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Understanding how individuals utilize social information while making perceptual
decisions and how it affects their decision confidence is crucial in a society. To date, very
little has been known about perceptual decision-making in humans and the associated
neural mediators under social influence. The present study provides empirical evidence
of how individuals are manipulated by others’ decisions while performing a face/car
identification task. Subjects were significantly influenced by what they perceived as the
decisions of other subjects, while the cues, in reality, were manipulated independently
from the stimulus. Subjects, in general, tend to increase their decision confidence when
their individual decision and the cues coincide, while their confidence decreases when
cues conflict with their individual judgments, often leading to reversal of decision. Using
a novel statistical model, it was possible to rank subjects based on their propensity to be
influenced by cues. This was subsequently corroborated by an analysis of their neural
data. Neural time series analysis revealed no significant difference in decision-making
using social cues in the early stages, unlike neural expectation studies with predictive
cues. Multivariate pattern analysis of neural data alludes to a potential role of the frontal
cortex in the later stages of visual processing, which appeared to code the effect of cues
on perceptual decision-making. Specifically, the medial frontal cortex seems to play a
role in facilitating perceptual decision preceded by conflicting cues.

Keywords: perceptual decision making, social influence, computational modeling, gamma mixture model,
multivariate pattern classification

1. INTRODUCTION

In today’s information-satiated society, perceptual decision and subsequent action are greatly
influenced by social information. Modern human society is increasingly organized around
collective opinions, as reflected in people’s increased use of web ratings for daily choices about
consumer products, lodging, food, and entertainment (Jayles et al., 2017). Opinions and choice can
easily propagate through social networks (Jansen et al., 2009; Gongalves and Perra, 2015) in this
digitized world, and even political opinions can be manipulated using social transmission (Bond
et al., 2012). The human tendency to conform to social influence has been explored systematically
in classic studies by Solomon Asch (Asch and Guetzkow, 1951; Asch, 1955) and others (Berns et al.,
2004, 2010; Behrens et al., 2008; Klucharev et al., 2008, 2009, 2011; Campbell-Meiklejohn et al.,
2010; Biele et al., 2011; Izuma and Adolphs, 2013 and see Tajfel, 1982; Cialdini and Goldstein, 2004;
Izuma, 2013 for reviews). Reliance on other’s opinion is not unique to humans. Different species
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of animals depend on collective opinion to decide on life-
critical perceptual tasks like foraging for food, placement of
nests and navigation (Simons, 2004; Conradt and List, 2009;
Couzin, 2009) and evolve optimal decision-making strategies
accordingly. Consideration of the beneficial effect of group
decision can be traced back as early as 1907, when Francis
Galton analyzed the opinions of 787 people about the weight
of an ox and found that combining their numerical assessments
resulted in a median estimate that was remarkably close to the
true weight of the ox (Galton, 1907). In recent times, this idea
has been popularly referred to as the “wisdom of the crowds”
(Surowiecki, 2005). However, the effect of social cues in the form
of collective decision on individual percept and the underlying
neural mechanism remains largely unexplored (Klucharev et al.,
2009; Izuma, 2013).

Neural expectation studies over the last decade have
demonstrated that predictive cues typically lead to changes in
early sensory processing (Carlsson et al., 2000; Kok et al., 2012a,b,
2013, 2014, 2016, 2017; Jiang et al., 2013; John-Saaltink et al.,
2015; Todorovic et al., 2015; Sherman et al., 2016), but recent
research has contradicted this claim (Bang and Rahnev, 2017;
Rungratsameetaweemana et al., 2018). We sought to examine
whether social information produces similar early top-down
changes in the sensory cortex. We propose to manipulate the
individual choice and decision confidence of humans performing
a perceptual task by presenting visual cues that the subjects
presume to be the collective opinion of other well-performing
participants. The cues can be concurring, conflicting or neutral
to the individual perceptual decision of the subjects. Using a
novel statistical model, we studied the effect of the three types
of cues on individual choice. We also analyzed the neural signals
to explore the neural mediators producing the change in their
individual choice upon being presented with social information.
Finally, we performed a source reconstruction of the neural
signals to elucidate the role played by specific spatio-temporal
areas under the influence of cues. Specifically, we explored the
following questions:

Can we manipulate individual perceptual decisions upon
presenting potential social information cues when the cues differ
from the individual choice? Does this reversal of opinion depend
upon how confident the subject was in his/her choice without any
influence from cues?

Can individual decision confidence be augmented when the
cues concur with the individual choice?

Can we identify flip-floppers based on computational
modeling of their behavioral data and corroborate using
neural data?

Can we explore the neural mediators that contribute to the
change in individual percept post-cue display?

Using a face/car discrimination task, we show that it is possible
to manipulate individual choice post-presentation of cues in the
guise of the decision of others. Although the cues were randomly
generated and independent from the stimulus, it was possible
to alter the individual percept, as subjects presumed the cues
as concurring, conflicting, or neutral. Irrespective of the order
in which they viewed the images with or without cues, most
subjects were affected by the cues in a systematic manner. The

distribution of the decision confidence under such a set up was
found to be bimodal and skewed, with one mode guided by
social information and the other influenced by the individual’s
own decision. The tendency to adhere to their own decision
depends on the confidence level of the subject and is reflected
in the skewness of the data distribution. Hence, using a Gaussian
model to explore the data, which is the usual practice (Park et al.,
2017), might not capture the complexities of data completely.
We propose a novel model using a mixture of shifted gamma
and negative gamma distributions that successfully captures the
effect of social cues on individual choice. To the best of our
knowledge, this is the first study using a mixture of variants
of gamma distributions, which captures the bimodal nature as
well as the skewness (whether high or low) of this kind of
data. We compare our proposed model with the mixture of
two Gaussian distributions and demonstrate the superiority of
our model convincingly. Based on the behavioral model, it was
possible to objectively identify subjects most prone to change
their decisions upon being presented with the opinion of others.
Subsequent multivariate pattern analysis (MVPA) of neural data
substantiated the above finding. Neural analysis also elucidated
the existence of a late component that seems to code the effect
of this social information on individual perceptual decision.
Source analysis of neural data revealed a role for the frontal
cortex in coding perceptual decision using social information.
Our analysis alludes to the role of the medial frontal cortex
in coding information when conflicting social decisions are
provided as cues.

2. MATERIALS AND METHODS

2.1. Stimuli and Display

The data set consisted of 290 x 290 pixel 8-bit gray-scale images
of 12 cars and 12 faces with an equal number of frontal views and
side views. Face images were taken from the Max Planck Institute
for Biological Cybernetics face database (Troje and Biilthoff,
1996). All stimuli were filtered to attain a common frequency
power spectrum. Noise was generated by filtering white Gaussian
noise (std of 3.53 cd/m?) by the average power spectrum. Noise
was added to the base stimuli to generate a set of 250 images (125
face, 125 car). The contrast energy of all 250 images was matched
at 0.3367 deg?. The participants were at a distance of 125 cm from
a display with a mean luminance of 25 cd/m?. Images subtended
a visual angle of 4.57°.

2.2. Participants and Experiment

Twenty naive participants (ages: 22-28, mean: 25.85, std: 2.39)
participated in the study, which consisted of 1,000 trials split
into 40 successive sessions. Three subjects were not considered
in the analysis due to the high degree of noise present in
the neural data. All participants had normal or corrected-to-
normal vision and disclosed no history of neurological problems.
The participants performed a face/car discrimination task and
reported their decision using a 10-point confidence rating.
Participants perceptually categorized briefly (50 ms) presented
images of cars (C) and faces (F) embedded in filtered noise. The
participants began by fixating on a central cross and clicking
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anywhere on the screen. After a delay of 50 ms, a cue was
presented for 100 ms followed by a variable delay of 500-800 ms.
The stimulus was presented for 50 ms followed by a delay of 700
ms, after which the response screen appeared. The participants
reported their decision using the confidence rating, with a rating
of 1 indicating complete confidence that the stimuli was a face
and a rating of 10 indicating complete confidence that it was a
car. The participants reported their confidence rating on a gray-
scaled colorwheel in the response screen to avoid any motor bias
(Figure 1A). There were four types of cues, FF, CC, FC, and
CE representing decisions of two independent well-performing
participants who had previously completed the study. Cues were
systematically manipulated such that an equal number of images
(250 per condition) had FF cues, FC/CF cues, and CC cues.
There were also an additional 250 images without cues. Thus,
each participant saw one stimulus four times preceded by an
FF cue, FC/CF cue, CC cue, and no cue in the course of the
experiment in random order, and the responses were recorded.
Participants were naive to the purpose of the study and, in
subsequent questionnaire after the study, failed to realize that
the cues were not decision cues but were, in fact, synthetic cues
generated randomly.

EEG activity was recorded using 64-channel active shielded
electrodes mounted in an EEG cap following the international
10/20 system. EEG signals were recorded using two linked Nexus-
32 bioamplifiers at a sampling rate of 512 Hz, band-pass filtered
(0.01-40 Hz.) and then referenced using average referencing.
Trials with ocular artifacts (blinks and eye movements)
were detected using bipolar electro-occulograms (EOG) with
amplitude exceeding 100 mV or visual inspection and were not
included in the analysis.

2.3. Behavioral Model

We propose a statistical model to explore the effect of the
presented cues on perceptual decision making. In the experiment,

for every face/car stimulus, subject responses corresponding to
the three types of cues (FF, FC/CF, and CC) along with a response
to the same stimuli with no cues were recorded. The response
to the no-cue image was taken as the individual decision on the
subject, k; € {1,2,...10}, for that image. Further, we define a
social cue variable k, as

1  if cue shown was ‘FF,
k, =145 if cue shown was ‘FC/CF’,
10 if cue shown was ‘CC’.

All the images in which the individual decision of the subject
was ki were considered, and the distribution of the decisions
on the same images under the influence of each type of cue was
studied. Hence, the data comprised the decisions of a particular
subject for every (k;,kz) pair. In most cases, the data distributions
were bimodal in nature, having positive and/or negative skew, as
seen in Figure 1B. Hence a two-component mixture model based
on variants of the gamma distribution was proposed to explain
the decisions taken by the subject under the influence of a cue.
The data were made continuous by using jittering (addition of
uniform random noise, Chanialidis, 2015) to provide flexibility
in modeling.

Let X;(ki, kz) contain the decisions taken by the ith subject
on all images, where his/her individual decision was k; and the
cue shown was k,. We consider the elements of X;(k;,k;) as
i.i.d. observations from a distribution. To propose the statistical
model depending on the choices of (ki, k3), we first introduce
some terminology and notation. The probability densities of
shifted gamma and negative gamma distributions are given,
respectively, as
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FIGURE 1 | Experimental protocol and behavioral response. (A) Experimental Paradigm. (B) Histogram of the observed data and fitted density of the proposed model
(red) and Gaussian mixture model (black) for a subject for different combinations of k1, k> (denoted above each case, e.g., (1,10) implies subject data and fitted model
for the images when individual choice was 1, denoting face with highest confidence, and cue shown was CC). Here, the x-axis denotes the confidence scale, and the
y-axis denotes the relative frequencies of the subject’s choices for a particular combination of k1, kz.
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where o and $ are the shape and scale parameters, respectively,
and L is a known constant.

Based on Equations (1) and (2), the following models
are proposed depending on the choices of (ki, k). If k1 €
{1,2,...,5}and k, € {1, 5}, we take our model as

f00) =P oy g (0) + (1 = P) oy 8, (%), (3)

a mixture of two shifted gamma distributions. When k; €
{6,7...,10} and k, = 10, the proposed model is

f(x) = p nge, p, (%) + (1 = p) ngy, p, (%), (4)

a mixture of two negative gamma distributions. Finally if either
ki € {1,2,...,5} and k; = 10 or k; € {6,7...,10} and
ky € {1, 5}, our suggested model is

fX) =P oy, (%) + (1 — p) g, p, (%), (5)

a mixture of a shifted gamma and a negative gamma distribution,
where 0 < p < 1 is the mixing parameter.

2.3.1. Parameter Space of the Model

We have taken the restricted parameter space for the shape
parameter () in both the distributions (Equations 1 and 2) so
that the modes of the distributions are defined and are either
more than or equal to 1 (for the shifted gamma case) or less
than or equal to L (for the negative gamma case). In our case,
we consider L to be 11. In particular, for both shifted-gamma and
negative-gamma distributions,

e the shape parameter o € [1,00) and
e the scale parameter 8 € (0, 00).

2.3.2. Estimation of the Model Parameters

Next, for the purposes of estimation of the parameters of our
proposed model and further inference, only those data are
considered that have more than 10 observations. Note that the
parameter estimates depend on i as well as (kj, kz); that is to
say, for every individual i, the parameter estimates may vary
for different choices of (kj,k;). Similarly, for a given (kj, kz),
parameter estimates of the proposed model may vary from
individual to individual. We estimate the model parameters by a
maximum likelihood estimation procedure (Casella and Berger,
2002). Since the proposed models are mixture densities, to
calculate the maximum likelihood estimates (MLE) we invoke the
EM algorithm technique (Casella and Berger, 2002). However,
since closed-form solutions for estimates of shape parameters do
not exist, we apply the Newton Raphson numerical technique
(Atkinson, 1978) within each M-step of the EM algorithm (see
Supplementary Information for detailed calculation).

2.3.3. Goodness of Fit

To understand how well our model fits the observed data,
the Kolmogorov-Smirnov (KS) test statistic (Gibbons and
Chakraborti, 2011), based on the maximum absolute differences

between the hypothesized cumulative distribution function (cdf)
and empirical cumulative distribution function (ecdf), was
used. For each subject i, there were N; models to be tested
simultaneously, and the case of multiple testing therefore arose.
To control the family-wise error rate arising due to multiple
hypothesis tests per subject, we used the Holm-Bonferroni
method (Westfall et al., 1993) with a family-wise error rate
(FWER) of 0.05.

2.3.4. Model Prediction

We use a 10-fold cross-validation procedure to study the
predictive performance of the proposed model. Since our data
were bimodal in nature, it would not have been meaningful to
judge this performance on the basis of a single predictive interval.
To address this issue, we applied the following concept of a
highest probability density region (HPDR) (Hyndman, 1996),
which broadly computes the smallest region that contains most
of the probability.

Definition: Let f(x) be the probability density function of a
random variable X. The 100(1 — «)% HPDR is then defined as
the subset R(fy) of real numbers, R, such that

R(fo) = {x:f(x) = fu),

where f, is the largest constant with P(X € R(fy)) > 1 — «.

In each fold, the model was trained on the training set, and the
95% HPDR was computed. It was checked whether the validation
set fell within the estimated HPDR, and the process was repeated
for each cross-validation fold.

2.3.5. Model Comparison

We compared the performance of our proposed model with the
two-component Gaussian mixture model using a likelihood ratio
test (Casella and Berger, 2002). Data were divided into 10 test sets
using 10-fold cross-validation and, for each set, the likelihood was
estimated with each of the two models. Finally, the medians of the
likelihood ratios across the folds were computed for each of the
models for the purpose of comparison.

2.4. Behavioral Data Processing
Guided by the proposed model, the behavior of the individuals
were analyzed based on the following measures.

2.4.1. Distance Metric Computation Using the Model
To quantify the overall shift in decisions from the subjects’
individual choice, the following distance was used

Xi if ki = ko,
Dilki k) = (VX ik =ho ©)
VX;X7lx;  otherwise,

where x;, = (ki — my(i),k; — mz(i)), m; and m, being
the vectors containing the two modes of the N, x,) subjects
and i = 1,2,...,Ny, k). Here, N, k,) denotes the number
of subjects available corresponding to (kj,k;), and ¥ is the
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estimated variance covariance matrix of estimates of the modes
for a particular choice of (ki, k), given by

Var(my)

X = [Cov(ml,mz) Var(my)

Cov(ml,mz)i|

2.4.2. Social Bias Score

Using the cumulative distribution functions of shifted-
gamma and negative-gamma distributions (as calculated in
Supplementary Information) and Equations (3)-(5), the
proportion of decisions between k; and k; in the presence of
social cues was estimated. The average proportion of decisions
(pi) per subject across the (kj, k) pairs, which are reported in
Tables S5-S8, was considered. We ranked the subjects based on
social bias score, defined as

pi—0.5

Wi= i

for i € {1,2,...,17} \ {2,3}, with o denoting the sample
standard deviation of the proportions p;. Only those subjects
were considered for further analysis whose W; exceeded 1.96,
indicating that the corresponding proportions are significantly
more than accounted for by chance.

2.5. Neural Data Processing

The preprocessed EEG signals were time-locked to stimulus
onset and included a 200 ms pre-stimulus baseline and 500 ms
post-stimulus interval.

2.5.1. Multivariate Pattern Analysis of EEG

Univariate EEG analysis had traditionally been used to explore
the relationship between behavioral performance and neural
activity in specific cognitive tasks. However, the univariate
analysis techniques fail to fully utilize the spatio-temporal
nature of multivariate neural data. Multivariate pattern analysis
techniques provide a way to integrate the spatial and temporal
information present in the data by fusing the neural information
into a single decision variable that can be used in single-trial
analysis. A comparison between univariate and multivariate
analyses using a similar cognitive task has been shown in Das
et al. (2010). Successful use of MVPA has been demonstrated in
numerous studies using EEG and fMRI (Haynes and Rees, 2005;
Kamitani and Tong, 2005; Philiastides et al., 2006). In the current
study, MVPA was used to extract meaningful information from
the multi-dimensional EEG data. Since the neural data is high
dimensional and suffers from the small sample size problem (Das
and Nenadic, 2009), a recently proposed principal component
analysis (PCA)-based non-linear feature extraction technique—
“Classwise Principal Component Analysis” (CPCA) (Das and
Nenadic, 2009)-is used. CPCA has been used previously to
efficiently reduce the dimensionality of the EEG signals and
extract informative features (Das et al., 2009, 2010; Do et al., 2011,
2013; Wangetal., 2012; King et al., 2013). The main goal of CPCA
is to identify and discard non-informative subspace in data by
applying principal component-based analysis to each class. The
classification is then carried out in the residual space, in which
small sample size conditions and the curse of dimensionality

no longer hold. A Linear Bayesian Classifier was then used for
computing the choice probability for single-trial EEG data for
each subject. Pattern analysis was performed using 10-fold cross-
validation. The original data were partitioned into 10 equally
sized subsamples. Of the 10 subsamples, a single subsample was
retained as the test data, and the remaining nine subsamples were
used in training the classifier. The performance of the classifier is
captured by the receiver operating characteristics (ROC) curve,
which plots the true positive rate vs. false positive rate at different
classification thresholds. The area beneath this ROC curve (AUC)
is often used as a measure to determine the overall accuracy
of the classifier (Duda et al., 2012). We utilize the well-known
approach of calculating the area under the ROC by finding the
Mann Whitney U-statistic for the two-sample problem (Mason
and Graham, 2002). All classification analyses were carried out
for individual participants, and the average AUC performance
was reported in the results.

2.5.2. Source Reconstruction

To identify underlying neuronal sources responsible for
generating differences in the ERPs corresponding to the face
and car trials under the influence of cues, source reconstruction
was performed using SLORETA software (Pascual-Marqui, 2002,
http://www.uzh.ch/keyinst/loreta). ~sLORETA (standardized
low-resolution brain electromagnetic tomography) is based on
standardization of the minimum norm inverse solution, which
considers the variation of actual sources and the variation due to
noisy measurement (if any) as well (Pascual-Marqui, 2002). As a
result, it does not have any localization bias, even in the presence
of measurement and biological noise. The head model for the
inverse solution uses the electric potential lead field calculated
using the boundary element method (Fuchs et al., 2002) on
the MNI152 template (Mazziotta et al., 2001). The cortical gray
matter is partitioned into 6,239 voxels at 5-mm spatial resolution.
sLORETA images represent the standardized electric activity at
each voxel in Montreal Neurological Institute (MNI) space as the
exact magnitude of the estimated current density. Anatomical
labels are reported using an appropriate correction from MNI
to Talairach space (Talairach and Tournoux, 1988) using
Talairach Daemon (Lancaster et al., 2000). For further details
on sSLORETA, refer to http://www.uzh.ch/keyinst/NewLORETA/
Methods/MethodsSloreta. The source activity was estimated
from the face-car difference wave post-stimulus onset.

2.5.3. Statistical Analysis of Sources

Differences in the distribution of the sources between concurring
and conflicting trials were calculated using statistical non-
parametric mapping (SnPM) (Nichols and Holmes, 2002). This
method relies on the randomization of the absolute maximum
statistic over all channels. The randomization provides an
estimator for the empirical distribution under the null hypothesis
(“no difference between the sources of concurring and conflicting
trials”). The advantage of this method is that it does not
depend on any distributional form, in particular Gaussianity,
and simultaneously takes care of multiple comparisons. A total
of 5,000 random samples were generated while implementing
the SnPM technique. Differences between the two conditions
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(concurring and conflicting) were assessed at the global level,
and the brain areas showing the largest differences have
been reported.

3. RESULTS

3.1. Behavioral Results

The decisions taken by the subjects under the influence of a cue
were modeled as a two-component mixture model based on the
shifted-gamma and negative-gamma distributions (see Equations
3-5). To verify that the proposed model fits the observed
behavior data well, the Kolmogorov-Smirnov (KS) test (Gibbons
and Chakraborti, 2011) was used. The proposed model captured
the data correctly in most cases (see Table S1). Figure 1B depicts
histograms of the decisions corresponding to all (k;, k») pairings
and the fitted density of our model for one subject. Table S1
contains the p-values corresponding to the cases where the model
was rejected. In over 96% of the cases, the hypothesized model
was accepted, thus proving efficacy of the model.

To measure the predictive performance of the proposed model
and prevent possible over-fitting, after computing the highest
probability density region (HPDR) of the fitted model based
on the training data, it was checked whether the test data fell

within the calculated HPDR. Table S2 showing mean prediction
error rates across subjects, demonstrates that the cross-validation
error rate never exceeded 5% for any fold, thus validating the
excellent performance of the model in terms of prediction and
nullifying the chance of over-fitting. Figure 2A shows a fitted
density function and the corresponding HPDR calculated from
the training data of a particular validation fold of one subject.
The test data, as seen from the figure, falls convincingly inside
the indicated HPDR.

Gaussian distribution has been previously used to model
behavioral data successfully (Park et al, 2017). Hence, the
proposed model was compared with the mixture of two
component Gaussian distributions. The median of the likelihood
ratios across subjects for a given (kj, k) in all but two cases (out
of 30) clearly indicates that the proposed model outperformed
the Gaussian mixture model in terms of explaining the data
(refer to Table S3).

3.1.1. Effect of Cues on Individual Choice

The effect of cues on individual decision was studied using a
distance metric between k; and the estimated modes of the fitted
model (see Equation 6). Using a bootstrap resampling technique
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on mean distance per (ki, k2) pair, it can be observed that post-
cue, there was a significant shift in ratings when decisions from all
subjects were pooled together (Table $4). Furthermore, to check
whether this was also true for individual decisions, an additional
analysis was carried out. If the proposed model predicted a mode
in the direction of the social cue, the proportion of decisions
between k; and k; was calculated by integrating the estimated
density within the said interval. A significant proportion of
decisions, as assessed by our model, was observed to lie between
ki and ky (refer to Tables S5-S8), clearly suggesting that, in
general, subjects tend to be influenced by the social choice,
irrespective of whether it conforms to his/her individual bias.

3.1.2. Effect of Concurring Cues

In order to check whether the decision confidence increased
when the subject was given a cue concurring with his/her own
judgment, the area under the fitted density given the concurring
cue (“FE” “CC”) was compared with that of a neutral cue
(“FC”/“CF”) (see Tables §9, S10). These areas were assumed to
be indicative of the proportion of decisions of the subjects around
the individual decision. As compared to the neutral cue, for most
of the subjects, the average proportion of decisions in the region
[1, 6] was greater when individual choice was a face and the social
cue was also a face. Similarly, this proportion in the region [7, 11]
was greater when the individual and social choices were both
a car. Thus, it can be concluded (refer to Figure 2B) that the
decision confidence of most subjects increased when provided
with concurring social information (FF/CC).

3.1.3. Effect of Conflicting Cues

Further analysis was carried out to check whether there was a
significant reversal in the decisions when the subject faced a
cue contradictory to his/her individual decision. We say that
there is a cross-over if there exists a mode on the opposite side
of the decision boundary. Cross-over under the influence of
concurring cues was found to be insignificant (in terms of area)
compared to with conflicting cues (see Table S14) and was hence
ignored. For every kj, it was examined whether cross-over exists
given a mismatch between social cue and the individual choice.
Using bootstrapping, it was shown that the proportion of cross-
over was significant among the individuals. This is evident from
the approximate achieved significance level (ASL) (Efron and
Tibshirani, 1994) contained in Table S11. Figure 2C distinctly
reveals that the mean cross-over proportion increased with a
decrease in individual confidence, implying that, in general,
subjects tend to be influenced more by contradictory cues on
images where their individual confidence was low. Refer to
Tables S12, S13 for a detailed list of the cross-over proportions
per subject.

3.1.4. Cue-Based Ranking of Subjects

Individuals differ in the manner in which social information
influences their perceptual decision. Using the proposed
behavioral model, it is possible to rank the subjects based on
the level of influence social information had on their percept.
Figure 2D shows the ranking of subjects based on a measure,
called social bias score, that captures their tendency to be

influenced by social information. Based on the analysis, eight!
subjects were selected as those most affected by cues and are
referred as chosen subjects in the EEG analysis.

3.2. Neural Results

3.2.1. ERP Analysis

ERP analysis was performed on average referenced and baseline-
subtracted EEG signals for each condition. Epochs of a particular
channel were marked noisy if their respective absolute differences
from the median exceeded five times the interquartile range.
Such noisy epochs were not considered for further ERP
analysis. It is well-known that parieto-occipital electrodes show
differential activity when perceiving faces and cars (Rossion
et al., 2003). Several studies have hypothesized the role of the
frontal cortex in choice manipulation under the influence of
social information (Mason and Graham, 2002; Berns et al.,
2010; Klucharev et al., 2011; Izuma and Adolphs, 2013). To
explore the effect of the decision of others on face/car percepts,
ERP analysis was carried out with parieto-occipital and fronto-
central electrodes separately. To elucidate whether different types
of comments induce different neural processing mechanisms,
the grand average difference waves were plotted (refer to
Figure 3) for correctly guessed face and car trials. A difference
in face and car ERPs was visible across both fronto-central and
parieto-occipital electrodes around 200 ms post-stimulus onset,
closely following the N170 (Bentin et al, 1996) component
known to be enhanced more in face than non-face ERPs.
The difference between concurring and conflicting conditions,
however, seemed more prominent around 250-300 ms post-
stimulus condition in both parieto occipital and fronto central
electrodes. Further analysis was carried out using single-trial
multivariate analysis.

3.2.2. Single-Trial Multivariate Analysis

A pattern classifier was used to analyze single-trial EEG signals
corresponding to the different types of cues. To quantify the
predictive accuracy of the classifier, the posterior probabilities
obtained from 10-fold cross-validation were used to calculate
the area under the ROC curve (AUC). The AUCs were averaged
across the subjects.

Multivariate analysis was performed using the entire post-
stimulus dataset using all channels and all time points, and
AUCs corresponding to the different conditions were plotted
(Figure 4A). The classification accuracy appeared to be greater
when the subject was provided with a cue that concurred with
his/her individual guess than when he/she was provided with a
conflicting cue (p = 0.0213, df = 14, t = 2.2314). An overall
increase in difference was noted between the conditions (p =
0.0038, df =7, t = 3.7147, corresponding to the null hypothesis
of no difference in the classification rates between the two
conditions) when an average over chosen subjects was considered
(Figure 4A). The pattern analysis was executed separately using
EEG data for all electrodes across different time windows, each

'Out of the 17 subjects, two had only high-confidence trials and hence were not
considered. Out of the 15 remaining, eight were found to be significantly more
affected by the cues than the rest.
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of the frontal and occipital electrodes 200-350 ms post-stimulus onset. Color bar depicts the value of AUC.

having a length of 50 ms. AUCs corresponding to the late sensory
period (200-450 ms after stimulus onset) were found to be
significantly more than chance (p-value < 0.05, false discovery
rate (FDR) corrected) for concurring trials.

Further analysis showed that the difference between AUCs
of concurring and conflicting cues was statistically significant

only in the time window 200-250 ms [p-value (without multiple
correction) = 0.01, t+ = 2.585, df = 14, FDR corrected
p-value = 0.054, multiple hypothesis test performed across time
points where the classification rates corresponding to concurring
trials are more than chance]. On performing similar time-
window analysis on the chosen subjects, it was seen that
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the difference stood out as statistically significant [p-value
(without multiple correction) = 2.40 x 107>, t = 8.8377, df
= 7, FDR corrected p-value << 0.05] in the 200-250 ms
time window.

Figure 4B clearly depicts that around 200-250 ms after
stimulus onset, there was a sharp increase in the AUC value
and the peak was more pronounced for concurring cues.
Notably, prominent activity in fronto-central and occipito-
temporal electrodes in a similar time window was also observed
during ERP analysis.

Additional classifier analysis was carried out using data
for each electrode separately for each of the time windows
(Figure 4C), and the plot of scalp topography on the basis
of the classifier performances (see Figure 4C) for individual
electrodes seems to be consistent with the temporal findings
(Figure 4B). Around 200-300 ms post-stimulus onset, we
observe increased classification accuracy in the parieto-
occipital regions and fronto-central regions across all
conditions (concurring, conflicting, and neutral). In these
regions, the magnitude of the AUCs were greater in case
of concurring trials than in conflicting and neutral trials
(see Figure4C). The classifier results demonstrate that
social decisions have an effect on individual perceptual
decision and that it is most prominent around 200-300 ms
post stimulus onset.

3.2.3. Source Reconstruction Results

Single-trial multivariate data analysis and ERP analysis revealed
prominent discriminatory activity 200 ms post-stimulus onset.
Source estimates identified more frontal activity under the
influence of conflicting cues than with concurring cues (refer
to Figure 5). Frontal sources seem to be primarily responsible
for generating differences in the ERP waveforms of face and
car trials across the whole neural timeline for conflicting trials,
while a prominent fronto-parietal interplay was noticed in case
of concurring and neutral trials. Particularly, the medial frontal
gyrus seems to have contributed significantly in the presence of
conflicting cues, in line with previous studies that also highlight
the role of the medial frontal cortex during social conformity
and cognitive dissonance (Klucharev et al., 2009; Berns et al.,
2010; Izuma and Adolphs, 2013). The neural sources of the
difference in the current density power between the concurring
and conflicting conditions were analyzed using sSLORETA with a
one-tailed F-ratio test (concurring < conflicting) on paired data
separately for the 200-250 and 250-300 ms time windows. Based
on the results of the exceedance proportion test (Friston et al.,
1990, 1991) which showed a threshold of 2.38 for a p-value of
0.058 for the 200-250 ms window and a threshold of —2.169 for
a p-value of 0.059 for the 250-300 ms window, differences were
localized mostly to the frontal areas (refer to Tables S16, S17
for the complete list). We found the maximal differences in the
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medial frontal gyrus (BA 10, MNI coordinates: x =40, y =55,z =
0) in both the cases (refer to Figures 5E,F and Tables S16, S17).

3.2.4. Neural Analysis of Cue Data

We did an additional analysis based on the neural signals when
the cue was displayed. We extracted the EEG signals locked
to the cue onset. The 500-ms post-cue onset data were used
to perform multivariate pattern analysis to explore the effects
of expectation on early sensory processing. If the participants’
responses were driven by the cues, then we would expect a
higher classification rate for images selected as faces post-cue
onset when preceded by an “FF” cue and vice versa for “CC”
cues. However, pattern analysis of cue-data revealed no such
trends (refer to Figure 6) and resulted in chance performance
for all conditions (p > 0.05). Two-way ANOVA was performed
to find the statistically significant difference between the four
different cue conditions, taking into account face and car trials
separately, along with interactions. The differences were all
insignificant (see Table S15), pointing to the fact that there was
no significant difference in the classification accuracy across all
the cue conditions, including the condition where no cue was
shown. It is interesting to note that similar chance performance
was also observed in pre-stimulus and early post-stimulus (<200
ms) neural classification. Thus, based on the cue analysis, it seems
unlikely that the participants’ decision was influenced by cue-
based expectation bias in the post-cue onset and early visual
processing stage following the stimulus display.

4. DISCUSSION

How social decision affects individual decision-making has been
explored in social psychology since the 1940s, starting with
the research on social conformity by Solomon Asch (Asch and
Guetzkow, 1951; Asch, 1955; Tajfel, 1982). With the advent
of social media, there has been a renewed interest in social
cues influencing our decisions (Jansen et al., 2009; Bond et al.,

2012; Gongalves and Perra, 2015; Jayles et al., 2017). In the
current study, how people respond to social information when
performing a perceptual decision-making task was explored
systematically. The neural mechanism of the decision-making
process was studied while the subjects used cues in the form of
the decision of two other well-performing subjects to perceive
noisy images of faces and cars. Although the cues shown to
the subject were non-informative, with an equal number of
FE, neutral, and CC cues per stimulus displayed in a random
order, they were found to be successful in manipulating percept.
Most of the studies on social influence require participants to
make a decision with and without social cues sequentially, but
we demonstrate that, irrespective of the order in which the
stimulus/cue was presented, cues always have a similar effect
on individual decision-making. We conclude that the perceptual
decision of the subject under the influence of the cue depends
on two factors—his/her individual perception of the image,
as reflected in his/her confidence ratings on the same images
without any cue, and the social information presented to him/her.
It is observed that the distribution of confidence ratings under
the influence of a cue is bimodal in nature, with one mode
corresponding to individual decision and other to social cue
(Figure 1B), with a significant proportion in the direction of
the cue. We can thus safely infer that although there was a
general tendency to adhere to one’s individual decision, subjects’
decision confidence could be altered by social influence. This shift
in decision confidence varied between the subjects, as reported
in previous studies (Jayles et al., 2017). Using the proposed
computational model, the heterogeneity of the influence of
cues on the subjects’ decision was quantified successfully. The
subjects were ranked based on the influence the cues elicited,
and the findings used in subsequent neural analysis produced
encouraging results.

Although social influence on perceptual decisions remains a
highly researched topic, the neural mediators of the manipulation
of perceptual decisions by social influence remain largely

09
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FIGURE 6 | Percentage of correctly classified face and car decisions for the four kinds of comments shown on screen on the basis of their neural signals after cue
exposure. This clearly shows that subject choice did not arise from cue-related expectation bias.
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unexplored (Mason and Graham, 2002; Berns et al, 2010;
Klucharev et al., 2011; Izuma and Adolphs, 2013). The difference
in performance under the influence of concurring and conflicting
cues is most prominent in the 200-300 ms interval. Similar
differences between conflict and no-conflict trials have been
reported in recent papers (Shestakova et al., 2012; Zubarev et al.,
2017). This time interval can potentially reflect an interaction
between the social cues provided and the sensory information.
It is interesting to note that the time window corresponds
with the timing of feedback-related negativity (FRN) (Holroyd
and Coles, 2002) and task difficulty (Philiastides et al., 2006).
The mean AUC value peaks around 200-300 ms in trials with
concurring cues. This implies that the classifier could identify the
class-specific discriminatory activity and predict the participants’
decision more accurately when the cue received matched with
his/her individual perception. This corroborates our claim that
the subjects were more sure about their decisions when the
stimulus was preceded by a concurring cue. The effect is more
well-defined in case of car trials, probably arising out of heavier
mental load for car images than faces. Humans are adept at
face perception (Leopold and Rhodes, 2010), and the stimuli
displayed had uniform noise for both faces and cars, thereby
making the car-detection task comparatively difficult. Figure 2B
shows this effect for concurring cues, where the increase in
decision confidence was more prominent for CC cues than for FF
cues. A similar trend is noticed for conflicting cues (Figure 2C),
where significant reversal of decision in the direction of the
social information was noticed and the proportion of crossover
was more for trials originally detected as cars. Almost all the
existing neuroimaging studies using social cues suggest the role
of the posterior medial frontal cortex (pMFC) and, to some
extent, the ventral striatum (Klucharev et al., 2009; Berns et al.,
2010; Izuma and Adolphs, 2013) in social conformity, but the
neural mechanism remains poorly understood. Current research
shows that activation in the pMFC is modulated by the difference
between individual choice and group preference. The role of
the pMFC in social conformity is further strengthened by a
TMS study (Klucharev et al., 2011) where participants showed
reduced social conformity when the pMFC was disrupted. One
plausible interpretation of the involvement of the pFMC could
be that conforming to social opinions triggers similar circuitry
as does reinforcement learning (Klucharev et al., 2009). Neural
activity in the pMFC might mirror activity similar to a prediction
error signal, which can then subsequently be used to modify or
strengthen the perceptual decision. In the current study, source
analysis of ERP signals using conflicting cues also shows activity
in the medial frontal cortex (MFC), starting around 200 ms
post-stimulus onset. Neural signals following conflicting cues
displayed comparatively greater frontal activity than concurring
cues (Figure 5), possibly suggesting greater top-down processing
of information when cues mismatch perceptual choice. It is
particularly interesting to note that the MFC is active in the
time interval immediately following the well-established N170
component, which is known to account for the difference
between faces and cars (Daniel and Bentin, 2012). Possibly, the
mismatch between the top-down expectation produced by the
cue and the bottom-up sensory information triggered activity

in the MFC, which has been reported to play a role in social
conformity (Klucharev et al., 2009; Izuma, 2013). The medial
frontal cortex perhaps generates a signal that encodes the
difference between individual percept based on the stimulus
and the group decision given by the cues. The absence of
frontal activity in concurrent cues in the same time interval
further supports our claim. The strength of MFC activity has
been shown to regulate the level of subsequent adjustment of
individual choice (Berns et al., 2010). Hence the MFC activation
was more pronounced for chosen subjects. Our results seem
to suggest that, irrespective of stimulus order, neural circuitry
similar to existing social conformity studies was active in making
perceptual decisions under the influence of social cues.

There has been extensive research on face and object
perception in the last few decades that has revealed significant
involvement of various occipito-parietal regions in the
early stages of visual processing (<200 ms) (Rossion et al.,
2003). Additionally, there a significant body of work finding
that stimulus expectation leads to changes in early sensory
processing (Carlsson et al., 2000; Kok et al., 2012a,b, 2013, 2014,
2016, 2017; Jiang et al., 2013; John-Saaltink et al., 2015; Todorovic
et al., 2015; Sherman et al., 2016). It has been demonstrated in
numerous studies that expectation about stimulus in the form of
predicting cues leads to a stimulus bias. Top-down expectation
effects can be seen in the form of improvement in stimulus
representation (Kok et al., 2012a), generation of a stimulus
template in striate and extrastriate regions (Puri et al.,, 2009;
Kok et al.,, 2014), and even reduction in amplitude in neural
signals leading to “expectation suppression” effect (Todorovic
and de Lange, 2012). On the whole, top-down expectations
in the form of predictive cues have been shown to bias neural
activity in the pre-stimulus and early sensory processing stage,
thereby orienting the bottom-up sensory information toward
one perceptual decision. On the other hand, recent studies
have questioned the role of neural expectation in the sensory
cortex (Bang and Rahnev, 2017; Rungratsameetaweemana
et al., 2018). In our study, however, probing into the neural
time series unveiled no significant differences in perception
under the influence of different social cues during early stages.
We systematically analyzed the effect of social decision and
found no significant effect of the cues before stimulus onset,
post-cue onset, and immediately following stimulus onset. We
extracted the neural data locked to cue presentation and used
a multivariate pattern classifier on the cue data alone to show
that the cue data were not indicative of any early top-down
expectation based effect on the stimuli (see Figure6). Our
results seem to suggest, unlike studies involving predictive
cues (Summerfield and De Lange, 2014), that expectation by
virtue of social influence does not affect early sensory processing.
It is worthwhile to note here that our cues were essentially
social decisions of others instead of cues predictive about the
stimulus itself (Summerfield and Koechlin, 2008; Summerfield
and De Lange, 2014), which could possibly explain the lack of
top-down expectation signals seen in the early sensory cortex in
previous studies (Summerfield and De Lange, 2014). Our results
seem to suggest the role of downstream processing in using the
social information from the cue provided, similar to the concepts
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of Bayesian Decision Theory (Maloney and Mamassian, 2009)
and Signal Detection Theory (Green and Swets, 1988; Macmillan
and Creelman, 2004).

Overall, we conclude that perceptual decision and confidence
are influenced by social information and that it is possible
to compute the extent of influence using statistical modeling.
Neural data analysis alludes to a role for the medial frontal
cortex in perceptual decision under social influence. We found
no expectation-related bias in early sensory processing using
social information cues. Future studies could possibly focus on
experiments using actual social groups to validate the neural
results found in the current research.
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