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Neural interfaces that directly produce intelligible speech from brain activity would

allow people with severe impairment from neurological disorders to communicate more

naturally. Here, we record neural population activity in motor, premotor and inferior frontal

cortices during speech production using electrocorticography (ECoG) and show that

ECoG signals alone can be used to generate intelligible speech output that can preserve

conversational cues. To produce speech directly from neural data, we adapted a method

from the field of speech synthesis called unit selection, in which units of speech are

concatenated to form audible output. In our approach, which we call Brain-To-Speech,

we chose subsequent units of speech based on the measured ECoG activity to generate

audio waveforms directly from the neural recordings. Brain-To-Speech employed the

user’s own voice to generate speech that sounded very natural and included features

such as prosody and accentuation. By investigating the brain areas involved in speech

production separately, we found that speech motor cortex provided more information for

the reconstruction process than the other cortical areas.

Keywords: ECoG, BCI, brain-computer interface, speech, synthesis, brain-to-speech

INTRODUCTION

Brain-computer interfaces (BCIs; Wolpaw et al., 2002) that process natural speech present a very
intuitive paradigm for direct machine-mediated human communication and have the potential
to restore intuitive communication for people unable to speak due to paralysis. In recent years,
impressive advances in the decoding of speech processes from neural signals have been achieved.
Electrocorticographic (ECoG) signals recorded from the cortical surface are well-suited for this
purpose due to the broad coverage of multiple cortical areas (Herff and Schultz, 2016). Using ECoG,
laryngeal activity (Dichter et al., 2018), phonetic features (Mesgarani et al., 2014; Lotte et al., 2015),
articulatory gestures (Chartier et al., 2018; Mugler et al., 2018), phonemes (Mugler et al., 2014;
Ramsey et al., 2017), words (Kellis et al., 2010; Milsap et al., 2019), and continuous sentences (Herff
et al., 2015; Moses et al., 2016, 2018) have been investigated. To provide speech-impaired patients
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with the full expressive power of speech, it is crucial to include
acoustic, prosodic, and linguistic cues. These cues include, but
are not limited to, pitch (intonation), timing, stress, emphasis,
and pauses, which are required to discriminate statements from
questions, differentiate words and meaning, carry emotions, and
to convey humor and sarcasm, to name only a few. Furthermore,
the decoding of sentences or words into textual representations
always introduces a delay of at least the length of the smallest
recognizable speech unit, which could potentially lead to severe
articulatory disturbances (Stuart et al., 2002) when playing back
the delayed audible feedback to the user. In contrast, the direct
conversion of brain activity into audible speech can enable
natural conversation, as it can provide rapid auditory feedback.

The speech production process has been widely studied (Tian
and Poeppel, 2010; Tourville and Guenther, 2011; Hickok, 2012),
and while it is not fully understood, a number of brain areas
are known to be involved at the level of producing articulation.
These areas include the inferior frontal gyrus (Okada et al., 2018),
the pre-motor cortex (Glanz et al., 2018), and the speech motor
cortex (Bouchard et al., 2013; Ramsey et al., 2017). Other areas
such as superior temporal gyrus also show activity during speech
production (Kubanek et al., 2013; Brumberg et al., 2016), but
it is unclear whether these areas are involved in articulatory or
semantic processing.

Previous studies have reconstructed perceived audio from
ECoG (Pasley et al., 2012) and spectrotemporal modulations of
real-life sounds from fMRI (Santoro et al., 2017). Martin et al.
reconstructed spectrotemporal features of speech from speech
production and perception areas (Martin et al., 2014), but did
not synthesize audio waveforms from these features. Akbari and
colleagues extended these findings and synthesized high quality
audio from cortical areas involved in speech perception using
Deep Neural Networks (Akbari et al., 2019). In an online study
in motor-intact patients, Leuthardt and colleagues demonstrated
one-dimensional cursor control using ECoG activity during the
production of two isolated phonemes (Leuthardt et al., 2011).
The first study presenting real-time, closed-loop synthesis of
speech from cortical spikes in a paralyzed patient demonstrated
accurate reconstruction of formant frequencies in attempted
vowel production (Guenther et al., 2009) and thereby laid the
foundations for speech neuroprostheses.

Recently, two different approaches synthesizing speech from
neural activity during speech production have been presented.
Both achieve very high quality audio by employing deep
neural networks and an intermediate representation of speech,
one study uses articulatory representations of the speech
production process (Anumanchipalli et al., 2019), which are
then transformed into audio output, the other (performed
on the same dataset as this study) transforms the neural
recordings to a spectral representation first, which is then
transformed to an audio waveform with a second neural
network (Angrick et al., 2019).

Here, we present an alternative approach which directly
reconstructs intelligible, naturalistic speech (that is, speech with
prosody and accentuation) from speech-related motor cortical
activity using a very simple pattern matching approach from the
speech synthesis community. The presented approach is simple

to implement, requires little training data, is real-time ready, and
does not require the design of deep learning architectures.

MATERIALS AND METHODS

Experiment Design
Participants in our study were asked to read words shown to them
on a computer screen aloud (Figure 1). Most presented words
were monosyllabic and followed a consonant-vowel-consonant
(CVC) structure. This set of words primarily comprised of
the Modified Rhyme Test presented in House et al. (1963)
and supplemented with additional words to better reflect the
phoneme distribution of American English (Mines et al., 1978).
Words were displayed one at a time at rate of one word every
2 s in a randomized order. Participants read between 244 and
372 words resulting in 8.3 to 11.7 min of recordings each.
Table 1 summarizes recording length (in seconds) and number
of repeated words for all participants. The data used in this study
were also used in Mugler et al. (2018) and Angrick et al. (2019).

Participants
Patients undergoing awake craniotomy with cortical stimulation
and recording as part of normal clinical care were selected for
enrollment. All participants gave written informed consent to
participate in the study prior to surgery. The study design was
approved by the Institutional Review Board of Northwestern
University. We recorded ECoG activity from six patients (1
female, 55.5 ± 10.1 yo) undergoing awake craniotomies for
glioma resection. Tumors locations lay at least two gyri (2–3
cm) away from the recording sites. All participants were native
English speakers.

Cortical Mapping
All participants were implanted with grids on the left hemisphere.
The experimental grids were specifically placed to cover areas
involved in the speech production process. Electrode grids were
placed based on functional responses to cortical stimulation and
on anatomical mapping. Final locations were confirmed using
intraoperative navigation software (Brainlab), preoperative MRI,
and intraoperative photography (Hermes et al., 2010).

To map the eloquent cortex, electrocortical stimulation
was used. Areas producing speech or anomia arrest during
stimulation were labeled as language associated, while areas
producing movement of tongue and articulators during
stimulation were labeled as functional speech motor areas.

Grid locations were different for each participants based
on craniotomy location but always covered targeted areas of
ventral motor cortex (M1v), premotor cortex (PMv), and inferior
frontal gyrus pars opercularis (IFG). Since there is no clear
cytoarchitectural difference between M1v and PMv, we defined
PMv as the anterior half of the precentral gyrus and M1v
as the posterior half of the precentral gyrus. Table 1 provides
information about the number of electrodes in each specific
region for each participant. Grid locations for our six participants
can be found in Figure 2.
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FIGURE 1 | Experimental Setup: ECoG and audible speech (light blue) were measured simultaneously while participants read words shown on a computer screen.

We recorded ECoG data on inferior frontal (green), premotor (blue), and motor (purple) cortices.

TABLE 1 | Participant demographics and electrode information.

Participant #Words Recording time (s) #IFG #PMv #M1v

1 368 752.8 12 19 18

2 370 761.7 8 15 19

3 249 509.2 16 21 20

4 249 571.5 11 29 18

5 244 499.2 0 19 19

6 372 760.8 15 18 12

Data Recording
We recorded ECoG using an 8 x 8, 64-channel electrode grid
(Integra, 4 mm spacing) and a Neuroport data acquisition system
(BlackrockMicrosystems, Inc.). ECoG data was sampled at 2 kHz
and bandpass-filtered between 0.5 and 300 Hz.

Audio data was recorded in parallel using a unidirectional
lapel microphone (Sennheiser) and wirelessly transmitted to a
recording station (Califone). Audio data was sampled at 48
kHz. Stimulus presentation and synchronous data recording was
facilitated using BCI2000 (Schalk et al., 2004).

ECoG Signal Processing
To extract meaningful information from the recorded ECoG
activity, we extracted logarithmic high-gamma power. The
gamma-band is known to reflect ensemble spiking (Ray et al.,
2008) and contain localized information for motor (Miller et al.,
2007) and speech (Crone et al., 2001; Leuthardt et al., 2012)
tasks. To remove slow drifts in the data, we first applied
linear detrending to the raw ECoG data. The signal was
then downsampled from 2 kHz to 600 Hz to reduce dataset
size. We then forward-backward filtered the signals of all 64
electrodes using elliptic IIR low-pass (170 Hz cut-off, filter order
14) and high-pass (70 Hz cut-off, filter order 13) filters to
represent the high-gamma band. To reduce the first harmonic
of the 60 Hz line noise, we applied an elliptic IIR notch
filter (118–122 Hz, filter order 13). Logarithmic high-gamma
power was calculated by taking the logarithm of the squared

signal. As the speech production process includes complex
temporal dynamics (Sahin et al., 2009; Brumberg et al., 2016),
a 450 ms long window centered on the current sample was
considered and downsampled to 20 Hz. The resulting matrix of
64 channels×9 time points was flattened to form a feature vector
of 64 channels× 9 time points = 576 features. Extracted features
were normalized to zero mean and unit variance. To capture the
fast dynamics of speech, a new feature vector was extracted every
10 ms. We generated speech using either all 64 electrodes or the
electrodes from individual areas separately (IFG, PMv and M1v,
mean of 12.4, 20.2 and 17.7 electrodes, respectively).

Audio Signal Processing
We downsampled the recorded audio data to 16 kHz and
extracted raw waveforms in 150 ms windows centered on the
corresponding frame of ECoG data. Windows were extracted
with a 10 ms frameshift to maintain alignment to the intervals
of neural activity. We extracted the 150 ms long windows using
Hanning window functions to guarantee smooth transitions (Wu
et al., 2013) even with the large overlap between neighboring
windows. Each of these 150 ms windows of raw audio data were
considered as one speech unit in our decoding approach. Due
to the long speech unit size in combination with the windowing
function, no problems with pitch synchronization arise, so more
complex approaches such as pitch-synchronous overlap-add
(PSOLA, Moulines and Charpentier, 1990) provided no increase
in reconstruction quality. The shorter speech unit length in
the audio data, as compared to the high-gamma windows, was
chosen as it provides a good compromise between smoothness of
output and capability to capture the fast dynamics of speech. The
direct mapping between speech units and corresponding high-
gamma windows is necessary for our reconstruction approach.

Decoding Approach
We reconstructed natural audio from the measured ECoG
activity by applying a technique from the speech synthesis
community called unit selection (Hunt and Black, 1996). Unit
selection was originally used in text-to-speech (TTS) synthesis of
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FIGURE 2 | Electrode grid positions for all six participants. Grids always covered areas in inferior frontal gyrus pars opercularis (IFG, green), ventral premotor cortex

(PMv, blue), and ventral motor cortex (M1v, purple).

audio waveforms and relies on selecting and concatenating well-
fitting units of speech from a large training database of speech
units. The same approach was later used for voice conversion
(Sundermann et al., 2006), where speech of one person is
transformed to the voice of another speaker. Further extending
upon this idea, unit selection was used in electromyography
(EMG)-based silent speech interfaces (Zahner et al., 2014),
where facial muscle movements are transformed into an audio
waveform. The same approach can also be applied to other
types of silent speech interfaces (Schultz et al., 2017). In all unit
selection approaches, the next speech unit to concatenate to the
output is chosen based on two different cost terms. The first
one is how well the speech unit fits the current input, being the
current phoneme in TTS or the current frame of EMG activity.
This cost term is referred to as the target cost. The second cost
function estimates how well the speech unit fits the previously
selected speech units and is usually referred to as concatenation
cost. Optimizing both cost functions together requires an iterative
algorithm such as Viterbi decoding (Lou, 1995). Unit selection is
known to perform well for small amounts of data, as is the case in
our study. Limited datasets might not be sufficient to train more
complex models with many free parameters.

In our decoding approach, we used unit selection to select
the best fitting unit of speech, based on the high-gamma
ECoG feature vectors (Figure 3). Our speech units were 150 ms
intervals of plain audio waveforms extracted using a Hanning
window function. To make sure that we selected speech units
based only on the neural data and do not include any semantic
information, we disregarded the concatenation cost for this

proof-of-concept study. This speeds up the decoding process
as new speech units can be selected based only on the current
frame of high-gamma activity. Additionally, this allowed us to
reformulate the selection approach as a maximization problem
to find the ECoG feature vector B̂ in the training data, that has
the highest similarity with the current feature vector A:

B̂ = argmax
B

{similarity(A,B)} (1)

As ECoG data and audio data are aligned, the corresponding
speech unit to B̂, from the training data, could then be selected.
Figure 3 explains the decoding process: For each window of high-
gamma power in the test data (top right), the cosine similarity
with every window in the training data (bottom center) was
computed. For the training data windowA of high-gamma power
with the highest cosine similarity to the test window B̂, the
corresponding speech unit of audio data in the training data (top
center) was chosen. This process is repeated for all intervals in
the test data. The chosen speech units (top right) were combined
to form the generated speech (bottom right). The strongly
overlapping audio data were combined by simply adding the
waveforms; the Hanning windowing ensures that the resulting
output is smooth. This approach is agnostic to categories of
speech, such as phones, or any syntactic and semantic knowledge.
It simply chooses the best fitting speech unit out of over 50,000
units (500 s / 0.01 s frameshift) instead of choosing a generalized
representation, such as a phoneme or even word. This way, the
speech unit with the best matching prosody and accentuation is
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FIGURE 3 | Speech Generation Approach: For each window of high gamma activity in the test data (top left), the cosine similarity to each window in the training data

(center bottom) was computed. The window in the training data that maximized the cosine similarity was determined and the corresponding speech unit (center top)

was selected. The resulting overlapping speech units (top right) were combined using Hanning windows to form the generated speech output (bottom right). Also see

Supplementary Video 1.

chosen and no labeling of the data with regards to phonemes, or
words is used or necessary. As our approach concatenates units
of natural speech, it conserves the spectrotemporal dynamics of
human speech.

This decoding approach can be likened to a very simple
pattern matching approach or nearest-neighbor regression, but
provided superior results than more complex approaches for our
limited dataset size.

While a number of different similarity measures can be used,
we applied the cosine similarity that has proven to provide good
results in a number of document clustering (Steinbach et al.,
2000) and computer vision applications (Nguyen and Bai, 2010).
The cosine similarity between vectors A and B is defined as :

similarity(A,B) =
A · B

‖A‖‖B‖
=

n
∑

i=1
AiBi

√

n
∑

i=1
A2
i

√

n
∑

i=1
B2i

The cosine similarity is invariant to gamma scaling, only the
power distribution between electrodes influences the similarity

score. By precomputing the Euclidean norm ‖B‖ =

√

n
∑

i=1
B2i

for all feature vectors in the training data, the cosine similarity
can be computed fast enough on standard hardware to allow for
real-time decoding for our data set sizes. This can be further
sped up by clustering speech units together (Black and Taylor,
1997) resulting in fewer comparisons necessary. Once the high-
gamma feature vector with the highest cosine similarity B̂ was
found, the corresponding speech unit in its original waveform
was concatenated to the reconstructed output.

We applied our unit selection approach in a 5-fold cross-
validation manner in which in each iteration 80% of the data
were used as training data and the remaining 20% as testing data
until all data were used as the test set exactly once. The set of
spoken words in training and test set were always disjoint. To
reduce the feature space, we used principal component analysis
to select principal components that explain at least 70% of the
total variance in the ECoG training data. The same feature space
compression was than applied to the testing data, as well. This
approach selected 108.1 ± 36.3 components for all electrodes,
15.9± 9.7 for IFG, 44± 15.5 for PMv, and 41.53± 6.8 for M1v.

Randomization Tests
To establish a baseline for our decoding approach, we used
a randomization approach. Instead of using the speech unit
corresponding to the high-gamma feature vector with the highest
cosine similarity, we picked a random speech unit in the
randomization condition. We combined the speech units in the
same manner as the real decoding approach. We repeated this
approach 1,000 times for each participant to establish a baseline
of randomized reconstruction. We denoted the maximum of
these randomizations as chance level in Figure 6B.

Correlation Analysis
To compare original and reconstructed audio waveforms, we
transformed the waveforms into the spectral domain. This was
done in 50 ms windows with 10 ms overlap. To only judge
the frequency information that is important to human listeners,
we transformed the magnitude spectrograms onto the mel-
scale (Stevens et al., 1937) using 40 overlapping triangular filter
banks. A logarithm was then applied to bring the distribution
of spectral coefficients closer to a normal distribution. Pearson
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correlation coefficients were then computed between the
original and reconstruction for each logarithmic mel-scaled
coefficient. We calculated the correlations for each word
individually. Significance levels are established if resulting
correlations were larger than 95, 99, or 99.9% of the randomized
controls, respectively.

Averaging over all 40 logarithmic mel-scaled coefficients we
can look at overall correlation coefficients for the reconstruction
for each of the participants. Figure 6A shows correlation
coefficient for all participants using all electrodes, only IFG
electrodes, only PMv electrodes and only M1v electrodes.

Listening Tests
To evaluate the intelligibility of our synthesized audio, we
conducted an online forced-choice listening test with 55 (15
female) healthy volunteers. In the test, volunteers heard the 30
synthesized words with the highest spectral correlations and were
given four options, the correct answer plus three distractors,
to choose from. Volunteers had to pick the option which they
thought the synthesized audio resembled the most. One of
the four answers always needed to be selected (forced-choice).
Distractor words were chosen randomly from the complete
set of words used in our study, resulting in similar word
length (as most words follow the CVC structure) and similar
distribution of phonemes. Word order and the order of the
options was randomized for each volunteer individually.We used
the beagleJS framework (Kraft and Zölzer, 2014) to build our
listening test.

After the listening test, we asked the volunteers to give
information about their gender (15 female, 40 male), age
(34.9 ± 14.1) and whether they were English native speakers (27
native speakers).

All volunteers achieved accuracies well above chance level in
identification of the correct word (66.1%± 6%) with relative low
variance. These results show that our approach is very promising
to generate natural, intelligible output for future voice prosthesis
from neural data.

Objective Intelligibility Measure
In addition to the subjective listening tests, we calculated an
objective intelligibility measure, namely the short-term objective
intelligibility (STOI) measure (Taal et al., 2011) that is known to
correlate well with subjective intelligibility. The STOI employs
simple discrete Fourier transformation-based Time-frequency-
decomposition. The STOI score (ranging from 0 to 1) can
be mapped to an subjective intelligibility probability d in a
transcription intelligibility test (ρ = 0.95). Taal et al. (2011)
provides the formula:

STOI =
100

1+ exp(ad + b)

with a = −13.1903 and b = 6.5192. Reformulating this,
we can estimate the subjective intelligibility probability d in a
transcription intelligibility test given the calculated STOI with:

d =
loge(

100
STOI − 1)− b

a

Objective measures of intelligibility, as well as spectral
correlations, are notoriously unreliable in judging speech
synthesis output for its intelligibility, we therefore believe our
listening test provides a more realistic estimation of intelligibility
for our data set, but report the STOI values for completeness. As
our approach does not operate in the cepstral domain, we do not
report Mel Cepstral Distortion (MCD) measures, which suffer
from the same limitations as correlations.

RESULTS

Brain-to-Speech Reconstructs
High-Quality Audio
The Brain-To-Speech approach concatenates natural units of
speech and is thereby capable of creating completely unseen
words, without the need to define a dictionary of recognizable
words. The resulting waveforms sound very natural, as
the user’s own voice is employed. Many of the original
spectrotemporal dynamics of speech are reconstructed. Figure 4
shows examples of generated and actual speech in audio and
spectral representations. The spectral representation is only used
for illustration and analysis purposes, the approach concatenated
speech units in their original waveform.

We evaluated the performance of Brain-To-Speech for each of
the six participants by computing correlations between original
and generated audio spectrograms using 5-fold cross-validation.
Word lists in training and test set were disjoint. Models are
trained participant dependent, as brain anatomy and electrode
grid locations are strongly participant dependent.

To better represent the human perception of speech, we
compressed the speech spectrogram to the Mel-scale (Stevens
et al., 1937) using 40 logarithmically-spaced triangular filter
banks. Correlations were calculated for each mel-scaled spectral
coefficient between the original and reconstruction individually
and then averaged across spectral coefficients.

High correlations were achieved for all of the six
participants (best participant r = 0.574 ± 0.088 STD, average
r = 0.246 ± 0.075) when using all electrodes (Figure 5A).
Intelligible speech was obtained for many examples. To establish
chance level correlations, we conducted randomization tests. A
randomized baseline was established by selecting random speech
intervals instead of the best fitting speech unit and repeating
this procedure 1,000 times for each participant. Correlation
coefficients were higher than chance level for all participants
when using all electrodes (highest randomized r = 0.04). Our
reconstruction resulted in significantly higher than chance level
correlations across all spectral coefficients (Figure 6B).

M1v Provides Most Information to
Decoding Process
Examining the three functional areas of interest independently,
all three regions achieved correlations above the level of
random chance. Ventral primary motor cortex (M1v) clearly
outperformed the other two regions (significant differences,
paired t-test p < 0.001), performing almost as well as all
electrodes combined (r = 0.235±0.012). Inferior Frontal Cortex
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FIGURE 4 | Generation example: Examples of actual (top) and generated (bottom) audio waveforms (A) and spectrograms (B) of seven words spoken by participant

5. Similarities between the generation and actual speech are striking, especially in the spectral domain (B). These generated examples can be found in the

Supplementary Audio 1.

FIGURE 5 | Performance of our generation approach. (A) Correlation coefficients between the spectrograms of original and generated audio waveforms for the best

(purple) and average (green) participant. While all regions yielded better than randomized results on average, M1v provided most information for our reconstruction

process. (B) Results of listening test with 55 human listeners. Accuracies in the 4-option forced intelligibility test were above chance level (25%, dashed line) for all

listeners.

yielded lowest results of r = 0.067 ± 0.004. Activity from the
premotor cortex yield an average of r = 0.132± 0.008.

These results show that speech motor cortex (M1v) contains
most information for our reconstruction approach. Comparing
the correlation coefficients for each individual participant with
the randomized baseline (Figure 6A), we can see that the
reconstruction using all electrodes is significantly better than
chance level (p < 0.05) for all participants and highly significant
(p < 0.001) for all but one participant. The reconstruction from
IFG is significantly better than randomized baseline for only two
participants. Information from premotor cortex (PMv) could be
used to significantly reconstruct speech from 4 participants and
speech motor cortex (M1v) yielded the best results with highly

significant reconstruction for all 6 participants. The results for the
best participant (5) show no significant difference between using
all electrodes and only using information from M1v. Given the
small amount of training data, the similar levels of performance
between all electrodes and only M1v could also be due to the
larger feature space size in the first condition.

Reconstructed Speech Is Intelligible
To investigate the intelligibility of the Brain-To-Speech approach,
we conducted a listening test with 55 human listeners.
The listeners were presented with individual generated audio
waveforms and were required to select the most likely perceived
word from a list of four word options. All listeners achieved
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FIGURE 6 | Detailed decoding results. (A) Correlations between original and reconstructed spectrograms (melscaled) for all participants and electrode locations. Stars

indicate significance levels (* Larger than 95% of random activations, *** Larger than 99.9% of random activations). M1v contains most information for our decoding

approach. (B) Detailed results for best participant using all electrodes and the entire temporal context (blue) and only using activity prior to the current moment (cyan)

across all frequency coefficients. Shaded areas denote 95% confidence intervals. Reconstruction is reliable across all frequency ranges and above chance level

(maximum of all randomizations, red) for all frequency ranges.

well above chance level performance (25%) in this listening test
(average of 66.1 ± 5.9%, Figure 5B).

In addition to the listening test, we calculated an objective
measure of intelligibility. Our approach achieved an average
Short-Term Objective intelligibility (STOI) measure (Taal et al.,
2011) of 0.15, corresponding to an subjective intelligibility
probability of 36%. This would mean that subjects would be
able to identify the correct word in a transcription test 36% of
the time. Our best participant reached a mean STOI of 0.25
corresponding to 41% intelligibility.

Approach Is Real-Time Ready
For future applications, it is important that our approach is
real-time ready. While computing times for our limited dataset
size are fast enough for real-time processing (less than 1ms
for each new window every 10 ms), the long temporal context
automatically induces an offset equivalent to the length of
temporal context in the future. We therefore repeated our
experiments using only ECoG features prior to the current time
point (Figure 6B). We found that results only decreased mildly
(best r = 0.57 for all temporal context, best r = 0.528 ± 0.088
using only preceding feature vectors, Figure 6B) when using no
information from the future. This emphasizes that our approach
can be integrated into a closed-loop system, as preceding
information is sufficient to reconstruct high-quality audio.

DISCUSSION

Brain-To-Speech generated speech from the user’s own voice,
leading to output that sounded very natural. Reconstructed audio
was of high-quality and the best examples were intelligible to
human listeners. Our simple approach, based on unit selection,
made no assumptions about the form, syntax or even language

of the reconstructed speech. It therefore should be able to

reconstruct words other than the ones used in our experiment
and even sentences and continuous speech. In fact, among the
words that were correctly identified by all human listeners is

“Persian,” which does not follow the CVC structure. Nevertheless,

Brain-To-Speech requires further testing with spontaneous,
continuous speech in a closed-loop fashion. Our analyses are
performed offline on previously collected data, but we show
that Brain-To-Speech is capable of real-time processing, as
information preceding the current moment is sufficient to
generate high-quality audio. Comparing our results in terms of
correlation coefficients to those achieved in the reconstruction
of perceived speech from STG (Pasley et al., 2012), we achieve
higher correlations for our best participants, but a lower mean r.
However, we reconstructed articulated speech from motor areas,
while Pasley et al. (2012) employed activity in auditory areas
during speech perception for their approach. Martin et al. (2014)
achieved higher mean correlations with their reconstruction of
spectrotemporal features of speech, but lower correlations for
their best participant. Their approach did not reproduce the
audio waveform of the reconstruction, however. In our approach,
the spectral correlations were only a secondary outcome, as we
reconstructed audio waveforms directly, of which correlations
were then calculated. This is distinctly different from using an
approach that is directly tailored to maximize correlations.

Comparing the results of Brain-To-Speech to recent deep
neural network based approaches (Akbari et al., 2019; Angrick
et al., 2019; Anumanchipalli et al., 2019), our approach yields
slightly lower correlations and STOI values, but does not require
the huge computational costs of deep neural networks and is
in fact fast enough for real-time processing. The formulation
of our unit selection approach allows to easily integrate
prior information about long term dependencies in speech

Frontiers in Neuroscience | www.frontiersin.org 8 November 2019 | Volume 13 | Article 1267

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Herff et al. Generating Intelligible Speech From ECoG

and language in the future, while not requiring bi-directional
processing. This can allow the Brain-To-Speech approach to
produce good quality output with very little data, while two of
the other studies (Akbari et al., 2019; Anumanchipalli et al., 2019)
used significantly more data per participant.

Primary motor cortex (M1v) provided the most informative
activity for decoding speech and performed as highly as
electrodes from all three cortices in our best participant.
Recent studies showing robot arm control in paralyzed patients
(Hochberg et al., 2006) utilize electrode arrays implanted
into M1 and thereby purely relying on activity generated
in attempted movement. We hope that our results are also
extensible to attempted speech in patients with speech deficits.
It is not surprising that M1v provided the most information
about speech acoustics, given recent results showing M1v
contains themost information about speech kinematics (Chartier
et al., 2018; Mugler et al., 2018) and results showing that
speech acoustics are highly correlated with articulation (Wang
et al., 2015). Additionally, our results show that high quality
speech generation can be achieved with a small number of
electrodes (between 12 and 20). The rapid feedback of Brain-
To-Speech is capable of could also enable the user to learn
to operate the speech prosthesis in the future, as has been
demonstrated for neural upper-limb prostheses (Hochberg et al.,
2006).

The intelligibility analyses indicate that the generated speech
can be intelligible to human listeners despite the fact that our
synthesis approach ignores semantic and linguistic knowledge.
Given more training data and the opportunity for listeners to
gain more experience with perceiving the idiosyncrasies of the
generation, we are confident that the Brain-To-Speech approach
would allow a BCI to generate naturalistic speech. The inclusion
of prior information is known to increase the intelligibility of unit
selection approaches (Hunt and Black, 1996) and could also be
beneficial to our approach. In the future, a closed-loop feedback
of audible speech could put the speaker in the loop, thus giving
paralyzed individuals the chance to adapt their brain activity to
further improve the audio output.

LIMITATIONS

Currently, our approach relies on simultaneous recording of
audible speech and ECoG activity. To adapt this approach
for locked-in patients, we envision the following possibilities:
Audible speech could be recorded before the patient loses
the ability to speak, for example earlier in the course of
a motor neuron disease. Alternatively, paralyzed patients
could attempt to speak along with audio recordings of
other people speaking (referred to as shadowing) and
thereby generate a parallel recording of audio and brain
activity data. This limitation highlights the long road toward
usable BCIs based on speech processes. In the meantime,
approaches based on typing activity (Pandarinath et al., 2017;
Nuyujukian et al., 2018) already provide high performance
communication for paralyzed patients, with an only slightly less
natural paradigm.

A clear limitation of our study is the small dataset size
and the intraoperative recording setup. The background
noise levels and the patients’ general state during an awake
surgery will result in suboptimal data that are not directly
transferable to the target population. However, the intraoperative
setup allowed us to place the high-density grids on relevant
areas for speech production and thereby investigate this
process thoroughly. Longer term recordings of relevant
areas, including spike recordings from intracortical arrays,
are needed to bring the envisioned technology to patients.
Especially recent findings of speech representations in the
hand knob of the dorsal motor cortex (Stavisky et al., 2018a,b;
Willett et al., 2019) might bring Brain-To-Speech to those
in need.

Another limitation in our experimental design is the lack
of control stimuli, including non-speech articulation and
speech perception. The inclusion of these control stimuli in
future experiments will help to identify aspects exclusive to
speech production.

CONCLUSION

In conclusion, we present a simple pattern matching approach
for the direct synthesis of comprehensible audible speech from
cortical activity in motor, premotor and inferior frontal gyri. Our
approach could restore a voice and natural means of conversation
to completely paralyzed patients.
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