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INTRODUCTION

Addictive disorders (AD) are one of the leading causes of morbidity and mortality worldwide
(World Health Organization, 2018). Although several pharmacological and behavioral treatments
for these disorders have shown efficacy in controlled clinical trials, there is a need for more effective
treatments. Recently, there has been an emerging emphasis in investigating neurocircuitry-based
treatment options for patients with AD (Diana et al., 2017; Spagnolo and Goldman, 2017).
Specifically, an increasing number of studies has evaluated the therapeutic potential of non-invasive
bran stimulation (NIBS) techniques, such as repetitive transcranial magnetic stimulation (rTMS)
and transcranial direct current stimulation (tDCS), in various substance-dependent populations,
as well as in subjects with behavioral addictions. The interest in NIBS has been hastened by
advances in the neuroscience of addictive disorders, indicating that neurocircuitry dysfunctions
(e.g., cortico-striatal and cortico-limbic circuits) underlie the behavioral and clinical alterations
commonly observed in patients with AD (Volkow et al., 2016). Since none of the therapies for AD
currently available can undo these neuroadaptations, the possibility to target and restore them via
NIBS appears particularly promising.

The use of NIBS for AD, however, is still in its infancy, and several questions, including the
optimal target, stimulation protocol, and treatment duration, still need an answer before these
interventions could be used as a tool for clinical practice in addiction medicine. In this regard,
recent rTMS and tDCS trials in AD patients have contributed to identify several factors playing
an important role for NIBS efficacy, such as coil and electrodes orientation, scalp-brain distance,
and gray/white matter structure, density and integrity. In addition to those, a further factor that
appears to critically modulate the effects of NIBS is the state of brain during the application of the
stimulation. It is well-known that pharmacotherapies, psychotherapies (e.g., cognitive behavioral
therapy, CBT) and behavioral or cognitive tasks affect brain activity and connectivity. Thus,
using them in conjunction with neuromodulation interventions may ultimately change treatment
outcomes, and also explain the interindividual variability often observed in response to NIBS
(Silvanto and Pascual-Leone, 2008; Luber and Lisanby, 2014; Romei et al., 2016).
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STATE-DEPENDENT EFFECTS OF NIBS:

THE ROLE OF PHARMACOTHERAPIES

The “state-dependent” effects of NIBS have been initially studied
in regard to pharmacotherapies, and particularly active drugs
on the central nervous system (CNS), since these medications
have been shown to alter excitability measures and NIBS-induced
plasticity (Ziemann et al., 2015; Martinotti et al., 2019). Among
the pharmacological interventions evaluated to date, medications
such as dextromethorphan (Nitsche et al., 2003), diazepam
(Ziemann et al., 2015), baclofen (McDonnell et al., 2007), and
propranolol (Nitsche et al., 2004a) appear to block the facilitation
or inhibition associated with brain stimulation. However, D-
cycloserine (Nitsche et al., 2004b), amphetamine (Nitsche et al.,
2004a), and nicotine (Thirugnanasambandam et al., 2011) have
been shown to increase the long-term potentiation-like effects
of NIBS in healthy individuals, thus suggesting that combining
NIBS with pharmacotherapies may also lead to supraordinal
effects on neuroplasticity (for a review, see Ziemann et al., 2015).

Few studies have considered this phenomenon also in the
context of several psychiatric disorders. For example, a recent
observational study in patients with Major Depressive Disorder
(MDD) reported that combining rTMS with psychostimulants
(e.g., modafinil, methylphenidate) was associated with greater
clinical outcomes, compared to other medications (Hunter
et al., 2019). Furthermore, atomoxetine combined with rTMS
has showed significant clinical advantages compared with both
rTMS and atomoxetine in monotherapy (Cao et al., 2018),
as well as clozapine efficacy is improved when combined
with neuromodulation techniques in clozapine-resistant
schizophrenic patients (Arumugham et al., 2016). However,
combing deep TMS with SSRIs in patients with treatment-
resistant depression was not associated with improved clinical
outcomes, compared to deep TMS alone (Tendler et al., 2018).
There are presently no studies in the behavioral or substance
addiction literature that have directly evaluated the combined
effects of NIBS and pharmacotherapy, although several trials
have enrolled patients with AD receiving pharmacological
treatment (Klauss et al., 2014; Mishra et al., 2015; Del
Felice et al., 2016; Wang et al., 2016). Thus, future research
should investigate whether concurrent administration of
pharmacotherapies could help optimize NIBS therapy, and
define the mechanisms by which different medications used for
AD interact with NIBS.

COMBINING COGNITIVE

TRAINING/THERAPY WITH NIBS

In addition to pharmacological treatments, cognitive and/or
behavioral interventions also interact with NIBS, by modulating
ongoing neural activity in the targeted circuits and associated
networks. The effects of this interaction critically depend on the
timing of delivery, as cognitive and behavioral interventions can
be applied simultaneously or sequentially to NIBS. Several studies
have shown that the behavioral effects of brain stimulation
(facilitatory vs. inhibitory) change when TMS is preceded by

an initial psychophysical manipulation (Silvanto and Pascual-
Leone, 2008; Silvanto et al., 2017). This because brain state
manipulations may act as a functional priming of a certain
neurocircuitry, which, consequently, may respond differently to
neurostimulation (Silvanto et al., 2017). Furthermore, functional
engagement of a neurocircuitry with a cognitive task has been
proposed to facilitate the long-term potentiation like-effects
induced by NIBS (Luber et al., 2007; Tsagaris et al., 2016).
Otherwise, when NIBS is applied before or simultaneously
to a cognitive or behavioral intervention, it may enhance
and facilitate inherent learning processes associated with these
interventions, considering the ability of NIBS in boosting DA
signaling and the evidences suggesting that strengthening the DA
signal may improve memory formation, as well as emotionally
relevant information encoding (Cannizzaro et al., 2019). Indeed,
TMS has been used in conjunction with cognitive strategies such
as CBT or emotional recall in patients withMDD and PTSD, with
promising results (Isserles et al., 2011; Neacsiu et al., 2018).

However, the temporal relationship between multimodal
interventions remains relatively an unexplored territory (Tsagaris
et al., 2016), and is one of the most poorly reported variables
in NIBS studies, although identifying the optimal timing of
combined interventions may enhance their therapeutic effects,
while also helping to avoid inducing maladaptive plasticity.

With regard to the combined effects of NIBS and
psychotherapy, research has mainly focused on patients
with mood and anxiety disorders, with mixed results (for a
review, see Chalah and Ayache, 2019). Differences in the type of
psychotherapy as well as in the number of sessions may explain
the inconsistency among studies, although cognitive-behavioral
therapy seems to enhance the top-down modulatory effects of
prefrontal stimulation (Tan et al., 2015; Grassi et al., 2018). In
the field of addictive disorders, preliminary evidence suggests
that NIBS is most likely to be effective when combined with
evidence-based self-help intervention or cognitive-behavioral
interventions, as indicated by several studies evaluating
the effects of TMS for nicotine addiction (for a review,
see Hauer et al., 2019).

One of the most interesting areas of recent methods
development in NIBS involves choosing a task for the
participants to perform before or during the stimulation. Dinur-
Klein et al. (2014) were the first to demonstrate that it is possible
to amplify the effects of TMS on smoking cessation by having
individuals engage in a smoking cue-reactivity task immediately
before the TMS session (Dinur-Klein et al., 2014). Specifically, in
this large, double-blind, sham-controlled study of 115 cigarette
smokers, half of the participants were presented with visual
and olfactory smoking cues before the TMS session (deep
TMS targeting insula and lateral prefrontal cortex bilaterally).
Individuals that had received high-frequency deep TMS in
conjunction to smoking cues exposure exhibited significantly
lower cigarette consumption and nicotine dependence than
sham TMS. Similar results have also been observed in
Obsessive Compulsive Disorder (OCD) patients receiving high-
frequency deep TMS of the medial prefrontal cortex (mPFC)—
anterior cingulate cortex (ACC) region following exposure to
individualized, obsessive-compulsive cues (Carmi et al., 2018).
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These results suggest that task-induced plasticity may enhance
the behavioral effects of rTMS, although the precise mechanism
mediating this phenomenon has not been directly investigated in
patients with AD or with other psychiatric conditions.

In addition to cue exposure paradigms, which engage brain
circuits mediating cue reactivity, for NIBS studies targeting
prefrontal control circuitry [i.e., the dorsolateral prefrontal
cortex—DLPFC, a major node of the executive control network
(ECN)] the choice of a cognitive task may be the best approach
to maximize the benefits to be gained from either intervention.
Supporting this concept, emerging evidence indicates that
simultaneous tDCS and cognitive control therapy (CCT), a
neurocognitive intervention for MDD that engages the left
DLPFC (Brunoni et al., 2014), has stronger antidepressant
effects compared to tDCS alone (Brunoni et al., 2014; Segrave
et al., 2014). Interestingly, the antidepressant effect positively
correlated with cognitive performances during CCT, thus
suggesting that enhanced cognitive control via tDCS + CCT
mediated the clinical outcomes (Vanderhasselt et al., 2015).
Similarly, addition of tDCS to working memory tasks has been
shown to enhance long-term cognition in schizophrenics (Orlov
et al., 2017), while combining tDCS with an attentional bias
modification task reduced reactivity to negative environmental
stimuli in anxious individuals (Heeren et al., 2017).

Preliminary evidence in the field of AD have also been
reported. Specifically, in a recent trial in patients with
alcohol use disorders (AUD), 4 sessions of attentional bias
training (control or real) were combined with either sham
or active tDCS over the DLPFC, using a 2-by-2 double-
blind factorial design (den Uyl et al., 2018). Combined active
tDCS and real training did not produce any significant effect
on alcohol craving and relapse, and on attentional biases
toward alcohol. However, as also observed by the authors,
individuals enrolled in the study had low baseline craving
levels. Furthermore, the number of sessions delivered may
not have been enough to produce a clinical meaningful
effect (Spagnolo and Goldman, 2017). Interestingly, a further
study found that tDCS over the left DLPFC significantly
decreased the engagement bias toward drug cues in abstinent
methamphetamine users (Shahbabaie et al., 2018). Finally, a
recent study evaluated the effects of 4 sessions of combined
tDCS targeting the right inferior frontal gyrus and cognitive bias
modification training in high-risk drinkers (AUDIT score >8)
and found no effect on drinking measures or alcohol approach
biases (Claus et al., 2019).

DISCUSSION

The behavioral and clinical effects of NIBS depends on what
the brain is doing at the time of stimulation. Brain state can
be affected by pharmacotherapies, as well as by behavioral
and cognitive interventions, which act by modulating and/or
engaging disease-related circuits targeted via neurostimulation.
Increasing evidence suggest that this combined approach
can be useful for treating various psychiatric disorders (for
a review, see Sathappan et al., 2019), and could prove

to be a promising approach worth further examination
also in the field of AD. Indeed, multimodal, integrated
interventions are successfully used to treat patients with
chronic conditions.

However, several important issues should be investigated to
fully delineate the therapeutic potentials of combined therapies
for AD. In particular, attention should be devoted to the complex
interplay between AD and factors known tomodulate response to
both NIBS and cognitive interventions. For example, prolonged
exposure to addictive agents has been shown to impair cortical
plasticity, including motor cortical plasticity (Huang et al., 2017;
Shen et al., 2017), an effect which can reduce response to
NIBS protocols. Neurostimulation effects on brain plasticity can
also be affected by genetic factors, including polymorphisms
at the level of the Brain-Derived Neurotrophic Factor (BDNF)
gene (Cheeran et al., 2008). Importantly, many addictive agents
lead to changes in endogenous BDNF expression in neural
circuits implicated in AD (Barker et al., 2015), thus indicating as
response to NIBS is modulated by a complex interaction between
stimulation-related factors, individual factors, and AD-related
factors. A further example is represented by sex-differences
and endogenous estrogen levels, which have been associated to
variability in response to both TMS and cognitive interventions
(Glover et al., 2015; Chung et al., 2019), and with changes in
BDNF levels (Barker et al., 2015).

Taken together, these observations strongly support the
need to better characterize the biobehavioral responses to
both neuromodulation (TMS, tDCS) and other interventions
(cognitive bias modification, medications, psychotherapy). For
NIBS, this requires addressing questions related to stimulation
parameters, brain targets, number of sessions, factors influencing
the stimulation dose delivered, and tools to measures the
neurophysiological, circuit-level and behavioral effects of
neuromodulation interventions.

With regard to pharmacotherapies, while their action on
cortical excitability and brain plasticity have been studies, it
will be also critical to define how medications currently used
for AD modulate brain activity and connectivity. For example,
naltrexone, a medication commonly used in patients with
alcohol and opioid use disorders, has been shown to modulate
brain connectivity (Morris et al., 2018; Elton et al., 2019).
Since NIBS also has a modulatory effect on brain connectivity,
particularly when applied to network nodes (Eldaief et al., 2011),
future research should investigate whether these effects can be
combined in a synergistic fashion.

For psychotherapies, quantifying dose is more challenging
since both number and duration of treatment sessions should be
evaluated, and optimal measures of treatment responses, which
take in consideration the specificity of this interventions (e.g.,
therapeutic relationship between patient and therapist, internal
state of the patient during time of therapy), are still missing.
Furthermore, as for medications, the documented effects of
CBT on brain connectivity should be studied in the context of
combined therapy with NIBS. Mason et al. (2015) reported that
CBT increased DLPFC connectivity with amygdala in patients
with psychosis, an effect which predicted subsequent recovery
(Mason et al., 2015). This may suggest that coupling this
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intervention with NIBS targeting the prefrontal control circuit
may enhance CBT effects on corticolimbic connectivity.

With regard to behavioral and cognitive tasks, several critical
factors should be considered when evaluating the effects of
these intervention both alone and in combination with NIBS.
With regard to cue exposure paradigms, a recent study has
indicated that individual’s baseline frontal-striatal reactivity to
cues modulates the effects of TMS targeting the medial PFC. This
underscores the importance of assessing individual variability
with the aim to identify subjects who can benefit more from
these interventions (Kearney-Ramos et al., 2019). Similarly,
cognitive bias modification efficacy varies whether it is tested
in problematic drinkers vs. treatment-seeking patients with AD
(Wiers et al., 2018). This is not surprising, as expectations -of a

drug or of a clinical benefit -modulate brain responses and affect
outcomes (Spagnolo et al., 2015).

As the field continues to grow, we are optimistic the
future studies will be designed to address these questions,
and that significantly more attention will be given to
combined therapies, with the hope to provide a novel,
tailored and effective treatment approach to patients
with AD.
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