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Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States

Alzheimer’s disease (AD) and type 2 diabetes (T2D) are among the most prevalent
chronic diseases affecting the aging population. Extensive research evidence indicates
that T2D is a well-established risk factor for AD; however, the molecular mechanisms
underlying this association have not been fully elucidated. Furthermore, how T2D may
contribute to the progression of AD is a subject of extensive investigation. In this study,
we compared the blood transcriptome of patients with mild cognitive impairment (MCI),
AD, and advanced AD to those afflicted with T2D to unveil shared and unique pathways
and potential therapeutic targets. Blood transcriptomic analyses revealed a positive
correlation between gene expression profiles of MCI, AD, and T2D in seven independent
microarrays. Interestingly, gene expression profiles from women with advanced AD
correlated negatively with T2D, suggesting sex-specific differences in T2D as a risk
factor for AD. Network and pathway analysis revealed that shared molecular networks
between MCI and T2D were predominantly enriched in inflammation and infectious
diseases whereas those networks shared between overt AD and T2D were involved
in the phosphatidylinositol 3-kinase and protein kinase B/Akt (PIBK-AKT) signaling
pathway, a major mediator of insulin signaling in the body. The PISK-AKT signaling
pathway became more significantly dysregulated in the advanced AD and T2D shared
network. Furthermore, endocrine resistance and atherosclerosis pathways emerged as
dysregulated pathways in the advanced AD and T2D shared network. Interestingly,
network analysis of shared differentially expressed genes between children with T2D and
MCI subjects identified forkhead box O3 (FOXO3) as a central transcriptional regulator,
suggesting that it may be a potential therapeutic target for early intervention in AD.
Collectively, these results suggest that T2D may be implicated at different stages of AD
through different molecular pathways disrupted during the preclinical phase of AD and
more advanced stages of the disease.

Keywords: Alzheimer’s disease, blood transcriptome, mild cognitive impairment, network analysis, type 2
diabetes
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INTRODUCTION

Alzheimer’s disease (AD) and type 2 diabetes (T2D) are both
devastating conditions reaching epidemic numbers worldwide.
According to the World Health Organization (WHO), 50 million
people worldwide have dementia and approximately 60-70%
of the cases are attributed to AD. Accumulation of amyloid f
plaques and protein tau in the form of neurofibrillary tangles
is a pathological hallmark of the disease. Mutations in the
amyloid precursor protein (APP), presenilin 1 (PSENI), and
presenilin 2 (PSEN2) trigger the accumulation of amyloid B
plaques and cause early-onset AD (De Strooper and Karran,
2016). Nonetheless, most of the cases present as late onset and
are considered sporadic. AD has a long preclinical phase where
the disease may start as early as 20 years before the appearance
of symptoms (De Strooper and Karran, 2016). This pre-clinical
phase is characterized by mild cognitive impairment (MCI) that
represents an intermediate stage between the expected cognitive
decline occurring during normal aging and dementia.

Likewise, T2D is the most prevalent metabolic disorder
affecting over 380 million people worldwide. T2D is characterized
by hyperglycemia and the progressive destruction of pancreatic
islet B cells, resulting in decreased production of insulin leading
to insulin resistance. Increasing evidence from epidemiological
studies indicates that T2D is associated with an increased risk
of developing AD in several populations (Yang and Song, 2013).
Indeed, the presence of T2D results in a two- to threefold
higher risk of developing dementia (Cole et al., 2007). Although
the exact mechanisms that explain the linkage between T2D
and AD are not fully understood, several studies have revealed
potential mechanisms underlying this comorbidity. In this
regard, impaired insulin signaling and glucose metabolism have
been extensively documented as pivotal in the development
of dementia and neurodegeneration among T2D patients. For
example, insulin resistance has been found to increase the
risk of AD (Holscher, 2014). In addition, desensitization of
insulin receptors in the brain has been found in both T2D
and AD and is suggested to be an early triggering factor
in neurodegeneration (Holscher, 2011). Systemic inflammation
is also central in the pathogenesis of both T2D and AD.
Accumulation of fibrillar proteins in different organs, known
as amyloidosis, is a pathological feature of both AD and T2D
(Chiti and Dobson, 2006). Deposits of amylin polypeptide in
pancreatic islets are present in 95% of T2D patients and it
has been demonstrated to impair islet function (Cooper et al.,
1987). In fact, both amyloid p and amylin accumulate in tissues
in response to infectious agents (Miklossy and McGeer, 2016).
Because of the many similar pathogenic mechanisms between AD
and T2D, AD has been considered a “type 3 diabetes” by many
investigators (de la Monte and Wands, 2008; Zhao et al., 2017).

System biology approaches have significantly expanded our
understanding of the molecular pathways disrupted in AD and
other neurodegenerative diseases (Santiago et al., 2017b). In
particular, network-based approaches integrating transcriptomic
data with protein-protein interaction networks have been useful
in identifying biomarkers, therapeutic targets, and mechanisms
of disease (Santiago and Potashkin, 2014a). In the context of

comorbid diseases, network biology has been instrumental in
unraveling shared and unique biological pathways (Santiago
and Potashkin, 2013, 2014b; Santiago et al., 2016, 2017a). For
instance, a network approach using transcriptomic data of post-
mortem AD and T2D human brains identified autophagy as the
central dysregulated pathway linking both diseases (Caberlotto
et al., 2019). Another study constructed AD and T2D networks
using knowledge extracted from the scientific literature and
revealed a potential interaction between the insulin signaling
pathway with the neurotrophin, phosphatidylinositol 3-kinase
and protein kinase B/Akt (PI3K-AKT), mammalian/mechanistic
target of rapamycin (MTOR), and mitogen-activated protein
kinase (MAPK) signaling pathways (Karki et al, 2017).
Microarray meta-analysis and pathway analysis identified several
pathways, including ephrin receptor, liver X receptor, retinoid X
receptor, interleukin 6, and insulin like growth factor 1 as shared
between AD and T2D (Mirza et al., 2014).

While these studies provide evidence of shared biological
pathways between T2D and AD, they do not explain how T2D
may be implicated in the different clinical stages of AD. To
this end, we performed a transcriptomic and network analysis
of gene expression datasets from MCI, AD, advanced AD, and
T2D patients to better understand the shared molecular networks
disrupted through the different clinical stages of AD. Here,
we reveal unique and common dysregulated pathways between
T2D and AD and identify several pathways that are altered
during the clinical course of AD, from MCI to more advanced
stages of the disease.

MATERIALS AND METHODS

Analysis of Blood Transcriptomic Studies
We used the curated database BaseSpace Correlation Engine
(BSCE, Illumina, Inc., San Diego, CA, United States) to search
for gene expression studies in MCI, AD, advanced AD, and T2D.
Using the search terms “AD,” “MCI,” “diabetes,” “blood,” “human,”
“RNA,” and “microarray, we identified nine studies in blood
of MCI, AD, advanced AD, and T2D patients. Two studies on
AD patients were removed because they contained less than five
samples. Only human microarray studies with five samples or
more for cases and controls and curated in BSCE were considered
for further analysis. Seven microarrays met our inclusion criteria
as of July 01, 2019. Description of microarray datasets included
in this study is provided in Table 1.

For the studies selected, informed consent was obtained for
all subjects according to the Declaration of Helsinki and study
protocols were approved by the relevant ethical committees at
each clinical site. The study involving AD and MCI subjects is
a three-series microarray (GSE63063, GSE63060, and GSE63061)
that contains blood transcriptomic data from 142 AD, 80 MCI,
and 132 healthy controls from the AddNeuroMed cohort. The
AddNeuroMed study is a multi-cohort involving six clinical sites
across Europe (Lunnon et al, 2012, 2013; Sood et al., 2015).
Diagnosis of AD subjects in the AddNeuroMed cohort was
performed according to the National Institute of Neurological
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TABLE 1 | Blood transcriptomics studies selected for the analysis.

Datasets Disease Cases Controls Platform PMID
*GSEB3063 Mild cognitive impairment 80 132 lllumina, GPL6947 26343147
GSEB3060 23042217
GSE63061 22466004
GSE63063 Alzheimer’s disease 142 132 lllumina, GPL6947 26343147
GSEB3060 23042217
GSE63061 22466004
GSE97760 Alzheimer’s disease 9 10 Agilent, GPL16699 25079797
GSE9006 Diabetes 12 24 Affymetrix, Human HG-U133 17595242
GSE13015 Diabetes 5 29 lllumina, GPL6947 19903332
GSE15932 Diabetes 8 8 Affymetrix, Human HG-U133 Plus 2.0 28639886
GSE34198 Diabetes 14 31 lllumina, Human-6 v2.0 29049183
GSEB9528 Diabetes 27 28 lllumina, HumanHT-12 V4.0 Not published

*GSE63063 dataset is composed of two studies: GSE63060 and GSE63061.

and Communicative Disease and Stroke and AD (NINCDS-
ADRDA) and Diagnostic and Statistical Manual of Mental
Disorders (DSM-1V) (Lunnon et al., 2012, 2013; Sood et al,,
2015). Subjects with MCI reported problems with memory,
corroborated by an informant, but had normal activities of
daily living as specified in the Petersen’s criteria for amnestic
MCI. MCI subjects scored 0.5 on the total clinical dementia
rating scale (CDR) or had a memory score of 0.5 or 1. All
subjects underwent a structured interview and a battery of
neuropsychological assessments including the mini mental state
examination (MMSE), global deterioration scale (GDS), and
CDR by trained researchers. Healthy controls and MCI subjects
were further assessed using the CERAD battery. MCI cohort
was composed largely of subjects with a likely AD endpoint.
Subjects were excluded from the study if they were younger
than 65 years, had significant neurological or psychiatric illness
other than AD, significant systematic illness or organ failure,
or a geriatric depression rating scale score >4/5. None of
the subjects in the AD, MCI, or control groups had T2D or
vascular dementia. More details have been published elsewhere
(Lunnon et al, 2012, 2013; Sood et al, 2015). Subjects in
the dataset GSE97760 were all female, including patients with
advanced AD (n =9, age 79.3 & 12.3 years) and age-matched
female healthy controls (n = 10, age 72.1 £ 13.1 years)
(Naughton et al, 2015). The AD diagnoses were made by
the Neurobehavior and Memory Disorders Clinic at the Ohio
State University Wexner Medical Center (NMDC-OSUWMC),
following the revised NIH Diagnostic Guidelines for Alzheimer’s
disease and Related Disorders (Naughton et al, 2015). All
recruited AD subjects were nursing home residents and
were completely dependent or bed-ridden, with severe clinical
dementia rating 2-3 at the time of recruitment. Healthy
controls were recruited among female spouses and primary
caregivers of afflicted male dementia patients seen at MDC-
OSUWMC. Healthy subjects did not suffer from dementia, acute
or chronic infection, inflammation, or diabetes. More details can
be found in Naughton et al. (2015).

For the T2D studies, patients were diagnosed with T2D based
on criteria of the American Diabetes Association and WHO

(Kaizer et al., 2007). In the GSE9006, T2D patients were required
to have hemoglobin Alc (HbA1c) levels of 8% or greater. Patients
were excluded from the study if they had an active or presumed
infection, had other autoimmune disease, were pregnant, were
taking immune modulators, or had an initial hematocrit less than
27%. In addition, participants were excluded from the study if
they had an active or presumed infection, had other autoimmune
disease, were pregnant, or were taking immune modulators
(Kaizer et al., 2007). None of the subjects in the T2D or control
group had AD or vascular dementia. The information about the
diagnosis of T2D in the other studies is not available (GSE13015,
GSE15932, GSE34198, and GSE69528).

The genetic overlap among the different gene expression
datasets was analyzed for every two datasets. For example, the
genetic overlap between the gene expression profiles of MCI
individuals and each dataset from T2D was analyzed in BSCE
(Kupershmidt et al., 2010). BSCE computes the overlapping
p values between different gene expression datasets using a
“Running Fisher” algorithm described in Kupershmidt et al.
(2010). A p value of 0.05 or less was considered significant.
Microarray meta-analyses were performed in BSCE as described
previously (Santiago et al., 2016; Santiago and Potashkin, 2017).
The Venn diagrams and the correlation graphs were created
using BSCE. For differential gene expression and meta-analysis,
differentially expressed genes were extracted from BSCE, and
negative values, if any, were replaced with the smallest positive
number in the dataset. Genes whose mean normalized test and
control intensities were both less than the 20th percentile of
the combined normalized signal intensities were removed. To
circumvent any potential biases introduced by the use of different
array platforms, the meta-analysis tool in BSCE uses a normalized
ranking approach, which enables comparability across different
gene expression datasets and platforms, independently of the
absolute values of fold changes. The scoring and ranking of a gene
are calculated based on the activity of the gene in each dataset
and the number of datasets in which the gene is differentially
expressed. Ranks are normalized to eliminate any bias owing to
varying platform and sample size (Kupershmidt et al., 2010). We
performed an integrative meta-analysis in which the following
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conditions had to be met: Firstly, for the array to enter the meta-
analysis, it had to show a significant genetic overlap established
by the correlation analysis in BSCE software. Secondly, only the
group of shared differentially expressed genes in condition A
(i.e., MCI, AD, or Advanced AD) and condition B (i.e., T2D)
were analyzed further. Specifically, only shared differentially
expressed genes in condition A (i.e., MCI, AD, or Advanced
AD) and in at least three out of the five T2D studies were
included for further network and pathway analysis. Thus, only
shared differentially expressed genes between two conditions
were analyzed in network and pathway analyses. Only genes with
a p value of 0.05 or less and an absolute fold-change of 1.2 or
greater were included in the analysis.

Network and Pathway Analysis

Entrez gene identifiers from the genes identified in the meta-
analyses were imported into NetworkAnalyst for network and
pathway analyses (Xia et al., 2015). In NetworkAnalyst, we used
the tissue-specific networks derived from the protein-protein
interaction database from human whole blood. Tissue specific
data are obtained from DifferentialNet, a database that provides
users with differential interactome analysis of human tissues'
(Basha et al., 2018). The minimum connected network was
selected for further pathway analysis. Pathway analysis data
in NetworkAnalyst is derived from the Kyoto encyclopedia of
genes and genome (KEGG) and Reactome. For the transcription
factor analysis, we used the transcription factor and gene target
data derived from the ENCODE ChIP-seq data. Transcription
factor analysis uses the BETA Minus Algorithm in which
only peak intensity signal <500 and the predicted regulatory
potential score <1 is used. Transcription factors were ranked
according to network topology measurements including degree
and betweenness centrality. The transcription factors Venn
diagram was created using the website http://bioinformatics.psb.
ugent.be/webtools/Venn/.

RESULTS

Correlation of Gene Expression Datasets
Between MCI, AD, Advanced AD, and
T2D

In order to compare the gene expression patterns of individuals
with dementia-related conditions to those with T2D, we
performed a correlation analysis using BSCE. The overall analysis
strategy is presented in Figure 1. Between any two datasets,
the numbers of shared differentially expressed genes as well
as the directionality of the fold changes were compared. We
first investigated the association between MCI and T2D. Gene
expression profiles from blood of MCI patients (GSE63063)
significantly overlapped with those from individuals with T2D
(GSE9006, GSE13015, GSE15932, GSE34198, and GSE69528) in
four out of five datasets (Figures 2A-C,E). Correlation analysis
indicated that gene expression changes in blood of MCI patients

Thttp://netbio.bgu.ac.il/diffnet/

Selection of dementia and T2D arrays
MCI: GSE63063 GSE9006
AD: GSE63063 GSE69528
Advanced AD: GSE97760  GSE13015
GSE15932

GSE34198

Correlation of gene expression datasets
MCl or AD

T2D Arrays
Array ¥
Positive Correlation Negative Correlation
Meta-analysis
Em B MCI-T2D: 406 differentially expressed genes shared

AD-T2D: 101 differentially expressed genes shared
Advanced AD-T2D: 692 differentially expressed genes shared

" 4

PPl Network
Pathway analysis

&

Transcription factors
analysis

AD-T20

Advanced AD-T2DM

FIGURE 1 | Integrative transcriptomic and network analysis. Overall strategy
for the analysis of blood transcriptomic studies from MCI, AD, advanced AD,
and T2D patients. Correlation analysis was performed using the bioinformatic
platform BSCE. Network and pathway analysis were performed using
NetworkAnalyst.

correlated positively with those with T2D in three out of five
studies (Figures 2A-C). One study performed on children
with T2D (GSE9006) showed a negative correlation with MCI
(Figure 2E). In addition, GSE13015 correlated negatively with
GSE63063 (p = 0.0127), but the overall genetic overlap between
the two studies did not reach statistical significance (p = 0.1509).
Regarding the directionality of the fold changes, most of the
overlapping genes were downregulated in both MCI and T2D
across all the datasets (Figure 2).

We next investigated the genetic overlap between AD
(GSE63063) and T2D. Gene expression profiles from blood of AD
patients significantly overlapped with those individuals with T2D
in four out of five datasets (Figures 3A-D). Correlation analysis
showed that gene expression patterns in blood of AD patients
correlated positively with those affected by T2D in four out of
the five studies (Figures 3A-D). The one study performed on
children with T2D (GSE9006) showed a positive correlation, but
it did not reach significance (Figure 3E, p = 0.4011).
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FIGURE 2 | Statistical comparison of the genetic overlap and correlations between subjects with mild cognitive impairment (MCI) and diabetes. (A) Venn diagram
analysis of shared genes between bioset1 (Bs1) GSE63063 from subjects with MCI and bioset2 (Bs2) GSE15932 from subjects with type 2 diabetes (T2D). Vertical
bars represent the significance of the overlap and the correlations between biosets. (B) Venn diagram analysis of shared genes between Bs1 GSE63063 from
subjects with MCI and Bs2 GSE34198 from subjects with T2D. (C) Venn diagram analysis of shared genes between Bs1 GSE63063 from subjects with MCI and
Bs2 GSE69528 from subjects with T2D. (D) Venn diagram analysis of shared genes between Bs1 GSE63063 from subjects with MCI and Bs2 GSE13015 from
subjects with T2D. (E) Venn diagram analysis of shared genes between Bs1 GSE63063 from subjects with MCI and Bs2 GSE9006 from subjects with T2D. Red and
green arrows denote up- and downregulation, respectively. p value is expressed as the —log 10 of the p value. Statistical significances regarding the genetic overlap
and the directionality of the gene expression changes were derived from the non-parametric ranking method provided by the bioinformatics platform BSCE.
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FIGURE 3 | Statistical comparison of the genetic overlap and correlations between subjects with Alzheimer’s disease (AD) and diabetes. (A) Venn diagram analysis
of shared genes between bioset1 (Bs1) GSE63063 from subjects with AD and bioset2 (Bs2) GSE15932 from subjects with T2D. Vertical bars represent the
significance of the overlap and the correlations between biosets. (B) Venn diagram analysis of shared genes between Bs1 GSE63063 from subjects with AD and
Bs2 GSE34198 from subjects with T2D. (C) Venn diagram analysis of shared genes between Bs1 GSE63063 from subjects with AD and Bs2 GSE69528 from
subjects with T2D. (D) Venn diagram analysis of shared genes between Bs1 GSE63063 from subjects with AD and Bs2 GSE13015 from subjects with T2D. (E) Venn
diagram analysis of shared genes between Bs1 GSE63063 from subjects with AD and Bs2 GSE9006 from subjects with T2D. Red and green arrows denote up- and
downregulation, respectively. p value is expressed as the —log 10 of the p value. Statistical significances regarding the genetic overlap and the directionality of the
gene expression changes were derived from the non-parametric ranking method provided by the bioinformatics platform BSCE.

Frontiers in Neuroscience | www.frontiersin.org 6 November 2019 | Volume 13 | Article 1273


https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

Santiago et al.

Shared Networks Between Alzheimer’s Disease and Diabetes

Similarly, we compared the genetic overlap between
individuals with advanced AD (GSE97760) to those affected by
T2D. This particular study of advanced AD was performed on
women (Naughton et al., 2015). Gene expression patterns from
blood of women with advanced AD significantly overlapped
with those individuals with T2D in four out of five studies
(Figures 4A-C,E). Correlation analysis indicated that gene
expression changes in blood of women with advanced AD
correlated negatively with T2D in three out of five studies
(Figures 4A-C). The overlap between GSE97760 and GSE13015
was not significant (Figure 4D). The study performed on children
with T2D (GSE9006) showed a positive correlation (Figure 4E).

In order to identify potential molecular changes associated
with cognitive decline and diabetes occurring at a young age,
we compared the blood transcriptome of children with T2D
(GSE9006) to those individuals with MCI (GSE63063). A total
of 115 differentially expressed genes with the same fold change
directionality were shared between children with T2D and MCI
individuals (Supplementary Table S1). The transcription factor
forkhead box O3 (FOXO3) was the only upregulated gene
in both datasets. The remaining 114 differentially expressed
genes were downregulated in both T2D and MCI datasets
(Supplementary Table S1).

Integrative Meta-Analysis Between MCI,
AD, Advanced AD, and T2D

In order to identify common transcriptional signatures in T2D
and AD at different stages, we performed an integrative meta-
analysis for each of the following conditions: MCI-T2D, AD-
T2D, and advanced AD-T2D. Only datasets with a significant
genetic overlap and significant correlations described in the
previous section were analyzed in the meta-analysis. Integrative
meta-analysis of blood transcriptomic datasets from MCI and
T2D individuals resulted in 406 differentially expressed genes
shared between the MCI dataset (GSE63063) and at least three
out of five T2D studies (Supplementary Table S2). Likewise,
meta-analysis of datasets from overt AD and T2D individuals
resulted in 101 differentially expressed genes shared between
the AD dataset (GSE63063) and at least three out of five T2D
studies (Supplementary Table S3). Finally, integrative meta-
analysis of datasets from advanced AD and T2D individuals
yielded 692 differentially expressed genes shared between the
advanced AD dataset (GSE97760) and at least three out of
five T2D studies (Supplementary Table S4). The top genes
with the highest scores and specificity for each of the meta-
analysis are highlighted in the Supplementary Tables S2-S4.
The same analyses were repeated excluding the dataset from
children with T2D (GSE9006). Integrative meta-analysis from
MCI-T2D, AD-T2D, and advanced AD-T2D resulted in 879,
102, and 378 shared differentially expressed genes, respectively.
The results from each of the meta-analyses are provided in
Supplementary Tables S5-S7.

Network and Pathway Analysis
We next performed a network and pathway analysis using
the shared genes identified in the meta-analyses. Using

NetworkAnalyst (Xia et al, 2015), tissue-specific networks
derived from the protein-protein interaction database from
human whole blood were constructed for each of the following
conditions separately: MCI-T2D, AD-T2D, and advanced AD-
T2D. The minimum connected network was selected for
further analysis. Network analysis of shared genes between MCI
and T2D resulted in a network predominantly enriched in
inflammatory pathways and infectious diseases (Figure 5). The
most significantly altered pathways were hepatitis B, Epstein-
Barr virus infection, human T-cell lymphotropic virus type 1
(HTLV-1) infection, Kaposis sarcoma-associated herpesvirus,
nuclear factor-kappa B (NFKB) signaling pathway, hepatitis C,
and tumor necrosis factor (TNF) signaling pathway. Network
and pathway analyses of shared genes between AD and T2D
resulted in a network enriched in genes associated with infectious
diseases and inflammation, including hepatitis C, Escherichia
coli infection, Epstein-Barr virus infection, nuclear factor kappa
B (NFKB) signaling pathway, and the PI3K-AKT signaling
pathway (Figure 6). Lastly, network and pathway analysis of
shared genes between advanced AD and T2D resulted in a
network predominantly enriched in genes involved in PI3K-AKT
signaling, inflammation, and fluid shear stress and atherosclerosis
(Figure 7). The ubiquitin-mediated proteolysis pathway was
the highest ranked pathway among three group comparisons.
The top 20 pathways for each group comparison are listed
in Table 2. As noted in Table 2, the PI3K-AKT signaling
pathway becomes more significantly dysregulated in the network
associated with advanced AD and T2D (p = 1.01E-06) compared
to the AD-T2D shared network (p = 9.40E-04). These results
from the pathway analysis were sustained after repeating the
meta-analyses excluding the dataset from children with T2D
(GSE9006) (Supplementary Table S8). In order to identify key
transcriptional regulators of the shared genes identified in the
meta-analysis, a transcription factor analysis was performed
using NetworkAnalyst. Venn diagram analysis identified 52
genes shared among the three groups: MCI-T2D, AD-T2D, and
advanced AD-T2D (Figure 8A). Transcription factor analysis
was performed using the 52 shared genes and were ranked
according to network topology measurements, including degree
and betweenness centrality (Figure 8B). The most highly ranked
transcription factors were SET, GTF2E2, ELF1, TFDP1, KDM5B,
and KLF9 (Figure 8B).

Network and transcription factor analysis of shared genes
between children with T2D and MCI individuals identified
FOXO3 as a central transcriptional regulator (Figure 9). This
network was enriched in genes associated with TGF-f signaling
pathway, thyroid hormone signaling pathway, Huntington’s
disease, and longevity regulating pathway.

DISCUSSION

Mounting evidence from epidemiological and preclinical studies
indicates that T2D is a major contributing factor in the
pathogenesis of AD. Although evidence has established that
AD and T2D share common dysregulated biological pathways,
the precise pathophysiological mechanisms underlying this
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FIGURE 4 | Statistical comparison of the genetic overlap and correlations between subjects with advanced AD and diabetes. (A) Venn diagram analysis of shared
genes between bioset1 (Bs1) GSE63063 from subjects with advanced AD and bioset2 (Bs2) GSE15932 from subjects with T2D. Vertical bars represent the
significance of the overlap and the correlations between biosets. (B) Venn diagram analysis of shared genes between Bs1 GSE63063 from subjects with advanced
AD and Bs2 GSE34198 from subjects with T2D. (C) Venn diagram analysis of shared genes between Bs1 GSE63063 from subjects with advanced AD and Bs2
GSEB9528 from subjects with T2D. (D) Venn diagram analysis of shared genes between Bs1 GSE63063 from subjects with advanced AD and Bs2 GSE13015 from
subjects with T2D. (E) Venn diagram analysis of shared genes between Bs1 GSE63063 from subjects with advanced AD and Bs2 GSE9006 from subjects with T2D.
Red and green arrows denotes up- and downregulation, respectively. p value is expressed as the —log 10 of the p value. Statistical significances regarding the
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FIGURE 5 | Network and pathway analysis of shared networks between MCI and T2D. Integrative meta-analysis was performed on datasets from MCI and T2D
subjects to identify shared dysregulated genes between both diseases. Entrez gene identifiers from the genes identified in the meta-analyses were imported into

. Inflammation and infectious diseases

NetworkAnalyst for network and pathway analyses. In NetworkAnalyst, we selected tissue-specific networks derived from the protein—protein interaction database
from human whole blood. The minimum connected network was selected for further pathway analysis. Results from the pathway analysis are derived from the Kyoto
encyclopedia of genes and genome (KEGG) and Reactome. Shared networks between MCI and T2D were enriched predominantly in genes associated to infectious

diseases and inflammation (blue circles).

association have not been fully elucidated. Importantly, how T2D
may be implicated in the progression from MCI to AD is poorly
understood. To this end, we analyzed blood transcriptomic data
from MCI, AD, advanced AD, and T2D patients using both meta-
analyses and network analyses to investigate the molecular basis
for this comorbidity.

We first compared the blood transcriptome of MCI, AD,
and advanced AD subjects to those affected by T2D. We

found a significant genetic overlap between the dataset from
MCI subjects and those datasets from T2D patients. Gene
expression profiles from MCI individuals correlated positively
with those from T2D patients. Likewise, gene expression
profiles from AD subjects had a significant genetic overlap and
correlated positively with those datasets from T2D patients.
These findings are consistent with the numerous epidemiological
studies that have found a positive association between T2D

Frontiers in Neuroscience | www.frontiersin.org

November 2019 | Volume 13 | Article 1273


https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

Santiago et al. Shared Networks Between Alzheimer’s Disease and Diabetes

EED LUC7L3
RYBP
MATR3
O EIF4A2
th”'s BCLAF1
TNFSF10 . VWHAG SENPG
@cos1 SNRPG
SRSF1 LORY0
u @-r-on
GABARAPLY. LSM3 cuL1
1 IF
ESR @ on2 EIFSL, R
CBX3 MAP1LC3A
@ CSNK2A1 CANDA1 RPL1T .IFIT‘I
@use2) | @) TRs3 1 ARGLUS
ARRB2
RPL31
PARKD DEK @FARP1 [ CULT
ETS1 . NCL TARDBP
\ A5 @ nFars
cuLz
ITGA4
Son GABARA%.Z
. HSPS0AAT
0OBSL1
RPS15A
UBESA HSPH1
SIRT7 ) @crc
SRRM1
ELAVLY | @1sG15 | @B @ cre2 @5k @<c~
@U@ RPLY
@ wasL
. MYC
CALM1 @ sHFNI1 PAN2 .YWHAZ
@ vcam YWHAE @ cnst FBXO6
.CDKN‘tA
DDX1
. HUWE1
ERBB4 SF3B14
Sk @ Ncxi
@ ~5L1
@~svics
SMC3
‘ Inflammation and infectious diseases
‘ PI3K-AKT/ insulin signaling
FIGURE 6 | Network and pathway analysis of shared networks between AD and T2D. Integrative meta-analysis was performed on datasets from AD and T2D
subjects to identify shared dysregulated genes between both diseases. Entrez gene identifiers from the genes identified in the meta-analyses were imported into
NetworkAnalyst for network and pathway analyses. In NetworkAnalyst, we selected tissue-specific networks derived from the protein—protein interaction database
from human whole blood. The minimum connected network was selected for further pathway analysis. Results from the pathway analysis are derived from the
KEGG and Reactome. Shared networks between AD and T2D were enriched predominantly in genes associated to infectious diseases and inflammation (blue
circles) and the phosphatidylinositol 3-kinase and protein kinase B (PISK-AKT) signaling pathway (pink circles).

and AD (Biessels et al., 2006; Kopf and Frolich, 2009;
Yang and Song, 2013).

Interestingly, gene expression profiles from women with
advanced AD had a significant genetic overlap with those
from T2D patients; however, contrary to MCI and AD, this
dataset correlated negatively with most of the T2D studies.

In this regard, sex-related differences in AD and diabetes are
the subject of extensive investigation. The prevalence of T2D
is higher in men than in women (Wild et al, 2004), and
AD is more prevalent in women than in men (Riedel et al,
2016). These differences, however, may be partly explained by
the fact that women have a longer life expectancy than men.
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FIGURE 7 | Network and pathway analysis of shared networks between advanced AD and T2D. Integrative meta-analysis was performed on datasets from
advanced AD and T2D subjects to identify shared dysregulated genes between both diseases. Entrez gene identifiers from the genes identified in the meta-analyses
were imported into NetworkAnalyst for network and pathway analyses. In NetworkAnalyst we selected tissue specific networks derived from the protein-protein
interaction database from human whole blood. The minimum connected network was selected for further pathway analysis. Results from the pathway analysis are
derived from the KEGG and Reactome. Shared networks between advanced AD and T2D were enriched predominantly in genes associated to infectious diseases
and inflammation (blue circles), the phosphatidylinositol 3-kinase and protein kinase B (PI3K-AKT) signaling pathway (pink circles) and atherosclerosis (orange circles).

Although sex differences have been documented for both diseases
independently, sex differences in T2D as a risk factor for AD
are less understood. In a meta-analysis of 14 studies comprising
more than 100,000 cases of dementia, women with T2D had a
19% greater risk of developing vascular dementia, but not AD

(Chatterjee et al., 2016). Sex-specific differences in T2D as a risk
factor for AD are poorly understood and more research is needed
to further clarify these findings. Also, the results presented herein
should be taken with caution as they represent correlative values
and not causal relationships. A negative correlation between
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TABLE 2 | Pathway and network analysis of shared networks.

MCI-T2D AD-T2D Advanced AD-T2D
Pathway p value Pathway p value Pathway p value
Ubiquitin-mediated proteolysis 8.59E-23 Ubiquitin-mediated proteolysis 1.94E-10 Ubiquitin-mediated proteolysis 1.49E-09
Pathways in cancer 5.50E-21 Cell cycle 4.50E-09 Viral carcinogenesis 3.56E-08
Hepatitis B 5.26E-19 Hepatitis C 5.74E-07 Hepatitis C 3.81E-07
Viral carcinogenesis 1.48E-17 Spliceosome 5.51E-06 Cell cycle 5.35E-07
ErbB signaling pathway 2.74E-17 Pathogenic Escherichia coli infection 1.78E-05 PI3K-Akt signaling pathway 1.01E-06
Cell cycle 4.44E-17 ErbB signaling pathway 4.17E-05 Endometrial cancer 1.72E-06
Neurotrophin signaling pathway 5.63E-17 Viral carcinogenesis 5.19E-05 Hippo signaling pathway 1.77E-06
Epstein—Barr virus infection 3.51E-16 Pathways in cancer 1.32E-04 Neurotrophin signaling pathway 1.82E-06
HTLV-I infection 8.76E-16 Chronic myeloid leukemia 1.47E-04 Pathways in cancer 3.92E-06
Kaposi’'s sarcoma-associated herpesvirus infection 1.20E-15 Epstein—Barr virus infection 2.383E-04 Endocrine resistance 6.68E-06
FoxO signaling pathway 1.85E-14 Endometrial cancer 2.35E-04 Thyroid hormone signaling pathway 7.41E-06
Chronic myeloid leukemia 2.75E-14 Bladder cancer 3.66E-04 Bacterial invasion of epithelial cells 1.66E-05
Colorectal cancer 1.61E-13 Breast cancer 3.89E-04 Protein processing in endoplasmic reticulum 1.93E-05
NF-kappa B signaling pathway 3.82E-13 Mitophagy — animal 4.39E-04 MAPK signaling pathway 1.93E-05
Endometrial cancer 5.88E-13 Renal cell carcinoma 6.07E-04 IL-17 signaling pathway 2.28E-05
Pancreatic cancer 1.18E-12 Prostate cancer 6.664E-04 Prostate cancer 3.40E-05
Hepatitis C 1.16E-12 Endocrine resistance 7.07E-04 Focal adhesion 4.68E-05
Prostate cancer 5.69E-12 NF-kappa B signaling pathway 7.97E-04 Estrogen signaling pathway 4.85E-05
TNF signaling pathway 7.00E-12 FoxO signaling pathway 8.81E-04 Wnt signaling pathway 4.90E-05
Prolactin signaling pathway 9.68E-12 PIBK-Akt signaling pathway 9.36E-04 Fluid shear stress and atherosclerosis 5.28E-05

Pathway analysis was performed using Network Analyst and data derived from the kyoto encyclopedia of genes and genome (KEGG) and Reactome. MCI, mild cognitive

impairment; AD, Alzheimer’s disease; T2D, type 2 diabetes.

women with AD and T2D, although intriguing, cannot be
explained precisely with the datasets currently available. A more
rigorous analysis evaluating diabetic women and the risk of AD
is needed to better understand this association.

Network and pathway analysis revealed several similarities
and differences in dysregulated pathways among the three
groups, MCI-T2D, AD-T2D, and advanced AD-T2D. Not
surprisingly, inflammatory pathways were central in the MCI-
T2D and AD-T2D networks. For example, the MCI-T2D
network was enriched in genes associated with infectious
diseases and inflammation, including hepatitis B and C, Epstein-
Barr virus infection, HTLV-1 infection, Kaposis sarcoma-
associated herpesvirus, NFKB, and TNF signaling pathways. In
this context, inflammation is a central pathogenic mechanism
to all neurodegenerative diseases and metabolic disorders
including T2D. Increased levels of proinflammatory cytokines
are found in AD brains at very early stages of the disease
(Wyss-Coray, 2006). Activation of key inflammatory pathways
including TNF signaling pathway is found in the cerebrospinal
fluid of MCI patients (Pillai et al, 2019). Furthermore,
elevated levels of proinflammatory cytokines TNF-alpha and
decreased production of the anti-inflammatory cytokines TGEF-
beta have been documented in patients with MCI at risk
of AD (Tarkowski et al, 2003). Numerous studies have
documented the involvement of different pathogens in the
development of cognitive decline and AD (Sochocka et al.,
2017). Viral pathogens including human herpes virus, Epstein-
Barr virus, cytomegalovirus, and hepatitis C virus have been
linked to cognitive impairment and AD (Hemling et al., 2003;

Licastro et al., 2014; Sochocka et al., 2017). Similarly, bacterial
infections such as Chlamydia pneumoniae and Helicobacter pylori
have been associated with an increased risk of cognitive decline
and AD (Bibi et al., 2014; Miklossy, 2015). In the context of
T2D, H. pylori infections have been positively associated to T2D
in several studies (Demir et al., 2008; Hsieh et al., 2013; Han
et al.,, 2016). Thus, inflammation caused by infectious pathogens
is a major shared mechanism between T2D and AD. According
to the evidence from our pathway analysis, inflammation is a
predominant pathway early in the preclinical phase of AD.
Similarly, the AD-T2D network was enriched in genes related
to inflammation and infectious diseases but to a lesser extent.
Infectious diseases and inflammatory pathways had a lower
significance values compared to those obtained in the MCI-T2D
network. In contrast to the MCI-T2D network, we observe the
presence of genes related to endocrine resistance and the PI3K-
AKT signaling pathways. In this regard, the PI3K-AKT signaling
pathway is a key mediator of the insulin effects in the body.
Activation of the PI3K-AKT signaling pathway facilitates glucose
uptake in peripheral tissues. In the brain, insulin effects and the
PI3K-AKT signaling pathway are involved in neuronal health,
synaptic plasticity, and neuroprotection (Hui et al., 2005; van
der Heide et al., 2005). Furthermore, the PI3K-AKT pathway
is associated with the activation and function of microglia,
which are important resident cells of the central nervous system
responsible for neuroinflammation (Zhong et al., 2017; Xu et al.,
2018). More importantly, anti-diabetic drugs have been shown
to prevent amyloid beta neurotoxicity in AD models through
the activation of the PI3K-AKT pathway (Cai et al, 2014;
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FIGURE 8 | Transcription factor and network analysis. Network and transcription factor analysis was performed using NetworkAnalyst. (A) Transcription factor data
were derived from the ENCODE ChlIP-seq database. (B) Transcription factors (blue rectangles) were ranked according to network topology measurements, degree,
and betweenness centrality. Gray lines represent protein—protein interactions. Transcription factors with the highest values of degree and betweenness centrality
measurements are enclosed in red ovals.

Liu et al., 2016; Tumminia et al., 2018). Thus, targeting the PI3K-
AKT pathway could be a potential therapeutic target for AD.

In the advanced AD-T2D network, we observed that the
significance of the PI3K-AKT signaling pathway increased as
more genes involved in this pathway became dysregulated. In
addition, estrogen signaling and atherosclerosis pathways became
dysregulated. This is not surprising since increasing evidence
from epidemiological studies suggest a link between AD and
atherosclerosis. Several hypotheses have emerged explaining
this association. For instance, some evidence suggests that
AD may result as a consequence of atherosclerosis of cranial
vessels or brain infarctions (Casserly and Topol, 2004). Another
explanation is that AD and atherosclerosis are independent but
have convergent biological pathways (Casserly and Topol, 2004).
For example, elevated serum cholesterol, inflammation, and
shared genetic risk factors are some of the potential mechanisms
linking atherosclerosis and AD. One of the shared genetic
risk factors with the strongest evidence is the €4 allele of the
apolipoprotein E gene (APOE). APOEe4 confers a modest risk
for atherosclerosis (Wilson et al., 1996), and it is the strongest
genetic risk factor for AD (Farrer et al, 1997). The results
from the network and pathway analysis suggest that at advanced

stages of AD, the impairment of insulin signaling worsens and
the cardiovascular system gets compromised. In this regard,
cardiovascular factors have been good predictors of progression
and greater decline in AD (Mielke et al., 2007), but there is some
conflicting evidence (Javanshiri et al., 2018). Future studies will
be focused at investigating the molecular networks and shared
pathways between cardiovascular diseases and AD.

Network analysis identified several transcription factors
implicated in the pathogenesis of AD. The most highly ranked
transcription factor was SET nuclear proto-oncogene (SET), an
endogenous inhibitor of the protein phosphatase 2A (PP2A),
which is a major tau dephosphorylating enzyme in the brain
largely implicated in the pathogenesis of AD (Theendakara
et al.,, 2017). SET has been implicated in the neuronal apoptotic
pathway in AD (Wu et al, 2018). Another highly ranked
transcription factor was ETS transcription factor 1 (ELFI).
Interestingly, the green tea polyphenol epigallocatechin-3-O-
gallate (EGCQG) increases the expression of the toll interacting
protein TLR4 by suppressing the expression of ELF1 (Kumazoe
etal., 2017). This finding is of great importance given the fact that
TLR4 signaling links innate immunity with fatty acid-induced
insulin resistance (Shi et al., 2006). In fact, TLR4 is suggested
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FIGURE 9 | Transcription factor and network analysis. Network and transcription factor analysis was performed using NetworkAnalyst. Transcription factor and
network analysis of shared differentially expressed genes between children with T2D (GSE9006) and MCI individuals (GSE63063). Transcription factor data were
derived from the ENCODE ChlIP-seq database. Transcription factors (blue rectangles) were ranked according to network topology measurements, degree, and
betweenness centrality. Gray lines represent protein—protein interactions. Red and green colors denote upregulation and downregulation, respectively.
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to be a molecular link among nutrition, lipids, inflammation,
insulin resistance, and AD (Shi et al., 2006; Huang et al., 2017).
Similarly, krippel-like factor 9 (KLF9) was among the highest-
ranked transcription factors. KLF9 promotes the expression
of peroxisome proliferator-activated receptor y coactivator lo
(PGCla), resulting in hepatic gluconeogenesis, and it is involved
in glucocorticoid-induced hyperglycemia and diabetes (Cui et al.,
2019; Sweet et al., 2019). Given the involvement of these
transcription factors in key processes associated with AD, their
potential as therapeutic targets warrants further investigation.
Understanding the molecular networks associated with AD
that become disrupted at a young age might shed light on
mechanisms leading to cognitive impairment and AD later

in life. Several processes associated with the pathogenesis of
AD, including the accumulation of neurofibrillary tangles of
hyperphosphorylated tau and amyloid plaques have been found
decades before disease onset (Seeley et al, 2009; Braak and
Del Tredici, 2011; Axelrud et al, 2019). In fact, postmortem
brains of 38 out of 42 individuals between the ages of 4 and
29 displayed abnormally phosphorylated tau protein, suggesting
that AD-related pathogenic processes may start early before
puberty or in early young adulthood (Braak and Del Tredici,
2011). Recently, a functional magnetic resonance study showed
an increased connectivity among regions susceptible to tau
pathology in children and adolescents with higher susceptibility
to AD (Axelrud et al, 2019). Based on these intriguing
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findings, we investigated what molecular changes in diabetic
children could be associated with the development of cognitive
decline at a later age. Among the shared genes between T2D
and MCI individuals, FOXO3 was the only gene upregulated
in both conditions. Network analysis of shared differentially
expressed genes between children with T2D and MCI subjects
resulted in a network centered on FOXO3. FOXO3 is a
master transcriptional regulator implicated in multiple processes,
including increased lifespan, healthy aging, gluconeogenesis,
autophagy, apoptosis, proteostasis, and breakdown of reactive
oxygen species (Morris et al., 2015). Not surprisingly, FOXO3
has been involved in several pathological mechanisms in AD.
For example, decreased levels of miR-132 and miR-212 leads
to upregulation of FOXO3 and causes apoptosis of primary
neurons (Wong et al, 2013). Furthermore, levels of both
FOXO3 and its activator P300 are significantly upregulated
in the hippocampus of AD patients (Blalock et al., 2004).
Consistent with these findings, we found that FOXO3 is
significantly upregulated in blood of T2D children and MCI
subjects. Strikingly, calorie restriction and subsequent activation
of the insulin receptor signaling pathway leads to inactivation
of FOXO3 and attenuation of amyloid neuropathology in a
mouse model of AD (Qin et al, 2008). This study suggested
that a calorie restriction dietary regime may prevent AD through
regulation of the PI3K-AKT-FOXO3 signaling pathway. These
results suggest that FOXO3 may be a potential therapeutic
target for early intervention and underscore the importance of
nutrition in AD.

Pathway analysis of shared genes between diabetic
children and MCI subjects identified several dysregulated
pathways, including TGF-B and thyroid hormone signaling
pathways, Huntington’s disease, and longevity regulating
pathway. In this regard, impaired TGF-§ signaling has been
demonstrated to contribute to AD neurodegeneration through
several mechanisms including microglial activation, cell-cycle
reactivation, and increased levels of secreted A (Das and Golde,
2006; Tesseur et al., 2006). Dysregulation of TGFp signaling
pathway has been shown to be an early event specific to the
AD brain, not present in other neurodegenerative diseases
(Caraci et al., 2012). In this context, expression of the TGFf-II
receptor is reduced very early in the course of AD and promoted
the deposition of toxic AP in a mouse model of AD (Tesseur
et al., 2006). Thus, targeting TGFP signaling pathway and
FOXO3 transcription factor may be a potential neuroprotective
strategy to prevent AD.

Collectively, the results presented in this study suggest that
T2D may be associated to cognitive decline and AD through
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