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This paper introduces an new open-source, header-only and modular C++ framework

to facilitate the implementation of event-driven algorithms. The framework relies on three

independent components: sepia (file IO), tarsier (algorithms), and chameleon (display).

Our benchmarks show that algorithms implemented with tarsier are faster and have

a lower latency than identical implementations in other state-of-the-art frameworks,

thanks to static polymorphism (compile-time pipeline assembly). The observer pattern

used throughout the framework encourages implementations that better reflect the

event-driven nature of the algorithms and the way they process events, easing future

translation to neuromorphic hardware. The framework integrates drivers to communicate

with the DVS, the DAVIS, the Opal Kelly ATIS, and the CCam ATIS.

Keywords: silicon retinas, event-based sensing, development framework, event-based processing, asynchronous

computation

1. INTRODUCTION

Event-based cameras are fundamentally different from conventional cameras (Posch et al.,
2014). Conventional, frame-based cameras integrate light at fixed time intervals, and produce
spatially dense frames. By contrast, the pixels of event-based sensors are asynchronous and
independent. Each pixel outputs data only when the visual information in its field of view changes,
mimicking biological sensing (Liu and Delbruck, 2010). Event-based cameras output their events
in the order they are produced, resulting in a spatially sparse sequence with sub-millisecond
precision. This fundamental difference in data nature calls for different computational strategies
(Delbruck et al., 2010).

This work introduces an end-to-end framework for designing and running event-based
algorithms for computer vision. The code components are written in C++, and are open-
source. The presented method and implementation outperform state-of-the-art frameworks while
encouraging better semantics for event-based algorithms. Special care is given to modularity and
code dependencies management, in order to facilitate portability and sharing.

1.1. Event-Based Cameras
Bio-inspired cameras aim at mimicking biological retinas, as the latter greatly outperform
conventional, frame-based systems (Liu and Delbruck, 2010). Many architectures have been
implemented over the years, including pulse-modulation imaging (Chen et al., 2011), smart
vision chips (Dudek and Hicks, 2005; Carmona-Galán et al., 2013), and event-based sensors. The
framework presented in this paper primarily targets event-based sensors.
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The pixels of event-based sensors contain analog circuits
implementing signal processing calculations. Upon meeting a
specific condition, the analog circuit emits an output transmitted
to the computer. The most widespread type of calculation is
brightness change detection. The pixel’s photodiode output is
continuously monitored to detect significant variations. When
the logarithmic luminance changes beyond a fixed threshold,
the pixel sends an event to the computer. This event bundles
spatial and temporal information, as well as a boolean polarity
encoding whether the significant change corresponds to an
increase or decrease in brightness. Several sensors contain
pixels implementing this behavior, including the DVS (Dynamic
Vision Sensor) (Lichtsteiner et al., 2008), the cDVS (Berner
and Delbruck, 2011), the ATIS (Asynchronous Time-based
Image Sensor) (Posch et al., 2010), and the DAVIS (Dynamic
and Active-pixel Vision Sensor) (Brandli et al., 2014). They
are still under active development, with improved versions
featuring lower latency (Lenero-Bardallo et al., 2011), higher
sensitivity (Delbruck and Berner, 2010; Serrano-Gotarredona
and Linares-Barranco, 2013; Yang et al., 2015), or more
pixels (Son et al., 2017). Figure 1 highlights the difference
between a sequence of frames and a stream of polarity events
recorded from the same scene.

The cDVS and ATIS differ from the DVS by their extended
pixel circuits generating a second type of polarity events,
besides change detection. The polarity bit of the second event
type encodes another visual information. The cDVS triggers
such events on wavelength changes, whereas the ATIS encodes
absolute exposure measurements in the time difference between
them. The DAVIS is a hybrid sensor: it features both a DVS-
like circuit and a light integration circuit. The latter produces
frames similar to those generated by a conventional sensor.
Huang et al. (2017) present another event-based sensor, the
CeleX, with a behavior similar to that of a DVS: events are
triggered by brightness changes. However, output events include
an absolute exposure measurement encoded on 9 bits instead of
a binary spolarity.

1.2. Event-Based Computer Vision
There are three approaches to information extraction from
the output of event-based cameras. The first one consists in
generating spatially dense frames from the sensor output in a way
that preserves temporal resolution. The frames can then be fed
to conventional computer vision algorithms (Amir et al., 2017;
Maqueda et al., 2018). The second approach advocates short
calculations triggered by each event, and requires a rethink of
computer vision from the ground up (Benosman et al., 2012;
Lagorce et al., 2015; Reverter Valeiras et al., 2016; Mueggler et al.,
2017). Bymatching the sensor data format, this approach benefits
from the sensor advantages, notably resemblance to biological
signals, low latency, and data compression. Spiking neural
networks fit the constraints of the second approach, and several
event-based computer vision algorithms were implemented on
neural simulators (Galluppi et al., 2012; Orchard et al., 2015;
Haessig et al., 2018; Hopkins et al., 2018). The third approach
mixes frames and events, and is well-suited to hybrid sensors,
such as the DAVIS (Barranco et al., 2014; Moeys et al., 2016;

FIGURE 1 | Conventional cameras (top) capture dense frames at fixed time

intervals. Event-based cameras (bottom) have independent pixels which

asynchronously output information when the luminance in their individual field

of view changes. This sparse representation yields a better temporal resolution

and a smaller bandwidth. Some computer vision tasks, such as moving

objects segmentation, become easier. The point cloud representation is a still

frame of a standalone HTML widget generated by our framework.

Tedaldi et al., 2016). The framework presented in this paper is
designed to encourage the second approach, though it applies to
the third as well.

Given the issues arising from the Von Neumman architecture
of modern computers (Indiveri and Liu, 2015), dedicated
hardware seems required for event-based vision systems
to match the performance of their biological counterparts.
Nevertheless, microprocessors remain the de facto standard
to perform general-purpose computations. They benefit from
years of research and development, making them cost-effective,
computationally-efficient, and user-friendly. As such, they are
great tools for algorithms prototyping and early applications
of event-based sensors. Furber (2017) envisions heterogeneity
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in future processors: general-purpose cores will work together
with dedicated hardware accelerators. Under this assumption,
a framework targeting CPUs is not a mere temporary solution
waiting to be replaced by neural networks, but a decision support
tool. It provides a baseline for algorithms power consumption
and computational cost, against which implementations running
on dedicated hardware can be compared. Thus, the accelerators
can be chosen based on the gain they yield for tasks deemed
important. A framework designed for CPUs must provide fast
implementations in order to be an effective baseline. Moreover,
its syntax should reflect the constrains of hardware dedicated
to event-based calculations, to ease comparisons and facilitate
algorithms ports from one platform to the other.

1.3. Frameworks
A software framework provides a collection of operators and
a way to assemble them to build complex algorithms. We
consider three types of frameworks related to event-based
computer vision. First, we present frameworks for conventional
computer vision and their limits when working with event-based
data. Then, we examine event-based programming, showing
how its concepts apply to event-based computer vision, even
though existing frameworks were designed under constraints
so different from event-based sensors that they cannot be used
directly. Finally, we review frameworks dedicated to event-based
computer vision.

The applications of linear algebra to a wide variety of
science and engineering fields triggered, early in computer
science history, the development of efficient libraries to compute
matrix operations (Lawson et al., 1979). Conventional computer
vision libraries use matrices to represent frames, allowing
algorithms to be expressed as a sequence of operations on dense
data (Thompson and Shure, 1995; Bradski, 2000; Jones et al.,
2001). Dynamic, high-level languages can often be used to specify
the operators order. The overhead incurred by the dynamic
language is negligible when compared to the matrix operations.
The latter are optimized by the underlying linear algebra
library, yielding a development tool both efficient and user-
friendly. Event-based computer vision is a different story. Small
computations are carried out with each incoming event, and the
cost of the glue between operators stops being negligible. Hence,
the very structure of the libraries designed for conventional
computer vision is incompatible with events, besides dealing with
dense frames instead of sparse events.

Unlike event-based computer vision, event-driven
programming languages and frameworks are not new: Visual
Basic dates back to the 1990s. Among the concepts developed
for event-driven programming, the event handler pattern
and the observer pattern (Ferg, 2006) are natural choices to
represent event-based algorithms and event-based cameras.
Reactive programming (Bainomugisha et al., 2013), devised has
a refinement over event-driven programming, introduced new
abstractions to avoid state-full event-handlers and explicit time
management. However, the neurons we aim at mimicking are
state-full (the reaction to an input spike—for example, an output
spike—depends on the current membrane potential), and fine

control over time management is a needed feature for real-time
systems. Hence, we choose to design our framework using
event-driven rather than reactive concepts. Modern event-driven
frameworks have notable applications in graphical user interfaces
and web servers (Tilkov and Vinoski, 2010), where events
represent user interactions and HTTP requests, respectively. The
number of events per second reached in these applications is
very small when compared to event-based cameras. On the one
hand, a user clicking or typing does not generate much more
than tens to hundreds of events per second (Cookie Clicker,
2013), and a large website, such as Twitter handles about six
thousand requests per second on average1. On the other hand,
an ATIS moving in a natural environment generates about one
million events per second, with peaks reaching next to ten
million events per second. The relatively small number of events
the existing frameworks were designed to handle makes their
design incompatible with event-based computer vision. For
example, Javascript event handlers can be attached or detached
at run-time, greatly improving flexibility at the cost of a small
computational overhead whenever an event is dispatched.

All the frameworks dedicated to event-based computer vision
circumvent the aforementioned problem using event buffers
transmitted from operator to operator. The buffers typically
contain a few thousand events spread over a few thousand
microseconds. A typical operator loops over the buffer and
applies some function on each event. The operator output
consists in one or several new event buffers, looped over by
subsequent operators. The sequence is dynamically defined at
run-time, incurring a computational overhead. However, this
cost is paid with every buffer instead of every event, becoming
negligible as is the case with conventional computer vision
frameworks. The first event-based computer vision framework,
Jae (2007), was designed for the DVS and is written in Java.
Subsequent cameras and their increased event throughput
triggered the development of C and C++ frameworks: Cae
(2007), recently re-factored and renamed DV (2019) (both
from iniVation), kAER2 (from Prophesee), and event-driven
YARP (Glover et al., 2018a,b) (developed for the iCub). Table 1
highlights the design differences between these frameworks. The
table also includes tarsier, the computation component of the
framework presented in this work. Unlike the other frameworks,
it assembles operators at compile-time, suppressing the need for
buffers between components, even though event buffers are still
used to communicate with cameras or the file system.

1.4. Paper Structure
This paper presents the frameworks components in the order
they intervene in an actual pipeline, starting with an overall
view (section 2). We introduce event-driven programming
concepts and shows how they apply to event-based computer

1CBS News Uses Twitter as Part of Its News Investigating and Reporting (2015).

Available online at: https://developer.twitter.com/en/case-studies/cbs-news
2kAER 0.6, used in this work, is the latest version developed by our laboratory

and licensed to Prophesee. Newer versions are now developed and maintained by

Prophesee and the source codes are for internal use only, hence their performances

are not assessed in this work.

Frontiers in Neuroscience | www.frontiersin.org 3 January 2020 | Volume 13 | Article 1338

https://developer.twitter.com/en/case-studies/cbs-news
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Marcireau et al. Event-Based C++ Framework

TABLE 1 | Various C/C++ frameworks provide tools to build event-based algorithms.

Name Open

source

Operators

connection

Dependencies Communication and

execution

Event types

tarsier (this work) Yes Compile-time, C++

templates

– Event-wise function calls,

single thread

Template event types, contiguous

memory

cAER Yes Run-time, XML Boost, libpng,

libusb, libuv

Event buffers, single thread Hard-coded event types,

contiguous memory

kAER No Run-time,

C++/Python

Boost, OpenCV,

Python, Qt

Event buffers, constant time

intervals, single thread

Hard-coded event types,

contiguous memory

Event-driven YARP Yes Run-time, C++/XML Libace IP packets, multiple programs Hard-coded event types,

contiguous memory or polymorphic

event types, non-contiguous

memory

Dynamic vision

system

Yes Run-time, XML Boost, libusb,

OpenCV, OpenSSL

Event buffers, multiple threads Hard-coded event types,

contiguous memory

Despite an identical goal and programming language, they are build upon very different design decisions. Differences impact users’ interaction with the framework and the performance

of algorithms implementations. YARP uses IP packets, which makes it possible to run an algorithm in parallel on several machines, but adds overhead when running on a single computer.

vision (section 3), followed by a brief description of sepia, the
component implementing functions to read and write event
files. Section 4 presents the design and implementation of
tarsier, a collection of event-based algorithms. Benchmarks
are used to compare its performance with existing event-
based computer vision frameworks (section 5). Section 6
describes chameleon, a collection of Qt components to display
events on a conventional screen. The implementation of
drivers to communicate with event-based cameras, non-feed-
forward architectures and considerations on parallelism are
exposed (section 7), before discussing future work and our
conclusions (section 8).

2. FRAMEWORK OVERVIEW

The framework presented in this work supports Linux, macOS,
and Windows. It is organized in independent components,
named after animals with unusual eyes. They work together
by following the same conventions, even though they have
no explicit link. This structure, illustrated in Figure 2, reduces
to a minimum the external dependencies of each component,
and promotes modularity. In particular, several components
solely require a C++ compiler, facilitating code sharing between
various machines and operating systems, and usage with other
libraries. The framework’s three major components are sepia (file
I/O), tarsier (algorithms), and chameleon (display). Since these
components are independent, one may use any of them without
the others. For example, sepia can be used to read and write event
files on an operating system lacking Qt support.

The framework’s libraries are header-only: they require
neither pre-compilation nor system-wide installation, and several
versions of the library can co-exist on the same machine
without interfering. Bundling dependencies with algorithms
makes projects more likely to keep working over long periods of
time without active support, which we believe is a critical factor
for research. Moreover, an algorithm and all its dependencies
can be shipped in a single zip file, making code easy to share
as the supplementary material of a publication (as illustrated by

this paper’s Supplementary Material). Header-only libraries also
simplify MSVC support for Windows (Barrett, 2014), removing
the need for GCC ports, such as MinGW.

All the code is open-source, and hosted on our GitHub
page (section 8). Each framework component is hosted on a
distinct repository, and documented in the associated Wiki page.
More importantly, the tutorials repository provides step-by-
step tutorials and commented examples to build event-driven
applications with the framework.

3. EVENT-DRIVEN PROGRAMMING

3.1. A Generic Event-Based Algorithm
The object-oriented observer pattern consist in two constructs:
an observable and an event handler. The former dispatches
events at arbitrary times, whereas the latter responds to each
event with an action. This pattern provides a natural model for
an event-based camera (observable) and an algorithm (event
handler). It extends to neuron models (for example, integrate-
and-fire), though implementing complex networks with feedback
and delays—which can change the events order in time—is
not straightforward (section 7 provides considerations on this
topic). Algorithm 1 gives a generic expression of an event-based
algorithm under this paradigm.

A framework reflecting this theoretical expression facilitates
algorithms implementation. A function (in the programming
sense) which takes an event as sole parameter and returns
nothing has a syntax close to Algorithm 1. Such a function has
to mutate a state to do something useful, thus it is not a function
in the mathematical sense (it is non-pure).

Algorithm 1: A generic event-based algorithm, or event
handler.

initialize the state
on event do

instructions mutating the state
end
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FIGURE 2 | The framework presented in this paper is a collection of three independent components: sepia (file IO), tarsier (event-based algorithms), and chameleon

(displays). Each component is hosted on its own repository, and serves a specific goal. This graph shows the three components, their external dependencies, and

other repositories dependent on the framework. The event_stream component (purple) is not a library but a file format specification, detailed in the Appendix. The

components shown in green have no external dependencies but the C++ Standard Template Library.

3.2. C++ Implementation
The typical C++ implementation of the observer pattern relies
on dynamic polymorphism: the event handler inherits a generic
class, and the observable holds a pointer to an instance of this
class. This approach creates overhead for two reasons. On the one
hand, every call to an event handler requires a vtable lookup and
an extra dereferencing. On the other, the compiler is given less
information to optimize the program.

Existing frameworks (cAER, kAER, event-driven YARP, and
Dynamic Vision System) solve this issue using buffers: events are
handled thousands at a time, reducing overhead proportionally.
In return, user-written handlers (called modules in cAER,
Dynamic Vision System and event-driven YARP, and filters in
kAER) have to loop over buffers of events. Manipulating buffers,
though good for performance, may foster practices that deepen

the gap with neuromorphic hardware: using events ahead in the
buffer to improve performance, as they are “already there,” and
viewing the events as pieces of data rather than function calls. The
former makes the conversion to neuromorphic hardware harder
(the algorithm uses future events, increasing memory usage and
latency waiting for them), while the latter strips away the event
meaning (a model of a hardware spike).

The presented framework relies on static polymorphism,
using templates (Veldhuizen, 2000): the event handler is bound
to the observable during compilation. This approach does not
incur an overhead with every event, therefore buffers are not
needed. The algorithm is specified by a loop-free function,
illustrated in Figure 3. We want to emphasize that the code
presented in this figure is a complete program, which can
be compiled without prior libraries installation. The function
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handle_event modifies the state of the std::cout object,
captured implicitly as a global variable. Events are read from the
file “input.es” , which uses the Event Stream encoding (see
the Appendix).

The sepia header used in this example implements file IO
in the framework, and can be extended to communicate with
cameras (section 7). Even though it relies on buffers, similarly
to the other C++ frameworks, the event loop is hidden from
the user. This is meant to reconcile two somewhat paradoxical
objectives: provide a fast implementation on CPUs, which work
best with bulk data, and encourage an algorithm design likely
to translate to highly distributed neuromorphic systems with
fine-grained calculations.

Static polymorphism is implemented in sepia using the
same approach as the C++ Standard Template Library (see,
for example, the compare function of the std::sort algorithm).
Besides being efficient, it allows compile-type, type-safe
“duck typing”: the code will compile as long as the syntax
handle_event(event) is valid. Notably, handle_event
can be a function, a lambda function or an object with an

FIGURE 3 | This code snippet is the “hello world” program of the sepia library.

The function handle_event prints a plus sign in the terminal on luminance

increase events, and a minus sign on luminance decrease events. The main

program creates an observable from a file, with the handle_event function

as event handler. This program, provided in Supplementary Material, only

needs the sepia library in its directory to be compiled on any machine.

overloaded call operator. Lambda functions are great to
quickly prototype an event-driven algorithm, as shown in
Figure 4. This second example is a standalone, dependency-
free program as well. The state variables previous_t and
activity are captured by reference in the lambda function.
The latter implements a sensor-wide “leaky integrate” neuron
to estimate the activity, printed after processing all the input
file’s events.

The sepia::join_observable function blocks until all
the events are processed, preventing other routines (notably
Graphical User Interfaces) from running. Under the hood,
it uses the GUI-compatible sepia::make_observable
function, which dispatches events on another thread. In turn,
this function constructs a sepia::observable object. The
latter’s constructor cannot be called directly, because C++ does
not allow class template deduction from a constructor (until C++
17). Thanks to the make function, the event handler type does
not have to be explicitly specified. However, the event handler
must be statically specified—not unlike connections in a neural
network. Changing the event handler at run-time requires an
explicit if-else block within the handler.

Both the sepia::join_observable and
sepia::make_observable functions require a template
parameter: the expected event type. The event handlers signature
is check at compile-time, whereas the file events type is checked
at run-time (each Event Stream file contains a single type
of events).

The event handlers presented thus far have several
shortcomings: they use global variables, can be used only
with specific event types, and cannot be easily used from other
algorithms. The tarsier library tackles these issues.

4. BUILDING BLOCKS

Basic blocks that can be assembled into complex algorithms are
the central feature of a framework for computer vision. They
reduce development time and foster code reuse: components
debugged and optimized by an individual benefit the community.

FIGURE 4 | Unlike Figure 3, this program uses a lambda function to implement an event handler. Lambda functions can be declared inside the main function,

keeping the global scope clean. This event handler implements a leaky neuron to compute the activity. The latter is printed once all the event from the source file

“input.es” have been processed.
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4.1. Partial Event Handlers
In order to represent a building block for event-based algorithms,
we introduce the concept of partial event handler, illustrated
by the Algorithm 2. A partial event handler is triggered by
each event, similarly to the complete event handler defined in
subsection 3.1. However, instead of consuming the event, the
partial event handler performs a calculation, then conditionally
triggers a second handler.

Algorithm 2: A partial event handler.

initialize the state
on event do

instructions mutating the state
if condition then

trigger another event handler with a new event
end

end

Using functions to represent handlers, we denote f∗ a partial
event handler. Since f∗ generates events, it is an observable for
a complete event handler g. Binding g to f∗ yields the complete
event handler fg . When called, it performs the calculations
associated with f∗, then calls g. Any number of partial event
handlers can be chained to build an algorithm, as long as the
last handler is complete. For example, with g∗ now a partial
event handler, and h a complete event handler, one can build
the pipeline fgh . For each child, its direct parent is an observable
generating events. For each parent, its child is a complete event
handler (gh is a complete event handler and a child for f∗).
The syntax can be extended to partial event handlers generating
multiple event types: f∗,∗ is a partial event handler with two
observable types.

A more common approach to defining algorithms consists in
specifying inputs and outputs for each block. However, since a
partial event handler conditionally generates (possibly) multiple
event types, a generic output is a list of pairs {event, boolean}
representing optional objects3. Each boolean indicates whether
the event was generated. The program assembling the pipeline
would contain a complex sequence of function calls and nested
if-else statements to propagate only events that were actually
generated. Nested observables yield a syntax both easier to
read and more closely related to the event-driven nature of
the algorithm.

fgh is written f → g → h in figures to avoid nested
indices. Complex pipelines, including merging and feedback, are
discussed in section 7.

4.2. tarsier Implementation
The framework’s tarsier library is a collection of partial event
handlers implemented in C++. Each handler is declared and

3Using C++ STL primitives, the output’s type would be

std::tuple<std::pair<event_type_0, bool>,
std::pair<event_type_1, bool>, ...> . With the C++ 17 standard,

std::optional<event_type> can be used instead of pairs.

defined in a single header file: only the included ones are
compiled with the program. This organization makes the code
resilient to compatibility errors in unused handlers.

The partial handlers are implemented as classes with an
overloaded call operator. The children handlers types are
templated. In order to allow type deduction, each class is
associated with a make function: the partial event handler f∗
is associated with make_f . For any complete event handler
g, make_f (g) : = fg . Pipelines are built by nesting make
functions: make_f (make_g(h)) = fgh . Unlike event handlers, the
high-order make functions are pure. Most of them take extra
parameters to customize partial event handlers. For example,
tarsier::make_mask_isolated , which builds a partial
event handler propagating only events with spatio-temporal
neighbors, takes a sensor width and height and a time window
as parameters. Figure 5 shows a simple tarsier pipeline, bound to
a sepia observable.

The tarsier and sepia libraries are compatible even though they
are not explicitly related. Every partial event handler provided
by tarsier uses template event types, besides template event
handlers parameters. The event type has to be specified explicitly
(sepia::dvs_event in Figure 5), and must have a minimal
set of public members which depends on the event handler (often
x, y and t). A C++ struct with at least these three fields meets the
requirements of most tarsier handlers. Users can define custom
types to best represent the events output by their algorithms
(flow events, activity events, line events, time surfaces. . . ), or to
customize the events payload (with a camera index for stereo-
vision, sparse-coding labels. . . ).

This implementation has several benefits. Since the pipeline is
assembled statically, type checks are performed by the compiler.
Missing event fields and incompatible observable/event handler
bindings are detected during compilation, and meaningful errors
are returned (in contrast with run-time segfaults). Moreover,
an event loaded from disk or sent by a camera, with a specific
type, can be used directly without an extra copy to a buffer
holding events with another type. Since the compiler manipulates
a completely specified pipeline, it can perform more powerful
code optimizations. Finally, since static event handler calls have
no run-time overhead, events buffers can be traversed depth-
first instead of breadth-first (Figure 6). This operation ordering
reduces the pipeline latency, as observed in section 5.

5. COMPARATIVE BENCHMARKS

Event-based computer vision shows promise for real-time
sensing on robots (Blum et al., 2017). If a CPU is used
to run computer vision algorithms on a robot, the code
efficiency can make the difference between a real time
and non-real time system. Performance is also essential to
make realistic comparisons of conventional hardware and
neuromorphic hardware, or to compare two event-based CPU
algorithms. Even though the average number of operations
per event gives an estimation of an algorithm complexity,
it does not account for compiler optimizations, memory
IO or processor optimizations (branch predicting, cache. . . ).
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FIGURE 5 | This program uses both sepia and tarsier. It can be compiled on any computer without installing external libraries. The pipeline is implemented as a

sequence of nested partial event handlers. tarsier::mask_isolated removes noisy events, tarsier::mirror_x inverts the x coordinate and

tarsier::shift_y shifts the y coordinate by a fixed offset. Events outside the original window after shifting are not propagated.

FIGURE 6 | The 3× n operations associated with a sequence of three event handlers f , g, and h and a buffer of n events ei , i ∈ [0 . . . n− 1] can be performed in two

orders: breadth first and depth first. An implementation relying on dynamic polymorphic incurs an overhead for every distinct function call, and must therefore use the

breadth first approach (left). Depth first yields lower latencies, but requires static polymorphism: the pipeline must be assembled during compilation (right).

Hence, accurate speed comparisons require a comparison of
implementations, whose result depends on the quality of
the implementations.

The efficiency of an implementation depends on many
parameters, including the algorithm itself, the choice of

programming language, the use of suitable programming
primitives, and the properties of the framework. We aim to
compare the contribution of the latter among frameworks
designed for event-based computer vision. We restrict
this comparison to frameworks written in C/C++, to avoid
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comparing languages rather than frameworks. The compared
algorithms are given the same implementation in each
framework, thus observed differences can only be attributed to
frameworks properties.

The present benchmarks focus on event processing: the tarsier
library is compared to its counterparts in cAER, kAER, and
event-driven YARP. The other frameworks components (file
IO, camera drivers and display) are not considered. Moreover,
we were not able to include Dynamic Vision Systems in the
benchmarks: its current implementation uses multiple threads
and circular FIFOs between modules. Modules running faster
than their children overflow the FIFO, resulting in silent event
loss. Though not critical for real-time applications, this loss biases
benchmark results and prevents graceful program termination,

which depends on exact event counting. Nevertheless, since the
structural design choices of Dynamic Vision Systems are similar
to those of cAER, we expect comparable results. Event-driven
YARP offers two implementations for event buffers: vectors and
vQueues. Vectors leverage contiguousmemory, whereas vQueues,
which are double-ended queues of pointers to polymorphic
events, support arbitrary types. We evaluate the performance of
both options. The results associated with the vector (respectively
vQueue) implementation are labeled YARP (respectively YARP
vQueue). The code used to run the benchmarks is available online
(section 8). This resource also illustrates the implementation of
the same algorithms in various frameworks.

Before each benchmark, we load a specific stream of events
in memory. The events are organized in packets of up to 5, 000

FIGURE 7 | We implement the same partial event handlers in each framework in order to compare them. We consider five pipelines and three event streams. The total

time it takes to handle every event from the input stream is measured 100 times for each condition. We attribute the better performance of tarsier to static

polymorphism, which yields a program with fewer memory operations.
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events and up to 10ms (a new packet is created as soon as
either condition is met), as to mimic the typical output of a
camera. We consider two performance indicators. The duration
experiment measures the total time it takes to read the packets
from memory, run an algorithm and write the result back to
memory. It indicates how complex a real-time algorithm can be.
The latency experiment measures the time elapsed between the
moment a packet is available and the moment results are written
to memory. A packet is made available when the wall clock time
goes past the timestamp of its last event. A busy-wait loop is
used to wait for the wall clock time if the framework is ready
to handle a packet before the latter is available. This mechanism

simulates the output of an actual event-based camera while
avoiding putting processes to sleep, which is a source of non-
deterministic variations in the measured latency. The packets
contain sepia::dvs_event objects, chosen as a neutral type
for all the frameworks. Event type conversions, if needed, are
taken into account in the performance measurement. This choice
is not an unfair advantage to tarsier, since its handlers are
compatible with any event type (including the types provided by
sepia). The events dispatched from one partial event handler to
the next are framework-dependent. However, to avoid uneven
memory writes, the output events are converted to a common
type before being pushed to a pre-allocated vector. To make sure

FIGURE 8 | Low-latency is an important feature of event-based cameras, and therefore event-based frameworks. We measure the time elapsed between the

moment a buffer is available and the moment associated output events are produced by the pipeline. Events that are not propagated by the pipeline (for example,

removed noise) are not taken into account. For each condition, latency is measured for each output event over 10 runs of the whole stream. We attribute the better

performance of tarsier to depth-first traversal. kAER under-performs in this benchmark since it constrains buffers duration, unlike the camera model assumed in the

benchmarks: the resulting buffer reorganization increases delays. This benchmark’s relative variations are larger than the duration benchmark’s variations. The same

time measurement functions are used, however durations are order of magnitude larger than latencies.
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TABLE 2 | We use three event streams recorded by an ATIS to perform

benchmarks.

Stream

name

Description Duration

(s)

Event rate

(s−1)

Squares Artificial scene, moving

geometric shapes, fixed sensor

9.50 2.83e5

Street Natural scene, moving

pedestrians and cars, fixed

sensor

50.6 3.17e5

Car Natural scene, sensor inside a

moving car

69.6 9.56e5

The streams were chosen for their different conditions (artificial and natural scenes, fixed

and moving sensor) and average event rates.

that the output is not skipped by the compiler as an optimization,
we calculate the MurmurHash3 (Appleby, 2014) of each output
field once the algorithm completed. The resulting values are
controlled for each benchmark run, and guarantee that each
implementation calculates the same thing.

The benchmarks use five distinct algorithms (p1 to p5)
described (Figures 7, 8). Each pipeline is assembled from one or
several of the following partial event handlers:

• select_rectangle only propagates events within a
centered 100× 100 pixels window.

• split only propagates events representing a luminance
increase.

• mask_isolated only propagates event with
spatio-temporal neighbors.

• compute_flow calculates the optical flow.
• compute_activity calculate the pixel-wise activity. The

activity decays exponentially over time, and increases with
each event.

We use three event streams, listed in Table 2 and available
in the benchmarks’ repository. These streams contain polarity
events recorded by an ATIS, in both controlled and natural
environments. The duration experiment is run one hundred
times for each combination {stream, pipeline, framework}, and
the delay experiment ten times. Each delay task generates many
samples, whereas each duration task yields a single value. All
6,600 tasks are shuffled, to avoid possible biases, and run
sequentially on a computer running Ubuntu 16.04 LTS with
an Intel Core i7-6700 CPU @ 3.40GHz CPU and a 16 GB
Hynix/Hyundai DDR4 RAM @ 2.4 GHz. The code is compiled
with GCC 5.5, C++11 and the -O3 optimization level.

5.1. Duration
The duration benchmark results are illustrated in Figure 7. The
approach presented in this paper yields the smallest duration on
all the pipelines and event streams considered. This improvement
over state-of-the-art frameworks can notably be attributed to
a reduced number of memory reads and writes, thanks to the
template event types.

Event-driven YARP yields longer durations than the other
frameworks. The difference is most likely related to the use

of IP packets to communicate between filters. The alternative
implementation event-driven YARP vQueue is substantially worse
with respect to the considered benchmarks. We attribute the
performance loss to the non-contiguous memory allocation of
events in vQueues. The other frameworks use either multiple
hard-coded event types (cAER, kAER, event-driven YARP), or
template event types (tarsier) to leverage contiguous memory.

The pipeline p3 contains more operations than p2. Yet,
the p3 tarsier implementations has a smaller duration than
p2 (the effect is most visible with the street stream). The
compute_activity event handler does not utilize the visual
speed calculated by compute_flow , only the flow events’
timestamp and position. Therefore, the flow computation can
be skipped without changing the algorithm outcome. In the
case of frameworks with modules assembled at run-time, the
compiler cannot make this simplifying assumption. We believe
this behavior can improve the performance of complex pipelines,
where finding redundant or unused calculations manually can
prove difficult.

5.2. Latency
The latency benchmark results are illustrated (Figure 8). Wall
clock time ismeasured withmicrosecond precision for each input
packet and each output event. Latency samples are calculated by
subtracting the wall clock time of output events and that of their
input packet. In some cases, the latency is zero, meaning that the
actual elapsed wall clock time is smaller than the measurements’
precision. To allow representation on a log-scale, we round up
null latency samples to 0.5 µs.

The relative standard deviation is much higher for the
latency benchmark than the duration one. As a matter of fact,
measured values are much smaller: durations are in the order
of seconds, whereas latencies are on the order of microseconds.
Thus, every small non-time-deterministic operation (memory
operations, CPU prediction, kernel preemption. . . ) has,
relatively, more impact.

The kAER framework yields substantially larger latencies than
the other frameworks. Since it enforces buffers with a constant
duration, latency increases when the buffers provided by the
camera use a different, possibly variable, duration.

The framework presented in this paper outperforms the
others in this benchmark as well. Low-latency can be a major
benefit for robots or closed-loop systems. The performance
gain is a consequence of buffer depth-first traversal and
the reduced number of memory operations, since inter-
handler communication is not implemented with buffers. The
latency reduction improves with the duration of the algorithm
when comparing tarsier and cAER, as illustrated in Figure 9

(top graph).
However, the latency variance is larger for tarsier than cAER,

and increases with the pipeline duration as well. This is another
consequence of depth-first traversal: the first event in the input
buffer is handled as soon as the packet is available, and therefore
has a small latency. In contrast, the last event in the buffer
waits for all the other events to be handled, resulting in a
much larger latency. This phenomenon does not exist with cAER
since the whole packet is processed by each module sequentially:
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FIGURE 9 | The graphs presented in this figure take a closer look at the

latency created by tarsier and cAER for the car stream. In the top graph,

latency is plotted as a function of pipeline duration when run with tarsier

(arbitrarily chosen as a complexity indicator). tarsier has a smaller median

density, but a larger variance. The density probability for the most complex

pipeline is plotted in the middle and bottom graphs (blue and green). It

accounts only for framework latency (as does the first graph). Adding the

latency caused by packetization in the camera (before the USB transfer) yields

the total latency. The depth-first traversal leveraged by tarsier better

counterbalances packetization, resulting in both a lower total latency and a

smaller variance.

events with the same input packet exit the pipeline at the
same time.

The latency used so far takes only the framework into account.
The first event of each buffer is also the one that waited the

most in the camera while the input buffer was being filled. If we
neglect the USB transfer duration, we can define the total latency
associated with an event as the sum of the framework latency
and the timestamp difference between the last event in the packet
and the considered event. The total latency as well as its variance
are both smaller for tarsier when compared with cAER, since
the packetization effect is counterbalanced by the depth-first
traversal. Both the framework latency and total latency densities
are illustrated in Figure 9 (bottom graphs).

6. EVENT DISPLAYS

Conventional screens display frames at fixed time intervals4. In
order to display events, one has to perform a conversion. Most
frameworks rely on fixed time windows: a frame pixel is colored
in white if it was the source of a luminance increase event during
the associated time interval, in black if the luminance decreased,
and in gray if nothing happened. This approach does not account
for the high temporal resolution of the signal. Another method
relies on time decays (Cohen, 2016; Lagorce et al., 2017): the
frame pixel i is given the color ci =

1
2

(

1+ δi · exp
(

−
t−ti
τ

))

. t
is the current timestamp. ti is the timestamp of the most recent
event generated by the pixel i. δi = 1 if the last event generated
by i corresponds to a luminance increase, and −1 otherwise. τ is
a fixed decay. Figure 10 illustrates the difference between the two
methods, highlighting the benefits of exponential decays.

The full-frame decay rule requires an exponential calculation
on every event for every pixel (for an ATIS, 72,960 pixels amillion
times per second), which is both unrealistic and unnecessary,
since the typical display features a 50Hz refresh rate. Instead,
one can calculate the decays only when a frame is about to be
rendered, and use the GPU available on most machines to do
so. GPUs are designed to run massively parallel calculations with
every frame, thus are well-suited to this task.

The chameleon library provides Qt (1995) components
to build event displays. The components are independent
and header-only. Unlike sepia and tarsier, chameleon cannot
be used without Qt 5. In return, the event displays can
easily be integrated into complex user interfaces. The
chameleon::dvs_display implements the full-frame
decay method mentioned previously. This component assumes
two threads: an event loop (for example, a sepia observable
followed by a tarsier pipeline) and a render loop. The loops
communicate using a shared memory with one cell per
pixel, where the last timestamp and polarity of each event is
stored. When a new frame is about to be rendered, the shared
memory is sent to an OpenGL program to compute each
pixel’s time decay. The shared memory is accessed millions of
times per second by the event loop. Usual mutexes can cause
non-negligible overhead, since they rely on system calls. The
chameleon implementation uses spin-lock mutexes instead
(essentially busy-wait loops with atomic variables), at the cost
of increased CPU usage. To minimize the strain on the event

4Recent screens compatible with Nvidia’s G-Sync technology can display frames at

varying time intervals, narrowing the gap between frames and events. Exponential

decays can be used to convert events to frames compatible with such screens.
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FIGURE 10 | This figures compares two strategies to convert events to frames

for display. The time window approach (left) degrades temporal information:

the still frames do not hold enough information to determine the geometric

shapes motions (top row) or the relative speed of the car and the pedestrian

(bottom row). The exponential decay approach (right) represents temporal

information with gray levels. It is computationally more expensive than the time

window approach, but can be easily implemented on a GPU to relieve the

CPU.

loop, the render loop first creates a local copy of the shared
memory, then releases the mutex, and finally communicates
with the GPU. This mechanism is illustrated in Figure 11.
Figure 12 gives an overview of an application build with the
three major components of the framework, with a focus on
thread management. This application’s code is available in the
tutorials repository.

The proposed approach does not rely on pre-defined frame
boundaries: the frame-rate matches the display rate regardless the
event loop speed. Consequently, the visual animation remains
smooth even if the event pipeline is slower than real time. A
smooth slow-motion display can be created by artificially slowing
down the event loop.

The colors used by the DVS display can be customized:
the ci value is then used as a weight parameter for mixing
the colors. Transparent colors can be used, enabling display
overlays for cameras generating multiple stream types (such as
the ATIS or the DAVIS). Other notable components provided
by chameleon include a vector field display (well-suited to flow
events), a blob display, a time delta display (to represent the
absolute exposure measurements of an ATIS), and a screen-
shot component to easily create frame-based videos. These
components use template event types, similarly to tarsier event
handlers, and the type requirements follow the same conventions.

FIGURE 11 | In order to convert events to frames, one has to reconcile the

very different rates of the event loop (about 1MHz) and the display loop (often

50Hz). We use a shared memory the size of the sensor, protected by

thread-safe locks. On each event, the first thread (blue) overwrites former

events with the same spatial coordinates. Every time a frame is about to be

rendered, the display loop (green) copies the shared memory to RAM and

releases the lock, then communicates with the GPU. The memory-to-memory

copy minimizes lock ownership, to avoid blocking the event loop. The lock,

acquired with every event, is implemented as a spin-lock mutex.

The displays coordinates system follows the usual mathematical
convention, with the origin located at the screen’s lower-left
pixel. The usual computer vision convention (origin at the
upper-left pixel) is not used as it is a result of the matrix
representation of frames, which event-based algorithms aim
to avoid.

7. FRAMEWORK EXTENSIONS

7.1. Camera Drivers
Since most event-based cameras feature a USB interface,
their drivers can be devised as user-space programs atop a
third-party library overseeing the USB communication. To
keep the codebase modular and minimize dependencies, each
camera interface is held in a distinct repository extending the
sepia library.

As of now, the following cameras are supported:

• DVS 128. We re-implemented the libcaer interface to provide
out-of-the-box MSVC support.

• ATIS (Opal Kelly board). This extension depends on the non-
free Opal Kelly Front Panel library.

• ATIS (CCam 3). This camera has the same pixels and arbiter as
the Opal Kelly ATIS, however it features a custom FPGA and
a USB 3 interface. It was designed by Prophesee.

• DAVIS 240C. We re-implemented the libcaer interface for this
sensor as well.

Event-based cameras have internal buffers to store events while
waiting for a USB transfer. A camera generating events at a
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FIGURE 12 | This figure provides an overall view of the threads in an ATIS event stream viewer application using sepia, tarsier, and chameleon. The application reads

an Event Stream file and displays it as frames. The observable constructor (respectively destructor) creates (respectively joins) the event loop thread, in accordance

with the RAII (Resource acquisition is initialization) philosophy of C++. The push inter-thread messages rely on the mechanism illustrated in Figure 11, whereas the

stop signal is implemented as an atomic boolean. The code for this application can be found in the tutorials repository.

faster rate than what the computer program can handle ends
up filling its internal buffers to capacity. At this points, cameras
either drop new events or shuts down. To circumvent this
issue, each sepia extension uses an extra thread to communicate
with the camera, independently of the event loop executing
the algorithm. The two threads communicate with a thread-
safe circular FIFO. An overall view of the threads of an
application using a sepia extension, tarsier and chameleon is given

in Figure 13. The circular FIFO implementation is provided
by sepia.

Multiple parameters can be specified to configure an event-
based camera, such as the operating mode or the current
biases. JSON files are used by sepia extensions to specify the
configuration. The sepia header implements a JSON parser and
validator to load configuration files and warn users in case of
syntax errors or unknown parameters.
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FIGURE 13 | This figure provides an overall view of the threads in an ATIS camera viewer application using opal_kelly_atis_sepia, tarsier, and chameleon. The

application listens to a camera and displays the generated events as frames. It encompasses the application illustrated in Figure 12. The extra thread is used to

communicate with the camera as fast as possible even when the event loop is busy. The two threads communicate through a thread-safe FIFO buffer implemented in

sepia. The Opal Kelly Front Panel library does not provide a poll function, hence the explicit sleep step in the graph. However, this function is used by sepia extensions

based on libusb, resulting in reduced CPU usage.

7.2. Complex Pipelines
The present framework is designed to implement feed-forward
pipelines, with optional splits. Most partial event handlers can
be represented with populations of neurons, as they perform
small calculations with each input. Thus, event-based pipelines
can be translated to neuromorphic hardware, though a method
to actually perform the conversion has yet to be devised.

However, not all neural networks can be represented with
event handlers. Notably, neurons with second order dynamics
and synapses with delays dispatch events that are not an

immediate response to an input spike. The present framework,
and more generally, purely event-based algorithms—cannot
implement such models. To use complex neurons to process the
output of a camera, one needs to leverage frameworks designed to
implement neural networks. The present framework can, in this
case, be used to communicate with sensors, perform low-level
processing and send events to the neural network.

Nevertheless, two types of architectures more complex than
feed-forward pipelines can be implemented in our framework:
streams merging and feedback loops. Even though they still
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impose more constraints than generic spiking neural networks,
they allow for the efficient implementation of algorithms on a
CPU without the need for another framework.

Streams merging has the following generic structure:

A, B are partial event handlers, and C is a complete event
handler. This structure appears when merging the results of
several calculations with a common origin. For example, onemay
split a stream of polarity events to compute two optical flows
(one per polarity) and merge them to calculate an overall flow.
A and B run sequentially in this scenario, therefore events are
dispatched to C in the order of their timestamps. This scenario
can be implemented by constructing C before the pipeline. The
partial event handlers A and B are both given a reference to C

as complete event handler. The std::reference_wrapper
class can be used to prevent template deduction to a non-
reference type, which would trigger a copy.

The merge operation can also arise from the use of multiple
sensors, for example for stereo-vision or audio-video fusion. In
this case A and B run in parallel, on different threads. Given
the non-deterministic scheduling of most operating systems, C
must re-order the events dispatched by its observables before
handling them. This operation is implemented by the partial
event handler tarsier::merge , compatible with an arbitrary
number of observables.

A simple feedback loop can be modeled as:

A and B are both partial event handlers. This structure can be
useful for flow control or learning. The feedback operation can
be executed at various moments in the lifecycle of an algorithm:
after processing a batch of data, immediately after each event
and after each event with a delay. The implementation of the
second and third approaches is not straightforward with existing
packet-based frameworks. The whole packet has already been
processed by A when the first event is processed by B, preventing
the associated feedback from affecting the next events. The
second approach can be implemented in tarsier using variables
shared between A and B. Before handling an event, A reads
from the variables and processes the event accordingly. After
handling an event, B writes to the variables. Since an event is
completely handled before the next is considered, modifications
of the shared variables caused by the event n will be available to
event n+1. The third approach—adding delays to the feedback—
can be implemented by combining the second approach and a
merge structure.

7.3. Parallelism
The application illustrated in Figure 13 relies on
multiple threads, and can take advantage of CPUs

with a few cores. However, the sequential strategy
presented so far does not harness the full potential of
many-cores architectures.

The creation of parallel tasks and inter-task communication
have a cost. An application using multiple tasks must reach a
compromise on grain size (Acar et al., 2018). A large grain size
yields less overhead, whereas a small grain size fully utilizes the
CPU capabilities. The atomic tasks of an event-based pipeline
are its partial event handlers. Larger grain sizes can be obtained
by combining several partial handlers into a single task. The
tasks represented in Figure 6 can be combined either vertically
(one thread per event) or horizontally. The former requires
inter-thread communication with every partial handler to ensure
sequentiality, canceling the benefits of parallelism, whereas
the latter corresponds to the buffer-based approach of event-
driven YARP and Dynamic Vision System. Consequently, latency
increases with the grain size.

Parallelism can be beneficial when high latency is not critical
and a high throughput is required. However, implementing
parallelism efficiently is not straightforward: to avoid FIFO
overflows between modules, possibly complex flow control
algorithms must be implemented. High-quality libraries
provide high-level tools to build parallel algorithms, such
as Intel Threading Building Block’s flow graph (Tovinkere
and Voss, 2014). The partial event handlers provided by
tarsier can be integrated with such tools. Thus, one can
implement an algorithm once and use it with either a low-
latency tarsier pipeline or a high-throughput flow graph.
An example integration of a partial event handler in a class
manipulating buffers is given in the tutorials repository.
This approach can also help integrating tarsier with other
event-based frameworks, in order to use existing drivers
and viewers.

8. CONCLUSION AND DISCUSSION

We have presented a modular framework for event-based
computer vision with three major components: sepia, tarsier, and
chameleon. The components, though designed to work together,
have no explicit relationship, thus minimizing the external
dependencies of each component. Moreover, each component
can easily be replaced with other libraries.

The presented framework hides buffers from the user,
serving our goal: encouraging functional, event-based semantics
likely to translate to neuromorphic hardware while providing
an efficient implementation on CPUs. Benchmarks show an
increased throughput and a reduced latency compared to state-
of-the-art frameworks for event-based computer vision. Using
contiguous memory to store events is crucial to performance.
Moreover, assembling pipelines before compilation reduces
latency and improves throughput, thanks to better compiler
optimizations and fewer memory operations. The common
practice of hard-coding simple operations (mirroring the stream,
removing noise. . . ) in file readers to reduce latency is no longer
required with static polymorphism, yielding a cleaner, more
generic codebase.
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The benchmarks compare performance with pipelines of
varying complexity. However, all the considered experiments
use simple pipelines (without merges or loops), focus solely on
the algorithm performance (the performance of IO and display
operations is not evaluated), and run in real-time on the test
machine. In a future work, we plan to devise new benchmarks
to cover more use-cases. Moreover, adding more measurements,
such as power consumption, will enable comparisons with
neuromorphic hardware.

Assembling a pipeline before compiling requires meta-
programming, i.e., another programming language to generate
the actual code. The framework presented in this work uses C++
template meta-programming, since this language is supported
by every standard-compliant compiler. Nevertheless, it can be
unsettling to new users, and makes the creation of wrappers
in high-level languages, such as Python, difficult. A high-
level language or graphical user interface must bundle a
C++ compiler to generate tarsier pipelines. Nevertheless, the
framework modular structure and its independence from third-
party libraries make it a good candidate for a common low-
level library to multiple high-level interfaces. It can notably be
integrated with native Android applications, or used to speed up
Python modules.

The observer pattern used by the framework naturally models
event-based cameras and algorithms. However, this pattern can
lead to the problem known as callback hell: deeply nested
statements make the code hard to read. Languages, such
as Javascript have solved this problem with the async/await
construct. This construct is available in C++, but is not
compatible with the template deduction mechanism leveraged by
the framework.

The current implementation of partial event handlers relies on
make functions. These functions wrap the handlers constructors
to enable template deduction. The C++17 standard allows
template deduction from the constructor of a class, making
the make functions unnecessary. The upcoming Debian 10
and macOS 10.15 operating systems will provide full support
for this standard with their default libraries, allowing a major
framework update.
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