Supplementary Tables 3A–D.

(a) L-ITG (ant) ROI (Supplementary Table 3A and
Figure 2A): In the AD, PD, and FTD groups, a decreased
functional connectivity was found between the L-ITG
(ant) and the right and left lateral occipital cortex (R-LOC
and L-LOC) compared to HC. Upon further examining
this relationship, the PD and AD groups exhibited almost
no functional connectivity, whereas the FTD group
demonstrated negative connectivity between the two
regions compared with positive connectivity in HC.
Furthermore, the FTD group demonstrated decreased
(negative) connectivity of L-ITG (ant) with the bilateral
FP and paracingulate gyrus (PCG) cluster, and precuneus
cortex cluster (Pc), compared to HC. The AD and the
PD groups displayed almost no connectivity between the
L-ITG (ant), and bilateral FP and Pc; however, this is not
significantly different from HC.

(b) R-COp ROI (Supplementary Table 3B and Figure 2B):
The functional connectivity of the R-COp was significantly
different between HC and the three neurodegenerative
groups for several GM regions. Firstly, one of the clusters,
which consisted of the right insular cortex (R-IC), right
frontal operculum cortex (R-FO), and R-COp, showed
positive functional connectivity for PD and FTD, whereas
this relationship was absent in AD and HC. Next, three
significant clusters (1) R-AG and R-SMG (post), (2) L-IC
and L-Cop, and (3) L-SMG were negatively functionally
connected with the R-COp in HC, whereas this relationship
was not observed in the three neurodegenerative groups.

(c) R-SMG (post) and R-AG ROI (Supplementary Table 3C
and Figure 2C): The R-SMG (post) and R-AG also showed
distinct patterns of functional connectivity between the
four groups. The functional connectivity with the R-FP
was positive in the HC, AD, and PD group, whereas this
association was absent in the FTD group. In addition,
the FTD group displayed negative functional connectivity
with the right temporal fusiform cortex, posterior division
(R-TFC, post), and R-ITG, whereas there was positive
functional connectivity in HC, and no connectivity in AD
and PD. Lastly, a significant difference in connectivity was
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TABLE 1 | Demographics, clinical profiles, and social cognition measures.

AD (N = 18) PD (N = 19) FTD (N = 10) HC (N = 10) p-value

Age (years) 70.56 ± 10.4 70.26 ± 9.1 65.5 ± 9.2 62.5 ± 5.5 0.121

Gender (f/m) 11/7 3/16 2/8 6/4 0.01

TorCA Cum % 59.2 ± 17a,c 76.7 ± 13a,b 61.1 ± 17a 91.8 ± 3b,c,d <0.001∗

CDR SoB 4.5 ± 2a 2.9 ± 2a 4.0 ± 3a 0.0 ± 0b,c,d <0.001∗

TASIT EET 8 ± 2 9 ± 2 7.3 ± 3 11 ± 2 0.008

BIS 18.6 ± 6 20.4 ± 5 16.6 ± 3 17.9 ± 4 0.231

IRI-PT 19.6 ± 6a 21.0 ± 7a 14.7 ± 9a 28.6 ± 4b,c,d 0.001∗

IRI-EC 25.0 ± 6 26.6 ± 7 21.2 ± 8 28.1 ± 5 0.148

RSMS-EX 18.4 ± 7 18.0 ± 6 10.9 ± 8 19.9 ± 7 0.028

RSMS-SP 22.0 ± 5 20.6 ± 8 14.4 ± 10 24.4 ± 7 0.033

SNQ total 17.1 ± 2 18.2 ± 2 15.1 ± 3 19.1 ± 2 0.008

∗Bonferroni correction for multiple comparison, significant if p < 0.006. ap < 0.05 compared to HC. bp < 0.05 compared to AD. cp < 0.05 compared to PD. dp < 0.05
compared to FTD.

FIGURE 1 | Voxel-to-voxel analysis: regions demonstrated a difference in peak BOLD signal between the four groups (i.e., AD, PD, FTD, and HC): (a) L-ITG (ant.),
(b) RCOp, (c) R-SMG (post.) and R-AG, and (d) R-ITG.

observed between FTD, and AD and PD, with the right
cerebellum (R-Cer).

(d) R-ITG (post) ROI (Supplementary Table 3D and
Figure 2D): For the R-ITG (post) ROI, the FTD group
displayed significantly increased connectivity with the
R-Cer, compared to AD. The PD group, on the other
hand, displayed no functional connectivity with the
L-FP, compared to HC.

Association Between Functional
Connectivity and Social Cognition
Measures
In order to determine whether there was a relationship between
differences in functional connectivity in the four groups and the
social cognition measures, we only examined regions relevant to

social cognition. The following regions are known to be involved
in social cognition: (a) FP, (b) temporal lobe, and (c) insular
cortex (Lamm and Singer, 2010; Elamin et al., 2012). Therefore,
the following functionally connected regions from the ROI-to-
voxel analysis were examined in all participants combined: (a)
L-ITG (ant) with bilateral FP, PCG, (b) R-COp with R-IC, R-FO,
R-COp, (c) R-COp with L-IC and L-COp, (d) R-SMG (post),
R-AG with R-FP, (e) R-SMG (post), R-AG with R-TFC (post),
R-ITG, and (f) R-ITG (post) and L-FP.

The BOLD co-activation of the L-ITG (ant) with bilateral FP,
PCG was positively associated with IRI-PT (r = 0.38, p = 0.007),
SNQ total (r = 0.37, p = 0.009), and TASIT-EET (r = 0.47,
p < 0.001). There was also a positive correlation of functional
connectivity of the R-SMG (post), R-AG, and R-FP with IRI-EC
(r = 0.32, p = 0.029), IRI-PT (r = 0.43, p = 0.002), RSMS-EX
(r = 0.42, p = 0.003), RSMS-SP (r = 0.35, p = 0.014), and a

Frontiers in Neuroscience | www.frontiersin.org 6 November 2019 | Volume 13 | Article 1259

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-13-01259 November 22, 2019 Time: 13:3 # 7

Multani et al. Social Cognition in Neurodegenerative Diseases

FIGURE 2 | ROI-to-voxel analysis, group differences for each seed extracted for voxel-to-voxel analysis: (A) Group differences for functional connectivity of L-ITG,
(B) group differences for functional connectivity of R-COp, (C) group differences for functional connectivity of R-SMG and R-AG, and (D) group differences for
functional connectivity of R-ITG.

trend for TASIT-EET (r = 0.27 p = 0.06). Lastly, the IRI-PT
(r = 0.34, p = 0.017) and TASIT-EET (r = 0.42, p = 0.003)
were also positively associated with the functional connectivity
of R-SMG (post), R-AG with R-TFC, and R-ITG. However, only
the TASIT-EET association with connectivity between L-ITG
(ant) and bilateral FP, PCG withstood correction for multiple
comparisons at p< 0.0012 (Figure 3).

Uncinate Fasciculus (UF) Structural
Integrity Analysis
Since the FP and the ITG (anterior division) are structurally
connected by the UF (Von Der Heide et al., 2013), we used
one-way ANOVA, followed by Dunnett’s T3 post hoc analysis to
examine the structural integrity of this white matter tract across
the four groups (Table 2).

We also carried out mediation analyses to explore the potential
mediation effect of the UF on the observed effects of “group” on
the functional connectivity between the L-ITG (ant), and bilateral
FP and PCG. These analyses revealed that the effect of “group”
on functional connectivity was partially mediated through the
structural connectivity of the left UF [Table 3 (Model A) and
Figure 4]. However, the mediation ratio (i.e., ratio of indirect
to total effect) was only 26.3% (Table 3), which showed that
the effect of “group” on the functional connectivity between
the L-ITG and bilateral FP and PCG was beyond the effects
of structural connectivity of the left UF alone. The right UF

MD showed no significant mediating effect on the relationship
between the “group” and functional connectivity of right ITG and
FP (Table 3, Model B).

DISCUSSION

Our results reveal alterations in functional connectivity in
patients with AD, PD, and FTD compared to HC. There was a
difference in BOLD signal activation in the L-ITG (ant), R-COp,
R-SMG and R-AG, and R-ITG (post) among the four groups.
These areas displayed altered connectivity with other regions
in the neurodegenerative disease groups. While the HC group
displayed positive functional connectivity between the L-ITG
(ant) and all its clusters, the AD group exhibited no functional
connectivity between this area and most of the regions and
decreased functional connectivity between the R-COp, and the
R-AG and R-SMG (post) in the AD group. The functional
connectivity between the R-ITG and bilateral LOC was also
decreased in PD but in a distinct pattern from the AD group.
In the PD group, there was increased connectivity between the
R-COp, and (a) the R-IC, R-FO, and R-COp, as well as (b)
the L-IC and L-COp, compared to the HC and the AD group.
Furthermore, there was no connectivity between the R-ITG (post)
and the L-FP, in contrast to the HC and AD groups.

Most of the previous studies identified neural substrates
underlying emotional empathy by comparing stimuli with
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FIGURE 3 | TASIT-EET association with connectivity between L-ITG (ant) and bilateral FP, PCG.

different emotional intensities (Breiter et al., 1996; Morris et al.,
1996; Phillips et al., 1997; Sprengelmeyer et al., 1998; Blair
et al., 1999), by comparing the perception of emotions and the
observation of others experiencing the same emotions (Wicker
et al., 2003; Jabbi et al., 2007; Jabbi and Keysers, 2008), or
by comparing the perception of emotions with the imitation
of the same emotions (Carr et al., 2003). While these studies
found neural activity in brain areas such as the ACC, anterior
insula, superior temporal cortex, amygdala, and inferior frontal
cortex (Breiter et al., 1996; Morris et al., 1996; Phillips et al.,
1997; Sprengelmeyer et al., 1998; Blair et al., 1999; Carr et al.,
2003; Wicker et al., 2003; Hofmann, 2006; Jabbi et al., 2007;
Shdo et al., 2018), the designs employed in the previous work
did not allow to isolate intentionally controlled processes from
automatically generated processes of empathy. In addition,
although a number of studies investigated the modulation of

TABLE 2 | DTI parameters [mean (SD)] for the left and right uncinate fasciculus.

AD PD FTD HC p-value

Right UF FA 0.32 (0.03) 0.34 (0.03) 0.31 (0.06) 0.34 (0.04) 0.287

Right UF AxD† 1.31 (0.10) 1.34 (0.10) 1.45 (0.20) 1.28 (0.10) 0.009

Right UF RD† 0.80 (0.07) 0.80 (0.07) 0.92 (0.03) 0.75 (0.05) 0.029

Right UF MD† 0.97 (0.07) 0.98 (0.07) 1.00 (0.24) 0.93 (0.05) 0.018

Left UF FA 0.33 (0.04) 0.31 (0.04)d 0.28 (0.04)c 0.31 (0.04) 0.043

Left UF AxD† 1.13 (0.10) 1.30 (0.10) 1.43 (0.10)a 1.21 (0.10)d <0.001

Left UF RD† 0.81 (0.10) 0.79 (0.10)d 0.96 (0.10)a,c 0.74 (0.10)d 0.001

Left UF MD† 0.97 (0.10) 0.96 (0.08)d 1.12 (0.15)a,c 0.90 (0.07)d <0.001

ap < 0.05 compared to HC; bp < 0.05 compared to AD; cp < 0.05 compared to
PD; dp < 0.05 compared to FTD. †Data presented as mm2 s−1 10−3.

“empathy for pain” by cognitive mechanisms (Lamm et al.,
2007; Hein and Singer, 2008) or experience to painful practices
(Cheng et al., 2007), the neuronal basis underlying the cognitive
modulation of “emotional empathy” has, to our knowledge, not
been investigated so far.

Social Cognition in Neurodegenerative
Groups
All three neurodegenerative groups scored significantly lower
on perspective-taking, a measure of empathy, compared to
HC (Davis, 1983) and this was positively associated with the
functional connectivity of the L-ITG (ant) with bilateral FP
and PCG, as well as the connectivity between R-SMG, R-AG
cluster with the (a) R-FP, and (b) R-TFC (post), R-ITG. These
areas have been previously implicated in empathy in functional
MRI studies (Breiter et al., 1996; Morris et al., 1996; Phillips
et al., 1997; Sprengelmeyer et al., 1998; Blair et al., 1999;
Carr et al., 2003; Hofmann, 2006; Jabbi et al., 2007; Shdo
et al., 2018). Compared to the HC, the FTD group performed
worse on the SNQ total, a measure of social norm knowledge.
The SNQ total showed a positive association with functional
connectivity between the L-ITG (ant), and bilateral FP and
PCG. The anterior temporal lobe volume has been related to
social norms performance on SNQ in bvFTD (Panchal et al.,
2016) but our data show that the functional connectivity of the
ITG with FP and PCG is related to the SNQ across all the
neurodegenerative diseases so although the anterior temporal
lobe is not usually atrophied in AD or PD, altered functional
connectivity in temporal and frontal lobes can also contribute to
social norms deficits.
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TABLE 3 | Parameters of mediation analyses.

Whole model Paths

R2 F p∗ β/effect SE t p∗ 95% CI

Model A

0.421 11.4 <0.0001 Total effect (path c) −0.101 0.020 −5.1 <0.0001 −0.14 to −0.06

Direct effect (path c′) −0.074 0.022 −3.4 0.0014 −0.12 to −0.03

Indirect effect −0.027 0.014 −0.06 to −0.002
†Ratio of indirect to total effect 0.263 0.152 0.02–0.62

Path a 0.0001 0.0000 4.1 0.0002 0.0000–0.0001

Path b −406.7 171.4 −2.4 0.022 −751.7 to −61.7

Model B

0.107 1.87 0.148 Total effect (path c) −0.011 0.019 −0.58 0.565 −0.05 to 0.03

Direct effect (path c′) −0.01 0.020 −0.484 0.631 −0.05 to 0.03

Indirect effect −0.001 0.0062 −0.02 to 0.001
†Ratio of indirect to total effect 0.210 0.125 0.02–0.55

Path a 0.0000 0.0000 2.7 0.0089 0.0000–0.0001

Path b −22.8 165.2 −0.14 0.891 −355.2 to 309.6

†Mediation ratio. ∗ In all mediation analyses, age considered as a covariate. β, beta coefficient; SE, standard error; CI, confidence interval; path c, total effect of the
independent variable (i.e., group) on the dependent variable (i.e., functional connectivity between the left ITG and bilateral FP and PCG); path c′, direct effect of the
independent variable on the dependent variable; path a, effect of the independent variable on the mediator (i.e., left uncinate fasciculus mean diffusivity); path b, effect of
the mediator on the dependent variable.

FIGURE 4 | Mediation analyses: effect of the UF on the observed effects of “group” on the functional connectivity between the L-ITG (ant), and bilateral FP and PCG.

The TASIT-EET score also exhibited a positive correlation
with the functional connectivity between the R-SMG (post) and
R-AG cluster with the R-TFC (post) and ITG. Lastly, although the
IRI-EC, RSMS-EX, and RSMS-SP did not withstand correction
for multiple comparisons, they were positively associated with
the functional connectivity of R-SMG, R-AG with the R-FP. The
alterations observed in the functional connectivity of these areas
in the patients can explain some of the impairments in these
social cognition tasks.

Overall, the findings of this study suggest positive functional
connectivity between the L-ITG and bilateral FP and PCG
is related to increased ability to take on others’ point of
view. Perspective-taking requires one to deliberately suppress
self-perception in order to reflect on others’ point of view
and represents cognitive empathy (Ruby and Decety, 2003).

Loss of cognitive and affective empathy is prominent in
bvFTD and cognitive empathy deficits are also reported in
individuals with AD (Dermody et al., 2016). In both groups,
distinct patterns of atrophy are associated with cognitive
empathy impairment. In the AD group, this is primarily
related to the left temporoparietal atrophy, whereas bilateral
frontoinsular, temporal, parietal, and occipital atrophy is
associated with loss of cognitive empathy in the bvFTD
group (Dermody et al., 2016). Furthermore, the FP plays
a key role in inhibiting self-perception when assessing
situations from a third person’s viewpoint (Ruby and
Decety, 2003). Therefore, the loss of cognitive empathy in
the neurodegenerative groups in the current study can be
attributed to loss of functional connectivity between the L-ITG
and bilateral FP and PCG.
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Distinct Pattern of Functional
Connectivity in FTD
The most distinct pattern of functional connectivity was observed
in the FTD group. Our results reveal that the FTD group showed
negative connectivity between the R-ITG (ant), and (a) R-LOC;
(b) L-LOC; (c) bilateral FP and PCG; and (d) Pc cortex, compared
to HC and was also significantly different from the AD and
PD groups. Functional connectivity between the R-COp cortex
and the R-IC, R-FO, and R-COp cortex was present in FTD,
whereas this association was absent in the HC and AD group.
The R-COp cortex functional connectivity was negative with the
(a) R-AG and R-SMG (post) and (b) L-IC and L-COp in HC,
while it was positive in the FTD group. Moreover, R-COp cortex
connectivity with L-SMG was absent in FTD but positive in HC.
The R-SMG (post) and R-AG seed exhibited no connectivity
with the R-FP in the FTD group, compared to AD, PD, and
HC. Moreover, the R-SMG (post) and AG displayed negative
connectivity with the R-TFC (post) and R-ITG, whereas the HC
group showed positive connectivity. There was also negative
functional connectivity of the R-SMG (post) and R-AG with
the R-Cer, and this association was absent in the HC group.
Lastly, the R-ITG (post) was functionally connected to the R-Cer.
This pattern was not observed in the HC group and was also
significantly different from the AD and PD groups.

Functional connectivity between the R-FP, and R-SMG and
R-AG was absent in the FTD group, and this also correlates
with decreased cognitive empathy and impairment in emotion
detection. The R-SMG is involved in egocentricity bias, where one
projects one’s own beliefs onto others in social scenarios (Silani
et al., 2013). Empathy also requires social perception, which
entails non-verbal cues such as body language, facial expression,
and eye-gazing, as well as higher mental processes (ToM)
(Pelphrey et al., 2004). Social perception has been attributed to
the R-SMG, R-AG, superior parietal lobe, and parahippocampal
gyri (Lawrence et al., 2006). As the FP inhibits self-perception and
the R-SMG is a key component of egocentricity bias and social
perception (including R-AG), we hypothesize that this functional
synchronization between the three regions may allow individuals
to inhibit (FP) their egocentricity bias (R-SMG) and allow them
to take on others’ perspective by mediating social perception cues.
Lastly, the positive functional association between R-SMG and
R-AG with R-TFC (post) and R-ITG observed in the HC group
was absent in the AD and PD groups and was negative in FTD.
Its association with cognitive empathy suggests that this loss of
connectivity in individuals with FTD may be responsible for their
inability to appreciate social perception cues and the negative
association with the R-TFC (post) and R-ITG may be responsible
for FTD patient’s inability to process emotional facial cues (right
posterior fusiform cortex) (Geday et al., 2003) and therefore they
are impaired in detecting others’ emotions. Hence, we postulate
that individuals who display altered functional connectivity
pattern in these regions may have trouble dissociating from self-
referential thinking. As a result, they are unable to empathize and
are inaccurate at detecting emotions in others.

Overall, the findings of this study suggest that alteration in
functional connectivity of the L-ITG, and R-SMG and R-AG with

social cognition-relevant regions (i.e., FP, temporal lobe, and
insular cortex) is associated with decreased cognitive empathy
and emotion detection impairment in neurodegenerative
diseases, particularly FTD but also in AD and PD. Changes in
social cognition have been associated with caregiver burden
and depression (Martinez et al., 2018) especially when
unrecognized. Our findings could provide a basis for using
resting state functional connectivity as a biomarker of deficits
in social cognition. It may also be an early sign of disease
and so should be evaluated in the early stages. This altered
connectivity may be amenable to interventions so functional
connectivity may also prove useful as an outcome measure in
interventional studies.
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