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Chronic pain is known as a complex disease due to its comorbidities with other
symptoms and the lack of effective treatments. As a consequence, chronic pain seems
to be under-diagnosed in more than 75% of patients. At the same time, the advance in
brain imaging, the popularization of machine learning techniques and the development
of new diagnostic tools based on these technologies have shown that these tools
could be an option in supporting decision-making of healthcare professionals. In this
study, we computed functional brain connectivity using resting-state fMRI data from one
hundred and fifty participants to assess the performance of different machine learning
models, including deep learning (DL) neural networks in classifying chronic pain patients
and pain-free controls. The best result was obtained by training a convolutional neural
network fed with data preprocessed using the MSDL probabilistic atlas and using
the dynamic time warping (DTW) as connectivity measure. DL models had a better
performance compared to other less costly models such as support vector machine
(SVM) and RFC, with balanced accuracy ranged from 69 to 86%, while the area under
the curve (ROC) ranged from 0.84 to 0.93. Also, DTW overperformed correlation as
connectivity measure. These findings support the notion that resting-state fMRI data
could be used as a potential biomarker of chronic pain conditions.

Keywords: chronic pain, machine learning, classification, rs-fMRI, deep-learning, DTW

INTRODUCTION

Pain is a subjective psychological phenomenon that emerges from brain activity but can be
influenced by several and different aspects of human behavior and cognition (attention, learning,
beliefs, etc.) (Albe-Fessar et al., 1985; Montoya et al., 2004). Indeed, pain is a complex problem
in which biological, psychological, and social factors may play a relevant role in its maintenance
over time (Bevers et al., 2016). This multidimensional aspect of pain requires that measurement
of pain should include not only subjective ratings, but also psychological and neurophysiological
events related to pain perception. Accordingly, research on cognitive pain has been conducted
using several approaches and tools such as questionnaires (Pagé et al., 2015; Traeger et al.,
2016), Quantitative Sensory Tests (QST) (Cruz-Almeida and Fillingim, 2014; Cámara et al.,
2016), genetic factors (Diatchenko et al., 2005; Ablin and Buskila, 2015; Ultsch et al., 2016),
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patterns of physical activity (Hidalgo et al., 2012, 2014;
Paraschiv-Ionescu et al., 2012), EEG (Pinheiro et al., 2016),
neuroimaging (Davis et al., 2012; Schmidt-Wilcke, 2015), and
more recently functional near-infrared spectroscopy (fNIRS)
(Lopez-Martinez et al., 2018, 2019).

Chronic pain is characterized by symptoms such as pain
that lasts more than 3–6 months (Merskey et al., 1994; Wolfe
et al., 2016), as well as by fatigue, sleep disturbance, cognitive
and mood changes (Gatchel et al., 2010). As a result, chronic
pain may limit individual daily activities, leading to disability
and reduced quality of life. Several studies have shown that
chronic pain syndromes are also associated with alterations
in the functional connectivity of BOLD signals (Baliki et al.,
2008). For instance, chronic back pain (CBP) patients seem
to have reduced deactivations in specific brain regions of the
default mode network (DMN), such as mPFC, amygdala, and
PCC. Furthermore, studies in patients with neuropathic pain
(NP) have confirmed reduced DMN connectivity together with
enhanced resting-state functional connectivity among several
pain related areas (Cauda et al., 2009). These findings are in
line with previous data suggesting that these alterations could
be the neurophysiological mechanisms involved in cognitive
and behavioral impairments associated with chronic pain
(Apkarian et al., 2004; Cauda et al., 2009). The analyses of
resting-state fMRI have suggested that the brain of chronic
pain patients differ from that of healthy subjects by showing
significant reductions of functional connectivity of the DMN,
together with significant enhancements of several pain-related
areas. Pain-related brain structures also presented significant
changes in functional connectivity when comparing fibromyalgia
(FM) patients and healthy controls (Cifre et al., 2012). FM
patients show changes in regions involved in facilitating and
reducing pain processing. Other similar studies using fMRI
also found alterations in brain connectivity for patients with
chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS)
(Johnson et al., 2015; Lin et al., 2017), migraine (Lovati et al.,
2016), and other (Davis and Moayedi, 2013; Napadow and
Harris, 2014; Truini et al., 2016; Zamorano et al., 2017). The
intensity of these brain alterations is also correlated with pain
intensity reported by CP patients (O’Shea et al., 2015). Also,
patterns of functional brain connectivity have been widely
investigated as a potential biomarker for classification and
prediction of a variety of other neurological and psychiatric
syndromes such as attention deficit hyperactivity disorder
(ADHD), schizophrenia, and Mild Cognitive Impairment
(Du et al., 2018).

Despite recent findings about neurophysiological mechanisms
(central sensitization, brain plasticity), chronic pain remains
under-diagnosed and under-treated. In some cases, more
than 75% of the patients do not receive an accurate diagnosis
(Kress et al., 2015; Dodick et al., 2016). Furthermore, the
assessment of knowledge, attitudes, and beliefs (KAB) about
chronic pain among primary care providers revealed that even
those who participate in continuous education programs still
may have inappropriate beliefs and attitudes about pain and
its treatment (Lalonde et al., 2014). Therefore, one possible
solution would be to provide clinicians with objective methods

to support their decision about pain diagnosis and treatment.
In this regard, a multidimensional framework and operational
diagnostic criteria for the major chronic pain conditions
were proposed by the Analgesic, Anesthetic, and Addiction
Clinical Trial Translations, Innovations, Opportunities, and
Networks (ACTTION), the US Food and Drug Administration,
and the American Pain Society (APS) (Dworkin et al., 2016).
This framework is divided into five dimensions: (1) Core
Diagnostic Criteria, (2) Common Features, (3) Common
Medical and Psychiatric Comorbidities, (4) Neurobiological,
Psychosocial, and Functional Consequences, and finally
(5) Putative Mechanisms, Risk Factors, and Protective Factors.
Following this framework, other studies proposed evidence-
based diagnostic criteria for specific chronic pain conditions
(Dampier et al., 2017; Paice et al., 2017; Widerström-Noga
et al., 2017; Zhou et al., 2018; Arnold et al., 2019; Freeman
et al., 2019; Ohrbach and Dworkin, 2019). The majority of these
criteria are composed by the patient historical data, self-reported
information via questionnaires, and psychophysical tests that
determine pain features and pain thresholds. Although pain
neuroimaging was not presented in these criteria, it has been
used in clinical trials with a focus on diagnostic properties
of different conditions, including FM and chronic back pain
(Smith et al., 2017).

Due to the complexity and the great number of features, the
patterns of functional brain connectivity patterns are commonly
analyzed using multivariate analysis such as Support Vector
Machines (SVM), Logistic Regression (LR), and Least Absolute
Shrinkage and Selection Operator (LASSO). In fact, the majority
of the models mentioned in Du et al. (2018) made use of
SVM. Deep learning (DL) comprehends a family of machine
learning algorithms that use a set of processing layers to
extract and transform features from data with multiple levels
of abstraction. These algorithms have improved the image and
speech recognition, compared with traditional machine learning
algorithms (e.g., SVM and LASSO) (Krizhevsky et al., 2012;
LeCun et al., 2015). This performance puts DL models in focus
as a promising approach to classify brain images, especially
for single subject prediction (Vieira et al., 2017). Furthermore,
some DL architectures have been specially designed to learn
from brain functional connectivity networks (Kawahara et al.,
2017; Meszlényi et al., 2017). In the context of chronic pain,
functional brain images were also used as an information source
to multivariate pattern analysis in the attempt to classify or
predict chronic pain syndromes (Callan et al., 2014; Sundermann
et al., 2014; López-Solà et al., 2017). In these works, only
traditional models such as SVM, LR, and k-Nearest Neighbors
(k-NN) were trained to differentiate healthy control subjects
from patients with FM (Sundermann et al., 2014; López-
Solà et al., 2017) and from chronic back pain (CBP) (Callan
et al., 2014). This restraint to traditional algorithms motivated
us to apply DL to chronic pain classification. Moreover, the
majority of such previous studies used a certain type of stimulus
during the acquiring process, which requires a more adequate
environment and a team of technicians to be executed. When
a resting-state protocol was applied, the results had a lower
performance with accuracy indices below 80%. Also, most of the
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studies focused on identifying only one chronic pain syndrome
(usually CBP or FM).

Our objective in this work was to evaluate the performance of a
set of DL algorithms in the classification problem of chronic pain
syndromes and to compare it with the performance of traditional
classifiers. Moreover, we will analyze how different brain
parcelations and connectivity measures affect the classification
performance. In order to achieve that, we analyzed the data using
four different parcelations including ROI and group-ICA based
parcelations, and two different measures of functional brain
connectivity, such as correlations and Dynamic Time Warping.

MATERIALS AND METHODS

Participants
The participants of the study were ninety-eight healthy controls
(age: 40.85 ± 23.7) and sixty chronic pain patients (age:
45.65 ± 15.23). Sixty-four females (age: 39.33 ± 20.5) and
thirty-four males (age: 43.76 ± 23.89) participants compose
the healthy control group. A limitation of this study is that
those male participants were presented only on the control
group. The chronic pain group (CP) was composed of thirty-
six FM patients and twenty-four chronic back pain patients. All
chronic pain participants suffered from persistent pain for more
than 6 months, also they were diagnosed following the IASP’s
criteria (Merskey et al., 1994) and (Wolfe et al., 2016) for FM.
There was no significant difference in age between the groups
(T = 1.56, p = 0.11). No participant used opiates, gabapentin,
or pregabalin for pain treatment. Four patients occasionally
used non-steroidal anti-inflammatory drugs (NSAIDs) and/or
paracetamol. Medication for non-pain related disorders involved
in birth control and female hormonal drugs. Three CP took
benzodiazepine (1–5 mg per day), of which one also took
serotonin reuptake inhibitors.

Image Acquisition
BOLD resting-state functional magnetic resonance images
(rsfMRI) from one hundred and fifty-three subjects were used
in this work. All data were collected using a GE 3T scanner
(General Electric Signa HDx, GE Healthcare, Milwaukee, WI,
United States). A total of 240 whole-brain echo-planar images
were acquired in a time of 10 min with the following scanner
parameters: 32 slices per volume, 3 mm of slice thickness, 4 mm
of space between slices, repetition time equals 2500 ms, echo time
equals 35 ms, 90◦ flip angle, matrix dimensions equal 64 × 64,
and FOV equals 240. The structural images were collected using
three similar protocols. These protocols differed exclusively by
the number of slices per volume; where the values of 292, 220,
256, and 248 slices were used for 24, 44, 48, and 37 of all dataset,
respectively. The other parameters were configured as follows:
1 mm of slice thickness, repetition time equals 7796 ms, echo
time equals 2984 ms, 12◦ flip angle, matrix dimensions equal
256 × 256, and FOV equals 256. Scanner noise was passively
reduced by −36 dB using in-ear hearing protection. In addition,
MRI foam-cushions were placed over the ears to restrict head
motion and further to reduce the impact of scanner noise.

Image Preprocessing
Image preprocessing was performed using the Neuroimaging
in Python Pipelines and Interfaces (Nipype) (Gorgolewski
et al., 2011). The first five image volumes were excluded
prior to image preprocessing. Then, spikes were removed using
an algorithm from the Analysis of Functional NeuroImages
(AFNI)1 software suite. Subsequently, the processes of slice-time
correction, realigning, and coregistration were performed using
the Statistical Parametric Mapping software package version 12
(SPM12). Also, the time-course signal-to-noise ratio (TSNR)
of each time series was calculated together with a Nipype’s
algorithm to detect artifacts based on RapidArt2. This algorithm
uses intensity and motion parameters to infer outliers. Finally, all
images were normalized to the standard Montreal Neurological
Institute (MNI) stereotactic space with a bias regularization of
10−4 and a FWHM of Gaussian smoothness of bias of 60,
resulting in a voxel size of 2 mm.

Brain Functional Parcelation
We tested four different parcelation maps in order to identify
how the number of parcels affects the classification process. Two
parcelations were part of the UK Biobank Imaging Study3, where
about five thousands resting-state functional MRI data points
were collected from different participants. Both parcelations were
the result of a group independent components analysis (group-
ICA) (Miller et al., 2016). These parcelations were composed of 25
and 100 components. After the authors excluded the components
that are not neuronally driven, the parcelations presented 21 and
55 components, respectively. Only this final sets of 21 and 55
components were used in our study.

The third parcelation was obtained from an analysis called
Multi-Subject Dictionary Learning (MSDL) using resting-state
functional MRI from 20 subjects with eyes closed (Varoquaux
et al., 2011). The final map presented a parcelation with 39
components. The fourth and last parcelation was the Willard
functional atlas, containing 499 functional regions of interest
(Richiardi et al., 2015). All brain parcelations can be visualized
in Figure 1.

Extracting Connectivity Measures
The brain functional network of each participant was determined
using the suite Nilearn (Abraham et al., 2014). This process
followed a pipeline of three tasks. The first task was to clean and
to exclude bad images: images that presented more than 3 “bad”
slices detected by the artifacts detection algorithm were removed
from the dataset. For the images remained, the time-series were
detrended; the movement confounds were removed based on a
projection on the orthogonal of the signal space (Friston et al.,
1994; Lindquist et al., 2019); then, the images were standardized.
The second task was to extract the brain activity time-series from
the brain regions defined by the parcelation map. For each region,
the least-squares solution was calculated, and a new time-series
representing the region was obtained.

1https://afni.nimh.nih.gov/pub/dist/doc/program_help/3dDespike.html
2http://www.nitrc.org/projects/rapidart/
3https://www.fmrib.ox.ac.uk/ukbiobank/
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FIGURE 1 | Group-ICA based parcelation from Biobank UK with (A) 21 and
(B) 55 components after the authors excluded the components that are not
neuronally driven. (C) Parcelation with 39 parcels and based on a
multi-subject dictionary learning process (MSDL). (D) Willard functional atlas
with 499 regions of interest.

In the last task, a functional network was constructed using
the brain parcels as nodes. The connectivity between each parcel
was calculated using the representative time-series of each parcel,
pair-wisely. Correlation and dynamic time warping distance
(DTW) were used to measure the connectivity value between
these time-series. DTW is a similarity measure for time-series,
where one time-series can be “compressed” or “stretched” in
time in order to find the best alignment with another time-
series. It was first designed for speech recognition (Sakoe and
Chiba, 1978) and was significantly more accurate than other
similarity measures (Wang et al., 2013). In our experiments, the
DTW was calculated using the FastDTW algorithm (Salvador and
Chan, 2007). Finally, after calculating the connectivity matrix, we
normalized it. We calculated the z-score of each matrix cell in
regards with all cells. At this point, each image was converted
into eight matrices, one for each combination of four parcelations
(Biobank_UK_25, Biobank_UK_100, MSDL, and Willard) with
two measures (Correlation and DTW).

Classifiers
Four classifiers were compared to determine the one that
presented the best results in a binary classification problem:
chronic pain patients against controls. Three of the four classifiers
used convolution neural network approaches. The classifier
BrainNetCNN was defined by Kawahara and collaborators
(Kawahara et al., 2017) and it proposes three new conventional
filters. Those filters are adapted to adjacent matrices that
represent any kind of neural network. The edge-to-edge filter
computes a weighted response over neighboring edges for a
given edge, while the edge-to-node filter computes a weighted
response over neighboring edges for a given node. The third filter,
called node-to-graph, applies a one-dimensional convolution to
calculate a scalar based on a weighted combination of the nodes.
Also, this architecture includes three fully connected hidden
layers, characterizing it as a deep neural network.

The second classifier was created by modifying the
BrainNetCNN. Batch Normalization layers were inserted
between the BrainNetCNN layers to create a new classifier, called
BrainNetCNNBatch. This classifier normalizes the activations of
the previous layer at each batch, improving the performance and
stability, and allowing to reach higher learning ratios (LRs) (Ioffe
and Szegedy, 2015). In a similar work, Meszlényi et al. (2017)
presented a convolutional neural network architecture to classify
rsfMRI. The presented architecture was our third classifier,
which had a sequence of two one-dimensional convolutional
layers followed by a fully connected layer and a softmax layer
with two outputs. See Supplementary Figure 1 for a detailed
scheme of these convolution neural networks.

The fourth classifier was an automated machine learning
toolkit called TPOT4. This classifier uses genetic programming
to find an optimized machine-learning pipeline (Olson et al.,
2016a,b). This toolkit allowed us to test different classical machine
learning models and feature engineering processes with a reduced
computational cost.

Training and Evaluation
Before the training, the missing data were dropped, which
together with the previous exclusion criteria of a maximum
of 3 “bad” slices per image resulted in a dataset of 140
participants. Next, the dataset was split into training and testing
dataset, keeping the original proportion of healthy controls and
chronic pain patients. Training and testing datasets had 98
and 42 participants, respectively. Due to this reduced number
of participants, we opted to augment the training data by
creating five thousand Local Synthetic Instances (LSI) (Brown
et al., 2015). This split 98/42 is the independent fold selection.
These 42 subjects were separated in the beginning, before any
data training or feature engineering. On the other hand, the 98
subjects from training dataset were split in the same proportion,
if the model is a CCNN we did a single split (train/validation),
otherwise (TPOT case) we applied a k-fold cross-validation
approach. All scores presented in this paper are related to the
independent fold. For CCNN, we opted to use only one split
(train/validation/test) because of the computation cost. Also,

4http://epistasislab.github.io/tpot/
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during the data augmentation, the training and validation data
were augmented separately to avoid any leak of information
between the two sets.

Overfitting is a common problem during the development of
a new machine learning model. It directly affects the model’s
generalization, in other words, the ability to predict new scenarios
(inputs) correctly. Overfitting can be detected by evaluating
the model error during training and test. When the difference
between training and test errors increase, it is a sign that the
model is starting to overfit the training dataset. One approach
to avoid this scenario is to use regularizers. Regularization is
defined as any modification to a learning algorithm that is
intended to reduce its test error but not its training error
(Goodfellow et al., 2016, p. 177). Three kinds of regularizers are
commonly used in neural network-based classifiers: Dropout, L1,
and L2 regularizers.

In this work, different combinations of Dropout, L1, and L2
regularizers were tested. Dropout had values of [0, 0.3, 0.5, 0.8],
these values represent the probability of a node be excluded
from the neural network. This behavior generates sub-networks
that are trained which permits we apply inexpensive bagged
ensemble methods with neural networks. L1 and L2 are also called
Lasso regression and Ridge regression, respectively. These two
regularizers add a penalization term to the model’s loss function.
To control how this term affects the loss function, a constant λ is
multiplied to it. For λ we had values of [0, 0.1, and 0.01]. When
gamma assumes a value of zero, this regularizer is deactivated.
The range values of dropout and λ for L1 and L2 were chosen
arbitrarily. Also, when not specified in the original architecture
description, the regularization was applied between the fully
connected layers.

The LR was another parameter that was optimized and tested
with values of [0.1, 0.01, and 0.001]. Thus, each combination
of parcelation, connectivity measure (Correlation and DTW),
neural network architecture, learning ration, and regularizers
created a classification experiment, combining into a total of
2592 classification experiments. These experiments were trained
using the five thousand synthetic instances and evaluated using
forty-two participants from the testing set.

For the experiments using TPOT, we applied a five stratified
k-fold cross-validation process. Also, the genetic algorithm was
configured to retain 50 individuals in every generation while
running it for ten generations. Three scores were used as metrics
to be optimized by TPOT: balanced accuracy, the area under the
receiver operating curve (AUC), and log loss. Combining these
three metrics with the eight connectivity matrices, we executed
24 classification experiments using TPOT. Figure 2 describes
the entire process of acquisition, preprocessing, processing,
learning, and evaluation.

RESULTS

In order to evaluate and compare the experiments, we used three
scores: balanced accuracy; the area under the receiver operating
curve (AUC); and cross-entropy loss (log loss). Balanced accuracy
is defined as the average of recall obtained on each class, which

in turn is the proportion of actual positives that are predicted
as positives. Imbalance groups do not affect this accuracy score.
The AUC of a classifier is equivalent to the probability that the
classifier will rank a randomly chosen positive instance higher
than a randomly chosen negative instance (Fawcett, 2006). For
both balanced accuracy and AUC, the values can range between
0 and 1; values close to 1 indicate better classifiers, and the scores
are calculated using the predicted classes. On the other hand, log
loss can range from 0 to +∞, where values close to 0 are better
scores. It is calculated using the probability of an instance to
belong to a target class. It is defined as the negative log-likelihood
of the true labels given a probabilistic classifier’s predictions. The
log loss can be interpreted as a measure of certainty, where a
classifier that predicts a wrong class with a high probability is
punished (Bishop, 2006).

Correlation vs. Dynamic Time Warping
Analyzing all 2616 experiments, the first observed result was that
DTW outperformed correlation in balanced accuracy and AUC
(Figure 3). This result was found for the average score, as well for
the best scores of each group. This result is in accordance with
(Meszlényi et al., 2016). For the log loss, the difference between
experiments using DTW and Correlation was not significant
(Table 1). Thus, all the subsequent results will only summarize
the experiments using DTW.

Parcelation Size vs. Performance
Examining the performance of the brain parcelations, we
observed that the number of parcels had no significant relation
with the values of accuracy, AUC, and log loss (Figure 4).
However, the parcelation seems to affect the performance of
classifier separately. We can observe that both Ann4Brains
architectures decrease (slightly) the performance with bigger
parcelations. Meanwhile, the architecture proposed by Meszlényi
et al. (2017) improves its performance with the increment of
parcels. TPOT seems to be stable in relation to the parcelation
size. Once TPOT finds the best pipeline in a set of different types
of classifiers and/or dimensionality reduction techniques, it can
adapt to the parcelation size.

Best Classifier for Chronic Pain
In Figure 5, we have a box plot with results of all experiments
grouped by parcelation and architecture. TPOT clearly shows
the best mean values for all metrics and parcelation. Since
TPOT results are only for the best pipeline found by the
genetic algorithm, higher mean (or lower in log loss case) was
expected. Among the DL architectures, the Ann4Brains based
architectures had better results compared with the architecture
proposed by Meszlényi et al. (2017).

The best accuracy of classifying chronic pain was obtained
using Ann4brains architecture and its variation with batch
normalization (see Supplementary Figure 2). These classifiers
exhibited accuracy values of 0.868. In both cases, the MSDL
parcelation was used. Ann4brainsBatch also presented the best
results for AUC and log loss, with values of 0.935 and 0.344,
respectively. In that case, the BiobankUK_25 parcelation was
used. In Table 2, we summarized the best results obtained by
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FIGURE 2 | Flowchart describing the entire process of acquisition, preprocessing, processing, learning, and evaluation. (A) Participants were scanned in a
resting-state protocol and (B) functional and structural images were collected. (C) Each subject’s images were preprocessed separately applying standard
procedures like time-slicing, realigning, coregistration, artifacts detection, and normalization. (D) A connectivity matrix was created for each subject combining a
normalized functional image, a set of confounds, a parcelation, and a connectivity measure. (E) The learning processing starts shuffling the list of subject’s
connectivity matrix, we preserved the shuffling index to be replicated with the other inputs set combining the different parcelations and connectivity measures. The
next step was to select the independent fold used to compare the different fit models. The remainder data was used in the cross-validation process. All models were
trained using a k-fold cross-validation scheme with k = 2 to CNN based models and k = 5 for TOPT models. Inside the cross-validation process, from each testing
and validation’s dataset, five thousand synthetic connectivity matrices were created. These synthetic data were used to train and validate the model, which is a
combination of the model architecture and a specific set of hyper-parameters, including regularization. For the last, (F) the fitted model was evaluated using the
independent fold and three scores: Balanced Accuracy (BACC), Log loss, and the Area Under the receiver-operating characteristics curve. These scores were used
to compare the performance of architectures, parcelations, and connectivity measures.

each classifier and parcelation. All these results were obtained
using the DTW as a connectivity measure. The experiments
using correlation had the best accuracy of 0.826 and the best
AUC of 0.905 using TPOT and BiobankUK_100, which reinforce
the results found in see section “Correlation vs. Dynamic
Time Warping.”

A limitation of this study is that the chronic pain group
presented only female participants. To exclude the possibility
that our models were learning to classify the groups according
to participants’ sex rather than to the presence or not of chronic
pain, all models were assessed by using sex as the target variable.

Supposing that the models were classifying the groups based
on participants’ sex. It would be expected that the models
had a better performance if evaluate using the sex label as
the classification target. Evaluating this possibility using the
independent fold, the mean result for balanced accuracy, log loss,
and AUC were 0.67, 3.76, and 0.73, respectively. More specifically,
the best model using DTW, MSDL, and Ann4BrainsBatch had,
respectively, a balanced accuracy, a log loss, and AUC of 0.70,
1.69, and 0.78 using the sex label. Comparing with the chronic
pain prediction, the higher values of log loss is an indication
that if the models were learning the sex difference it would be
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FIGURE 3 | Distribution of values of (left) Balanced Accuracy, (center) Log Loss, and (right) AUC for all 2616 experiments using correlation (blue area) and DTW
(orange area). All tails were truncated in maximum and minimum values while the dash lines delimit the quartiles. In the case of Balanced Accuracy and AUC, the
distributions for Correlation and DTW differ with p-value < 0.05.

TABLE 1 | Mean values of balanced accuracy, log loss, and AUC for experiments
using correlation and DTW as a measure of connectivity.

Balanced accuracy Log loss AUC

Correlation 0.62 ± 0.08 0.61 ± 0.10 0.73 ± 0.12

DTW 0.69 ± 0.09 0.60 ± 0.13 0.80 ± 0.9

t-index (p-value) −1.89 (3.19e−66) −0.95 (3.39e−01) −16.3 (1.01e−51)

predicting the wrong classes with high probabilities. In other
words, the models are uncertain about the sex label. These results
gave us the confidence that our models were not affected by the
sex group limitation.

DISCUSSION

In this paper, we presented a classifier for chronic pain conditions
using resting-state fMRI and one convolutional neural network
architecture. This classifier, with a DL approach, outperformed
traditional machine learning techniques. Also, in the search to
find the best classifier, we performed a set of experiments to
understand how parcelation and connectivity measures affect the
classification process. These experiments revealed that while the
parcelation does not affect significatively the classification, the use
of DTW significantly increase the classifier performance.

The findings of this study clearly show that functional brain
images in association with DL can be used to differentiate
chronic pain patients from pain-free controls. The best model
using the Ann4brain architecture and MSDL parcelation had
a balanced accuracy of 86.8% while the AUC was equal to

0.918. In the literature, other attempts to classify chronic pain
using brain images have been made. Chronic low back pain
(Baliki et al., 2011; Callan et al., 2014; Ung et al., 2014), and
fibromyalgia (Sundermann et al., 2014; Robinson et al., 2015;
López-Solà et al., 2017) are the most common syndromes that
were studied, while temporomandibular disorder (Harper et al.,
2016) and knee osteoarthritis (Baliki et al., 2011) are also present
in previous studies.

A tool for classifying individuals with chronic back pain (CBP)
was proposed by Callan and collaborators (Callan et al., 2014).
They used voxel-level differences from 13 CBP patients and 13
pain-free controls during periods of both resting and electrical
stimulation. By using Sparse Logistic Regression (SLR), they
reported an accuracy of 92.3%. A similar accuracy percentage
(93%) has been achieved by using a combination of three
classifiers based on SVM and LR in 37 FM patients and 35 pain-
free controls when painful stimuli were applied (López-Solà et al.,
2017). Moreover, an SVM classifier was able to accurately classify
10 patients with myofascial-type temporomandibular disorders
and 10 matched pain-free controls during painful pressure
stimulation (Harper et al., 2016). Compared to previous studies,
the present work focused on the comparison of different methods
to classify participants into chronic pain patients and healthy
controls based exclusively on functional resting-state data.
Furthermore, we were able to analyze the results from several
classifiers for two different types of chronic pain conditions:
FM and chronic back pain. Sundermann et al. (2014) used only
resting-state images to identify potential functional connectivity
among patients with FM, rheumatoid arthritis (RA), and pain-
free controls. The author tried different types of classifiers based
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FIGURE 4 | Distribution of values of (left) Balanced Accuracy, (center) Log Loss, and (right) AUC grouped by parcelation size: Biobank_UK_25 (blue),
Biobank_UK_100 (Orange), MSDL (green), and Willard (red). All tails were truncated in maximum and minimum values while the dash lines delimit the quartiles.

FIGURE 5 | Enhanced box plot of values of Balanced Accuracy (top), Log Loss (middle), and AUC (bottom) grouped by parcelation size (horizontal axis) and
classifier architecture: Ann4BrainsBatch (blue), Ann4Brains (orange), Meszlenyi2017 (green), and TPOT (red).

on SVM, decision tree, naive Bayes classifiers, etc. Comparing FM
with RA and using a k-NN based classifier the best accuracy of
79% was reached. Meanwhile, the best accuracy comparing FM
and pain-free controls only archived 73.5% with an SVM based
classifier. Comparing with our work, the main difference is the

absence of DL algorithms in the previous study. But, even so, if
compared with our results using TPOT, our work outperforms
the results found by Sundermann et al. (2014). Similarly,
studies that used only structural images to classify chronic pain
had a lower performance (Baliki et al., 2011; Ung et al., 2014;
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TABLE 2 | Best values of balanced accuracy, log loss, and AUC for each combination of classifier and parcelation using DTW.

Biobank_UK_25 MSDL Biobank_UK_100 Willard

Ann4Brains BACC = 0.849 BACC = 0.868 BACC = 0.740 BACC = 0.825

LLOSS = 0.453 LLOSS = 0.435 LLOSS = 0.479 LLOSS = 0.482

AUC = 0.897 AUC = 0.918 AUC = 0.846 AUC = 0.875

Ann4BrainsBatch BACC = 0.849 BACC = 0.868 BACC = 0.779 BACC = 0.853

LLOSS = 0.345 LLOSS = 0.366 LLOSS = 0.438 LLOSS = 0.396

AUC = 0.935 AUC = 0.930 AUC = 0.868 AUC = 0.885

Meszlenyi2017 BACC = 0.805 BACC = 0.849 BACC = 0.678 BACC = 0.810

LLOSS = 0.676 LLOSS = 0.675 LLOSS = 0.546 LLOSS = 0.462

AUC = 0.853 AUC = 0.916 AUC = 0.760 AUC = 0.882

TPOT BACC = 0.846 BACC = 0.776 BACC = 0.826 BACC = 0.801

LLOSS = 0.351 LLOSS = 0.472 LLOSS = 0.412 LLOSS = 0.471

AUC = 0.929 AUC = 0.872 AUC = 0.906 AUC = 0.874

Robinson et al., 2015). The best result obtained by Baliki et al.
(2011) was a balanced accuracy of 81.25% in a multi-class
problem involving patients with CBP, complex regional pain
syndrome (CPRS), Osteoarthritis (OA), and pain-free controls.

Another important finding of this study was that DTW
outperforms Correlation when applied to measure the
connectivity among brain areas. This result matches the
results found by Meszlényi et al. (2016), where the authors
demonstrated that DTW emphasizes group differences resulting
in a better classification. Meszlényi et al. (2016) used a unique
brain parcelation with 90 ROIs (Shirer et al., 2012), and two
classifiers based on SVM and the LASSO. In this scenario, DTW
and correlation were evaluated in two tasks: classify the correct
gender and identify ADHD patients. Our analysis expands the
work proposed by Meszlényi et al. (2016), showing that DTW
outperforms Correlation in different scenarios composed of
four types of parcelations. Moreover, with the aid of TPOT
toolkit, we tested both connectivity measures for a variety of
classifiers, including linear and non-linear approaches. The tests
demonstrated that DTW had better results than Correlation.

The interpretability of neural networks is a challenge due to its
“black-box” characteristics. Some efforts like the Lime tool tries
to make an approximation of the neural network behavior and
provide some interpretation about how the neural networks do its
prediction. Unfortunately, tools like that are adapted to networks
that use a typical convolutional filter with a 3× 3 or 5× 5 matrix
convolving. These typical convolutional networks are specialized
to identify edges, contrast, border, etc. In our case, our image
is, in reality, a connectivity matrix and the neighborhood of a
cell does not represent any relationship, requiring specialized
convolutional filters. Because of that, we cannot make use of tools
like Lime to interpret the prediction. In contrast, we can apply
Lime to interpret the results from TPOT.

In Figure 6, we can see three cases of prediction: (6-a) HC
correctly predicted, (6-b) CP correctly predicted, and (6-c) a
wrong prediction. The features on top represent the elements
that most contributed to this prediction. In the cases (6-a) and
(6-b), we can notice that these top features have a connection
involving the DMN or Insula, which suggests that the model is
classifying the chronic pain mainly based on the connectivity

of these two areas. This behavior is supported by other studies
that relate these two areas with chronic pain syndromes (Baliki
et al., 2008; Cauda et al., 2009). Analyzing the wrong prediction
(6-c) we also can notice the presence of the DMN and Insula on
the top features. But, in that case, the model predicted this HC
subject as a CP subject with a lower probability of approximately
0.53. This number close to 0.5 means that the model was not
confident about this prediction. Based on this interpretation, we
can conclude that the model is making the predictions based on
areas of the brain related to chronic pain.

A clear innovation of our work was the classification of
chronic pain syndromes using neuroimaging and DL techniques.
There are no records in the literature of any successful
classification of chronic pain syndromes using a similar approach.
This approach was already applied for other syndromes like
attention-deficit and hyperactivity disorder, mild cognitive
impairment, schizophrenia, Alzheimer’s disease (AD), and others
(Du et al., 2018). Also, some previous studies compared DL
techniques with a kernel-based model like SVM classifiers
(Vieira et al., 2017). The majority of the studies show that
when the overfitting problem is controlled, DL techniques
outperform SVM classifiers. This behavior was also observed in
our experiments, where the DL classifier (Ann4BrainsBatch) had
the highest accuracy and AUC. Due to the small number of
samples, the major challenge was to control the overfitting. To
facilitate the process, L2 regularization (0.01) and a dropout rate
of 0.5 were used between the hidden layers. Despite that, based
on our results, we can conclude that DL techniques can provide
good results in the task of classifying chronic pain syndromes.

Two possible limitations of the present study were (1) the
different number of participants in the groups (chronic pain
patients vs. pain-free controls), and (2) the fact that only women
composed the group of chronic pain patients. To address the first
limitation, a metric was used that is not affected by the differences
in the number of subjects that make up the groups. In the case
of the second limitation, the same analyses were performed but
using the sex variable as the target to classify the participants.
The levels of balanced accuracy, log loss, and AUC obtained with
this variable as classifier were lower than those obtained with
the variable “presence of chronic pain,” which reinforces the idea
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FIGURE 6 | Local interpretable model-agnostic explanations (LIME) for the best TOPT model listing the 20 features that most contribute to the prediction of
(a) a correctly predicted HC, (b) a correctly predicted CP, and (c) a wrongly predicted HC. The bars represent how much each feature (axis Y ) added to the
prediction in terms of probability. Green bars indicate that the feature adds positively, in direction to the target class, while the red bars indicate that the features are
in resistance to the target class.

that our method worked better to classify according to chronic
pain instead of sex.

Nevertheless, it would be necessary to evaluate how these
techniques perform in a multi-class problem differentiating not

only between pain-free and chronic pain but identifying different
chronic pain syndromes. Moreover, investigating the possibility
to predict a syndrome, a longitudinal study of a population with
the risk of developing chronic pain could permit the application
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of an emerging and promising technique such as personalized
machine learning (Rudovic et al., 2019).
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