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The goal of network representation learning, also called network embedding, is to encode

the network structure information into a continuous low-dimensionality embedding space

where geometric relationships among the vectors can reflect the relationships of nodes

in the original network. The existing network representation learning methods are always

single-task learning, in which case these methods focus on preserving the proximity of

nodes from one aspect. However, the proximity of nodes is dependent on both the local

and global structure, resulting in a limitation on the node embeddings learned by these

methods. In order to solve this problem, in this paper, we propose a novel method,

Multi-Task Learning-Based Network Embedding, termed MLNE. There are two tasks in

this method so as to preserve the proximity of nodes. The aim of the first task is to

preserve the high-order proximity between pairwise nodes in the whole network. The

second task is to preserve the low-order proximity in the one-hop area of each node. By

jointly learning these tasks in the supervised deep learning model, our method can obtain

node embeddings that can sufficiently reflect the roles that nodes play in networks. In

order to demonstrate the efficacy of our MLNE method over existing state-of-the-art

methods, we conduct experiments on multi-label classification, link prediction, and

visualization in five real-world networks. The experimental results show that our method

performs competitively.

Keywords: network representation learning, multi-task learning, network embedding, high-order proximity, low-

order proximity

1. INTRODUCTION

A network is an important way of representing the relationships between objects, for example,
in social networks, state grids, and citation networks (Gong et al., 2017). With the increasing
complexity of a network, it is more valuable to explore it as a carrier of information. There are
some meaningful applications in network analysis, such as node classification (Tsoumakas and
Katakis, 2007), link prediction (Lü and Zhou, 2011), community detection (Fortunato, 2010),
and recommender systems (Lü et al., 2012). Traditional network representation methods, such as
an adjacency matrix, pose several challenges (Peng et al., 2019). First, network analysis methods
based on traditional forms of representation usually have high computational complexity. Second,
traditional network representation methods make it difficult to design parallel and distributed
algorithms. These two challenges make these methods hard to use for large-scale network analysis.
Moreover, there is a limitation when machine learning is applied in network analysis due to
high dimensionality and sparsity. Thus, determining how to properly construct a meaningful
representation of the structure information extracted from networks is promising research.
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Network representation learning (NRL), also called network
embedding (Hamilton et al., 2017; Goyal and Ferrara, 2018),
has been proposed for encoding network information into
a continuous low-dimensionality feature space. From the
perspective of network topology, those nodes that have similar
structures should have similar representation vectors. For
example, those nodes within the same community in a network
have similar proximity structures, and thus they should be closer
in embedding space. Due to the learned representations, the
relationships between nodes and the roles that nodes play in
networks can be efficiently analyzed. Many network analysis
tasks can be dealt with based on the distances in the embedding
space, so that the computational complexity is low and parallel
algorithms can be adopted for network analysis problems.
Moreover, manymachine-learning algorithms have been used for
network analysis, benefiting from network embedding. Not only
that, but those representations can be applied in other application
tasks (Herman et al., 2000; Hu et al., 2016; Wang et al., 2017; Wei
et al., 2017; Shi et al., 2018).

Recently, an increasing number of methods have been
proposed for network representation learning (Chen et al.,
2018; Peng et al., 2019; Zhang et al., in press). These methods
can mainly be classified into three categories (Peng et al.,
2019). The first is matrix factorization-based methods (Qiu
et al., 2018; Liu et al., 2019b), which are directly inspired by
the dimension-reduction technique. One of the best-known
methods is Laplacian Eigenmaps (Belkin and Niyogi, 2002),
which generate a network representation through factorizing the
Laplacian of the network adjacency matrix. GraRep (Cao et al.,
2015) builds a k-step relationship information matrix so as to
sufficiently capture the pairwise node proximity. According to the
matrix, it adopts SVD to generate different representations and
finally concatenates all of them to form a global representation.
Qiu et al. exploited sparse matrix factorization for large-scale
network embedding (Qiu et al., 2019). The second category is
random walk-based methods. DeepWalk (Perozzi et al., 2014)
was the first method to introduce random walk into network
representation learning. It uses a sampling method called
unbiased randomwalk to generate discrete sequences of nodes, in
which case sequences and nodes are abstracted as sentences and
words. It also introduces the skip-gram (Mikolov et al., 2013),
the best-known model in natural language processing (NLP), to
learn representations for nodes from those sequences. Node2vec
(Argerich et al., 2016) was proposed to develop a novel sampling
method named biased random walk, which is based on breadth-
first search (BFS) and depth-first search (DFS), resulting in more
flexibility in the exploration of networks. The third category is
deep learning-based methods. Wang et al. proposed a structural
deep network embedding method named SDNE (Wang et al.,
2016). Cao et al. proposed a deep neural network for learning
graph representations (DNGR) (Cao et al., 2016). Both SDNE
and DNGR follow the encoder-decoder framework, where the
encoder maps a high-dimensionality feature vector into a lower-
dimensionality representation and the decoder reconstructs the
original feature vector from that. They build a proximity matrix
in which an element represents the pairwise node proximity and
apply an autoencoder model to learn representations from that

matrix. SDNE directly adopts a network adjacency matrix as the
proximity matrix and combines the autoencoder loss function
with the Laplacian Eigenmaps loss function. DNGR introduces
the pointwise mutual information (PMI) matrix as the proximity
matrix, which is mostly used to evaluate the similarity among
words in NLP. Network embedding methods are not limited to
the above three categories (Tang et al., 2015; Donnat et al., 2018).

Existing network embedding algorithms have achieved
promising performance, but these methods all focus on single-
task learning, resulting in a lack of diversity in representations.
A good representation of a node should depend on its position
and structure in the local community and global network. For
example, a node may be the centroid of the local community
and also play a role as a bridge between communities in
the global network (Musiał and Juszczyszyn, 2009). To learn
network representation from both the local and global network
structure information, we resort to multi-task learning (MTL)
for help in exploring and exploiting global and local network
representation learning.

In this paper, we propose a multi-task learning-based network
embedding called MLNE. In MLNE, there are three components:
a shared encoder, decoder, and classifier. We adopt positive
pointwise mutual information (PPMI), which is a commonly
used method to measure the similarity between discrete objects,
to build the global proximity matrix. In order to build the matrix,
we introduce random surfing to gather graph information.
The shared encoder and decoder form a standard autoencoder
to learn the latent representation from the global proximity
matrix in an unsupervised manner. The shared encoder encodes
the global feature information into a low-dimensionality node
embedding, and the decoder decodes that information from
the learned embeddings. Another task is to preserve the local
features. The key idea behind this task is that the learned
embedding from the shared encoder contains graph information
such as the structure of local graph neighborhoods, so that
the one-hop area of nodes can be reconstructed from that
learned embedding. Due to the network sparsity, the direct
neighborhoods should make more contributions to nodes, and
thus it is worth designing a specific task to optimize embedding
with respect to first-order proximity. The task is carried out
by the shared encoder and the specific classifier, which predicts
whether there is an edge between pairwise nodes. As a result,
the learned embeddings can preserve both the local and global
structural information. In addition, we design a regularizer to
make those nodes that are direct neighborhoods for each other
much closer in Euclidean space and vice versa, resulting in good
clustering. Empirically, we conduct experiments on five real-
world network datasets and three tasks: node classification,
link prediction, and visualization. The experimental
results show that our model has competitive performance
against baselines.

The rest of this paper is organized as follows. In section
II, preliminaries are given. Section III introduces the proposed
algorithm in detail. In section IV, we briefly compare our
algorithm with other related network embedding methods and
analyze the experimental results. In the last section, this paper
is concluded.
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2. PRELIMINARIES

In this section, we discuss the preliminaries of network
representation learning in detail. First, we briefly introduce
the notation and formulate the problem. Second, detailed
descriptions of positive pointwise mutual information and
random surfing are presented. An introduction to multi-task
learning is then given.

2.1. Notations and Definitions
A network can be formally modeled as a graphG = (V ,E), where
V is the set of nodes and E is the set of edges. v ∈ V represents a
node in the graph, and (vi, vj) ∈ E represents an edge between vi
and v. The adjacency matrix is defined as A ∈ R

|V|×|V|. Network
representation learning aims to build an embedding matrix Z ∈
R
|V|×d, where d≪ |V| and each row z ∈ R

d represents a vector
representation of a node.

2.2. PPMI and Random Surfing
Pointwise mutual information (PMI) is a measure to quantify
the correlation between two discrete objects. PMI has commonly
been applied in the field of NLP such as in the measurement of
the similarity between words. PMI can be defined as follows:

PMI(w, c) = log (
#(w, c) · D

#(w) · #(c)
) (1)

where #(·) means the number of occurrences of an object
and D =

∑
w

∑
c #(w, c).

It is found that when the statistics of co-occurrence count
between two objects #(w, c) is 0, the measure will result in
log (0) = −∞. An alternative measure called positive pointwise
mutual information (PPMI) is proposed to address this problem.
PPMI can be defined as follows:

PPMI(w, c) = max (0, PMI(w, c)) (2)

Cao et al. firstly introduced PPMI into NRL to generate node
representation (Cao et al., 2016). In order to build PPMI matrix,
they designed a random surfing model to extract structure
information of network and directly generate the probabilistic
co-occurrence matrix without sampling process. The key idea
behind the model is that the visited probability from source node
to target node can be iteratively calculated by a transition matrix.

Let the Pk be the k-th step visited probability matrix in which
each element Pk(i, j) represents the probability from source node
vi to node vj after k times transitions. The P0 initially is set as A.
The Pk can be defined as follows:

Pk = γ · Pk−1 · T + (1− γ ) · P0 (3)

where T is the transition matrix, γ is the probability that
the model will continue simulation, and 1 − γ is the restart
probability. The element in T is the probability that node vi will
reach node vj. If Ai,j = 1, T(i, j) = 1/deg(i), otherwise T(i, j) = 0.

According to (3), a set of visited probability matrices can be
defined as P = {P0, P1, ..., PK}. The probabilistic matrix can be
constructed as follows:

r =

K∑

i=k

Pi. (4)

where K is the number of samplings.

2.3. Multi-Task Learning
Traditional machine learning methods aim to optimize for a
specific metric. To realize the goal of a task, a model is trained
by fine-tuning parameters. By training the model, we can get
a satisfying result, but some information that helps to improve
the performance will be ignored. This information can be mined
from related tasks. To utilize the information effectively, a
new approach, named multi-task learning (MTL) (Ruder, 2017;
Thung and Wee, 2018), is proposed. In MTL, multiple related
tasks are learnt jointly, and useful information is shared among
related tasks. In MTL, each task can benefit from other tasks,
and then we can get a better result by training several tasks.
Multi-task learning has been widely used in several fields, such as
natural language processing (Liu et al., 2019a), image processing
(Du et al., 2018), computer vision (Zhang et al., 2018), and
recommendation (Wang et al., 2018).

There are two commonly used approaches to carrying out
MTL in deep learning. The first is hard parameter sharing
of hidden layers. In this approach, different tasks share the
hidden layers, and the output layers are different. The second
is soft parameter sharing of hidden layers. In this approach,
different tasks have similar parameters, and the output layers are
also different. Figure 1 shows these two approaches to MTL in
deep learning.

3. THE FRAMEWORK

In this section, we first give the detailed description of the
framework of our proposed approach, MLNE. Next, our multi-
task learning model based on deep learning is described in detail.

3.1. An Overview of the Framework
In this work, we leverage multi-task learning to learn robust and
meaningful node representations. Figure 2 shows the framework
of our proposed model, MLNE, in which there are two phases:
building the proximity matrix and embedding nodes. In the first
phase, we extract information on the local and global structures
to build a proximity matrix where each element represents the
similarity between nodes. In the second phase, our model jointly
optimizes two tasks so as to learn node representations in which
there are two tasks, preserving the global and local network
structures. The framework of the proposed algorithm is given
as Algorithm 1.

3.2. Multi-Task Learning Model
Deep learning is introduced into multi-task learning model so as
to learn complex structural information. In our proposed model,
there are multiple layers with non-linear activation functions,
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FIGURE 1 | Two approaches for multi-task learning in deep neural networks. (A) Hard parameter sharing approach. (B) Soft parameter sharing approach.

FIGURE 2 | The framework of MLNE.

Algorithm 1: Framework of the proposed MLNE

Input: Input Graph: G = (V ,E); Adjacency matrix: A;
Number of samplings: K; Probability of resampling: γ ;
Weighted parameters of the loss function: α,β , η; Number
of dimensions of representation vectors: R.

Output:

Representation vectors of nodes: 8.
1: Initialize matrix of node representations 8 ∈ R

|V|×|d|.
2: Construct the global proximity matrix Sglobal;
3: Local proximity Slocal← A;
4: Initialize the parameters of the network: θ ;
5: Input Sglobal into the neural network and train the network

model by optimizing the objective function (Equation 10) by
stochastic gradient descent.

such as sigmoid and relu, so as to build non-linear projections.
At a high level, our model consists of three components as shown
in Figure 3: a shared encoder network, a decoder network, and a
classifier network.

The first task includes the shared encoder and the specific
decoder and can be seen as a standard autoencoder model. The
encoder maps the high-dimensionality structural information
into a lower-dimensionality embedding space, si → zi, and the

decoder reconstructs the structural information from the learned
embeddings, zi → si. In order to preserve the global structural
information, the PPMI matrix is adopted as the global proximity
matrix S, and a random surfing model is used to build the PPMI.
The loss function can be defined as follows:

Lglobal =

n∑

i=1

||si − si||2 = ||S− S||2. (5)

The second task includes the shared encoder and the specific
classifier. The task is to preserve the local structural information,
so the classifier is used to reconstruct the structure of the
one-hop area of the nodes. On the other words, the classifier
decodes the local structural information from the learned node
embeddings based on the shared encoder so as to predict the
direct neighborhoods of nodes. Thus, the adjacency matrix A is
adopted as the classifier’s expected output Y . The second task can
be seen as a multi-label classifier task, and the loss function can
be defined as follows:

Llocal = −

n∑

i=1

yi log yi + (1− yi) log (1− yi) (6)
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FIGURE 3 | The architecture of MLNE.

where yi is the output of the classifier.
Furthermore, mini-batch batch gradient decent (MBGD) is

used to optimize the parameters of the model. As shown in
Figure 4, the sampled batch with a fixed number of nodes can be
regarded as a sampled sub-graph. As a result of this, a regularizer
component is formulated to optimize those nodes in Euclidean
space so as to make nodes with edges linked closer together and
nodes without edges linked farther apart.

The size of the batch is defined as M, and the adjacency
matrix of the sampled sub-graph can be defined as AM×M

sub
∈

A|A|×|A|, where each element represents the relationship between

nodes. We let Z
|V|×d
sub

∈ Z|V|×d be the corresponding sub-
embedding matrix. The regularizer attempts to minimize the
following contrastive loss:

Lreg =
1

2×M ×M

M∑

i=1

M∑

j=1

Asub(i, j)d
2
i,j

+(1− Asub(i, j))max (m− di,j, 0)
2 (7)

where m is the margin and di,j is the Euclidean distance between
the i-th and j-th representations, di,j = ||Zsub(i)− Zsub(j)||2.

The Euclidean distance matrix D, where each element
represents the measure between representations, can be defined
as follows:

D = H +HT − 2G. (8)

whereZsub is Grammatrix ofG andH is theDiagonalmatrix ofG.
The revised regularizer is shown as follows:

Lreg =
1

2×M ×M
||Asub

⊙
D

+ (1− Asub)
⊙

max (m− D, 0)||2. (9)

where
⊙

is the Hadamard product.

In order to preserve the local and global structural
information, we design a multi-task learning model and jointly
optimize (Equations 5, 6, and 9). The objective function can be
defined as follows:

L = αLglobal + βLlocal + ηLreg . (10)

where α, β , and η are the corresponding weights of each task and
the regularizer.

4. EXPERIMENTS

In this section, we evaluate our proposed model, MLNE,
on five real-world network datasets and three tasks, namely
node classification, link prediction, and visualization.
The experimental results demonstrate that MLNE has
competitive performance.

4.1. Datasets
There are five real-world networks in our experiments, including
a social network, citation networks, and a language network.
They are listed as follows:

• Cora (McCallum et al., 2000) is a citation network with 2,708
nodes and 5,429 edges, where the nodes represent the scientific
publications and the edges represent the citation relationship
between publications. The nodes are split into seven classes
according to scientific field.
• DBLP (Tang et al., 2008) is another citation network composed

of 13,184 publications from five classes and with 95,955 edges.
• 20-NEWSGROUP (Lang, 1995) is a language network that

contains 20,000 newsgroup documents with 20 different
labels. The tf-idf vectors of each word are adopted as the
representations of documents, and cosine similarity is used
to measure the similarity between documents. We select 592
documents from three classes, com.graphics, rec.sport.baseball,
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FIGURE 4 | Illustration of the regularizer.

and talk.politics.gums respectively, to build a network in which
the nodes represent the documents and cosine similarity is the
weight of each edge.
• Blogcatalog (Tang and Liu, 2009) is a social network in

which nodes represent the authors and edges represent the
relationships between users. According to user interests, there
are 39 different categories, and each user is labeled with at
least one category. The network contains 10,312 nodes and
333,983 edges.
• Pubmed (Sen et al., 2008) is a citation network collected

from the PubMed database in which nodes represent scientific
publications and all the nodes are classified into three classes.
This network consists of 19,717 nodes and 44,338 edges.

4.2. Baseline Algorithms
We consider the following three baseline algorithms.

• DeepWalk adopts random walk to sample paths composed of
discrete nodes, and the Skip-gram model, which has achieved
great success in word embedding, is used to generate node
representations from the sampled paths.
• node2vec optimizes the DeepWalk through jointly combining

the BFS and DFS. There are two hyperparameters, p and q,
that lead the sampling such that the network structure can be
deeply exploited.
• GraRep builds k different node representations by SVD and

connects them so as to generate a global node representation.

4.3. Parameter Setting
As mentioned in Perozzi et al. (2014); Grover and Leskovec
(2016), we set walk length l = 80, number of walks n = 10,
and window size w = 10 for random walk in DeepWalk and
node2vec. Specifically, we employ a grid search over return and
in-out hyperparameters p, q ∈ {0.25, 0.5, 1, 1.5, 2} by 10-fold
cross-validation for node2vec. For GraRep, we set the number of
sampling steps k = 4 by trial and error.

In our model, the shared encoder contains an input layer
and a hidden layer, where the size of the input layer is the
same as the size of network V and the size of the hidden layer
is the dimensionality of the node representation vector. The
decoder and the classifier contain an output layer with the size
of |V|. The sigmoid activation function is used in all layers.

For hyperparameters, α, β , and η are set at 1000, 1, and 10,
respectively, through using grid search on the validation set. As
suggested in Cao et al. (2016), we set K = 10 and γ = 0.98 for
random surfing.

For a fair comparison, the dimensionality of node
representation vector d is set to 128 for all algorithms, as
used in Cao et al. (2015).

4.4. Link Prediction
The link prediction task is to predict whether an edge exists
between pairwise nodes in the original network. In order to
conduct the task, a portion of the existing edges in the original
network is randomly selected to be hidden. The remaining
networks are then used as the input of NRL models. Node
embeddings can then be learned from the trained models, and
the inner product between the representation vectors of pairwise
nodes is normalized by the sigmoid function. To evaluate the
performance of each algorithm over the link prediction task,
10% of the hidden edges are utilized as the positive data. In
addition, an equal number of edges not existing in the network
is sampled as the negative data. AUC and Macro-F1 are utilized
as evaluation metrics.

Table 1 shows the results of link prediction on Cora, 20-
NEWSGROUP, and Blogcatalog. We find that MLNE and
GraRep perform well but DeepWalk and node2vec have similar
and poor performance. MLNE is consistently better than the
baselines with respect toMacro-F1. For AUC, GraRep andMLNE
perform similarly in most cases and outperform the others,
except for in 20-NEWSGROUP, where GraRep is markedly better
than MLNE, outperforming it by 22.71%.

4.5. Node Classification
Node classification is an important task in network analysis.
Thus, this task is used to evaluate the quality of different learned
network representations. In this experiment, Logistic Regression
(LR) is used as a classifier. A portion of the labeled nodes are
randomly selected as the training dataset, and thus the remaining
nodes without labels are adopted to test the performance. The
training ratio is raised from 10% to 90%. The process is repeated
10 times for all algorithms on five networks. The nodes in
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Blogcatalog have at least one label and thus Micro-F1 and Micro-
F1 are used as with the evaluation metrics. The experimental
results are reported in Tables 2–5.

Table 2 shows the results of node classification on Cora.
We find that MLNE has good performance. As the training
ratio increases, MLNE outperforms the others on Macro-F1
and Micro-F1. When the training ratio is less than 50%,
MLNE achieves better performance than DeepWalk and GraRep
with a 90% training ratio. For Micro-F1, MLNE has the best
performance in most cases. When the training ratio is better
than 30%, MLNE achieves 0.39, 2.05, and 6.77% gains over
DeepWalk, node2vec, and GraRep, respectively. For Macro-F1,
MLNE has performance that is competitive with DeepWalk.
As the training ratio increases, MLNE is better than the
other baselines.

Table 3 shows the results of node classification on DBLP. The
number of different labels in DBLP is lower than in the other
networks, and thus the evaluation metrics of all of the algorithms
are good. DeepWalk maintains a slight advantage over the others
in most cases on Micro-F1 and Macro-F1. GraRep has a poor

TABLE 1 | Macro-F1 and AUC on Cora, 20-NEWSGROUPS, and Blogcatalog for

the link prediction task.

Model
Cora 20-NEWSGROUP Blogcatalog

Macro-F1 AUC Macro-F1 AUC Macro-F1 AUC

DeepWalk 37.21 86.76 39.25 58.15 44.02 55.30

node2vec 33.33 83.22 33.95 59.88 38.20 55.81

GraRep 64.35 93.24 57.08 78.93 47.01 77.97

MLNE 80.95 93.76 60.24 64.32 68.67 77.47

performance and it is worse thanMLNE on those metrics, by 1.02
and 1.23%, respectively.

Table 4 shows the results of node classification on 20-
NEWSGROUP.We find that MLNE has the best performance on
Micro-F1 and Macro-F1. In fact, MLNE with only 10% training
ratio data arrives at a result close to DeepWalk and node2vec
when they are given 90% of the data. Compared with DeepWalk,
the Micro-F1 values of node2vec, GraRep, and MLNE improve
by 12.86, 10.29, and 3.25%. For Macro-F1, MLNE is also better
than those baselines, by 13.39, 11.01, and 3.31%. DeepWalk and
node2vec have similar performance and are worse than GraRep
on these metrics.

Table 5 shows the results of node classification on Blogcatalog.
For Micro-F1, when the training ratio is greater than 10%,
MLNE is better than DeepWalk, node2vec, and GraRep, by
3.58, 3.57, and 3.68% respectively. Additionally, with a 60%
training ratio of data, it beats all of the other algorithms,
even when they are given a 90% training ratio. For Macro-
F1, the performance of MLNE, DeepWalk, and node2vec
proved much more competitive. When the training ratio is
less than 60%, MLNE performs better than the baselines.
As the training ratio increases from 60 to 90%, node2vec
outperforms the others. GraRep has the worst performance on
both metrics.

Table 6 shows the results of node classification on Pubmed.
For Micro-F1, when the training ratio is equal to 10%, Deepwalk
is better than MLNE, and MLNE outperforms the other
algorithms. When the training ratio is greater than 10%, the
proposed algorithm MLNE outperforms all of the comparison
algorithms. For Macro-F1, MLNE performs better than all of the
baselines. GraRep also has the worst performance on Micro-F1
and Macro-F2.

TABLE 2 | Node classification results on Cora.

Model 10% 20% 30% 40% 50% 60% 70% 80% 90%

Micro-F1 DeepWalk 76.68 79.55 81.00 82.08 82.85 83.11 83.11 83.58 84.39

node2vec 77.16 79.40 80.16 81.11 81.51 81.86 81.79 82.08 82.18

GraRep 75.16 76.64 77.25 77.92 78.06 78.48 77.75 78.28 77.75

MLNE 75.57 79.34 81.01 82.43 82.99 83.52 83.81 84.11 84.57

Macro-F1 DeepWalk 75.27 78.40 79.91 81.19 82.04 82.24 82.19 82.62 83.41

node2vec 75.67 78.40 79.20 80.39 80.90 81.36 81.42 81.60 81.92

GraRep 73.21 74.97 75.52 76.31 76.41 76.74 75.96 76.68 76.15

MLNE 74.66 78.22 79.89 81.55 82.01 82.61 83.00 83.17 83.73

TABLE 3 | Node classification results on DBLP.

Model 10% 20% 30% 40% 50% 60% 70% 80% 90%

Micro-F1 DeepWalk 90.96 91.61 91.97 92.28 92.40 92.65 92.61 92.65 92.52

node2vec 90.89 91.50 91.85 92.07 92.24 92.35 92.43 92.52 92.27

GraRep 90.51 90.77 90.97 91.11 91.13 91.30 91.35 91.41 91.39

MLNE 90.34 91.58 92.04 92.16 92.29 92.38 92.41 92.58 92.57

Macro-F1 DeepWalk 90.46 91.20 91.61 91.96 92.12 92.18 92.32 92.40 92.31

node2vec 90.43 91.12 91.50 91.76 91.596 92.07 92.13 92.24 92.02

GraRep 89.94 90.22 90.43 90.58 90.61 90.81 90.83 90.90 90.93

MLNE 89.80 91.15 91.67 91.84 92.00 92.10 92.11 92.31 92.31
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TABLE 4 | Node classification results on 20-NEWSGROUP.

Model 10% 20% 30% 40% 50% 60% 70% 80% 90%

Micro-F1 DeepWalk 61.16 69.64 74.34 75.39 77.33 78.57 79.04 78.31 79.17

node2vec 65.52 71.30 75.54 77.08 78.55 79.75 80.00 79.41 80.17

GraRep 69.91 77.36 80.60 82.25 83.58 84.47 84.61 85.71 85.50

MLNE 79.62 82.05 83.49 84.27 84.43 84.77 85.56 86.05 85.85

Macro-F1 DeepWalk 59.51 69.11 74.28 75.39 77.31 78.56 78.94 78.03 78.95

node2vec 63.23 70.95 75.52 77.07 78.54 79.71 79.87 79.07 79.70

GraRep 69.60 77.31 80.60 82.22 83.56 8445 84.49 85.56 85.33

MLNE 79.63 82.06 83.50 84.25 84.41 84.73 85.44 85.84 85.64

TABLE 5 | Node classification results on Blogcatalog.

Model 10% 20% 30% 40% 50% 60% 70% 80% 90%

Micro-F1 DeepWalk 33.84 36.71 38.08 38.87 39.46 39.91 40.51 40.76 41.22

node2vec 33.83 36.49 38.09 38.95 39.67 40.04 40.34 40.96 41.02

GraRep 36.15 38.05 38.81 39.19 39.51 39.66 39.83 39.89 40.11

MLNE 35.74 38.85 39.83 40.58 41.15 41.34 41.64 41.80 41.87

Macro-F1 DeepWalk 19.02 22.13 23.79 24.44 25.17 25.61 26.35 26.42 26.75

node2vec 19.71 22.77 24.63 25.69 26.43 26.80 27.13 27.75 27.70

GraRep 19.63 22.23 22.63 23.03 23.24 23.45 23.59 23.74 24.26

MLNE 22.27 24.40 25.39 26.16 26.44 26.56 26.78 26.85 26.94

TABLE 6 | Node classification results on Pubmed.

Model 10% 20% 30% 40% 50% 60% 70% 80% 90%

Micro-F1 DeepWalk 80.06 80.80 80.89 80.97 81.01 80.55 80.49 80.10 80.83

node2vec 79.23 80.03 80.16 80.42 80.21 79.91 79.78 79.87 80.83

GraRep 79.14 79.39 79.39 79.78 79.66 79.56 79.51 78.83 79.82

MLNE 80.03 81.09 81.44 81.55 81.62 81.71 81.76 81.82 82.35

Macro-F1 DeepWalk 78.69 79.44 79.54 79.69 79.69 79.19 79.06 78.81 79.78

node2vec 77.70 78.53 78.61 78.96 78.63 78.40 78.16 78.52 79.78

GraRep 77.70 78.00 77.98 78.53 78.35 78.18 78.18 77.56 78.83

MLNE 78.73 79.78 80.12 80.24 80.32 80.42 80.44 80.52 81.11

FIGURE 5 | Visualization of 20-NEWSGROUP. Each point represents a document. The color indicates the category of each document. (A) is the result of DeepWalk,

(B) is the result of node2vec, (C) is the result of GraRep, and (D) is the result of the proposed MLNE.

4.6. Visualization
Visualization is another important task for exploring and
analyzing a network. To conduct this task, the size of learned

node embeddings is firstly reduced for display; a popular
dimensionality reduction technique t-SNE is used to visualize the
network in two-dimensional space. For documents labeled into
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three categories in the 20-NEWSGROUP, three different colors
indicate the corresponding points. A good visualization result
keeps nodes within the same cluster close and vice versa.

From Figure 5, we can see that DeepWalk and node2vec do
not perform well because there are no clear boundaries among
the groups. For GraRep, there are two clusters where nodes also
tend to mix together. Obviously, MLNE slightly outperforms
the baselines and learns a good clustering, resulting in much
clearer boundaries. The experimental results demonstrate the
effectiveness of MLNE in the visualization task.

5. CONCLUSION

In this paper, we propose a multi-task learning-based network
embedding named MLNE. In order to jointly preserve the
local and global structural information, we design a model
based on multi-task learning. The model is composed of three
components: a shared encoder, decoder, and classifier. The shared
encoder and decoder can be seen as a standard autoencoder that
automatically learns representations from the global features.
The shared encoder and classifier are used to reconstruct the
one-hop area of a node from the learned latent representation.
Additionally, a regularization based onmini-batch batch gradient
descent is introduced to learn stable and robust representations.
Experimental results on node classification, link prediction, and
visualization tasks demonstrate the superiority of our proposed
MLNE in learning node representations.

In the future, we will extend multi-task learning to
heterogeneous information networks and large-scale networks.

DATA AVAILABILITY STATEMENT

The dataset Cora for this study can be found at https://
linqs.soe.ucsc.edu/node/236. The dataset DBLP for this study
can be found at http://arnetminer.org/citation. The dataset 20-
NEWSGROUP for this study can be found at http://qwone.
com/~jason/20Newsgroups/. The dataset Blogcatalog for this
study can be found at http://socialcomputing.asu.edu/datasets/
BlogCatalog3. The dataset Pubmed for this study can be found
at https://linqs.soe.ucsc.edu/data.

AUTHOR CONTRIBUTIONS

SW and MG designed the experiments. QW performed the
experiments. SW and QW analyzed the data. SW, MG, and QW
wrote the paper.

FUNDING

This work was supported by the National Key Research and
Development Program of China (Grant no. 2017YFB0802200),
the National Natural Science Foundation of China (Grant Nos.
61806153, 61772393, 61603299), the Fundamental Research
Funds for the Central Universities (Grant No. JB191501),
the National Natural Science Foundation of Shaanxi Province
(Grant No. 2019JQ-311), the China Postdoctoral Science
Foundation (Grant no. 2018M640961), and the National
Program for Support of Top-notch Young Professionals
of China.

REFERENCES

Argerich, L., Zaffaroni, J. T., and Cano, M. J. (2016). Hash2vec, feature hashing for

word embeddings. arXiv [preprint] arXiv:1608.08940.

Belkin, M., and Niyogi, P. (2002). “Laplacian eigenmaps and spectral techniques

for embedding and clustering,” in Advances in Neural Information Processing

Systems (Vancouver, BC), 585–591.

Cao, S., Lu, W., and Xu, Q. (2015). “Grarep: learning graph representations with

global structural information,” in Proceedings of the 24th ACM International

on Conference on Information and Knowledge Management (New York, NY:

ACM), 891–900.

Cao, S., Lu, W., and Xu, Q. (2016). “Deep neural networks for learning graph

representationsm,” in Thirtieth AAAI Conference on Artificial Intelligence

(Phoenix, AZ), 1145–1152.

Chen, H., Perozzi, B., Al-Rfou, R., and Skiena, S. (2018). A tutorial on network

embeddings. arXiv [preprint] arXiv:1808.02590.

Donnat, C., Zitnik, M., Hallac, D., and Leskovec, J. (2018). “Learning structural

node embeddings via diffusion wavelets,” in Proceedings of the 24th ACM

SIGKDD International Conference on Knowledge Discovery & Data Mining

(New York, NY: ACM), 1320–1329.

Du, B., Wang, S., Xu, C., Wang, N., Zhang, L., and Tao, D. (2018). Multi-task

learning for blind source separation. IEEE Trans. Image Process. 27, 4219–4231.

doi: 10.1109/TIP.2018.2836324

Fortunato, S. (2010). Community detection in graphs. Phys. Rep. 486, 75–174.

doi: 10.1016/j.physrep.2009.11.002

Gong, M., Cai, Q., Ma, L., Wang, S., and Lei, Y. (2017). Computational Intelligence

for Network Structure Analytics. Singapore: Springer.

Goyal, P., and Ferrara, E. (2018). Graph embedding techniques, applications,

and performance: a survey. Knowledge Based Syst. 151, 78–94.

doi: 10.1016/j.knosys.2018.03.022

Grover, A., and Leskovec, J. (2016). “node2vec: scalable feature learning for

networks,” in Proceedings of the 22nd ACM SIGKDD International Conference

on Knowledge Discovery and Data Mining (New York, NY: ACM), 855–864.

Hamilton, W. L., Ying, R., and Leskovec, J. (2017). Representation learning on

graphs: methods and applications. arXiv [preprint] arXiv:1709.05584.

Herman, I., Melançon, G., and Marshall, M. S. (2000). Graph visualization and

navigation in information visualization: a survey. IEEE Trans. Visual. Comput.

Graph. 6, 24–43. doi: 10.1109/2945.841119

Hu, R., Aggarwal, C. C., Shuai, M., and Huai, J. (2016). “An embedding approach

to anomaly detection,” in IEEE International Conference on Data Engineering

(Helsinki), 385–396.

Lang, K. (1995). “Newsweeder: learning to filter netnews,” in Machine Learning

Proceedings 1995 (Tahoe, CA: Elsevier), 331–339.

Liu, X., He, P., Chen, W., and Gao, J. (2019a). Multi-task deep neural networks for

natural language understanding. arXiv [preprint] arXiv:1901.11504.

Liu, X., Murata, T., Kim, K.-S., Kotarasu, C., and Zhuang, C. (2019b). “A general

view for network embedding as matrix factorization,” in Proceedings of the

Twelfth ACM International Conference on Web Search and Data Mining (New

York, NY: ACM), 375–383.

Lü, L., Medo, M., Yeung, C. H., Zhang, Y.-C., Zhang, Z.-K., and

Zhou, T. (2012). Recommender systems. Phys. Rep. 519, 1–49.

doi: 10.1016/j.physrep.2012.02.006

Lü, L., and Zhou, T. (2011). Link prediction in complex networks: a survey. Phys.

Stat. Mech. Appl. 390, 1150–1170. doi: 10.1016/j.physa.2010.11.027

McCallum, A. K., Nigam, K., Rennie, J., and Seymore, K. (2000).

Automating the construction of internet portals with machine

learning. Inform. Retriev. 3, 127–163. doi: 10.1023/A:10099538

14988

Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013). Efficient estimation of

word representations in vector space. arXiv [preprint] arXiv:1301.3781.

Frontiers in Neuroscience | www.frontiersin.org 9 January 2020 | Volume 13 | Article 1387

https://linqs.soe.ucsc.edu/node/236
https://linqs.soe.ucsc.edu/node/236
http://arnetminer.org/citation
http://qwone.com/~jason/20Newsgroups/
http://qwone.com/~jason/20Newsgroups/
http://socialcomputing.asu.edu/datasets/BlogCatalog3
http://socialcomputing.asu.edu/datasets/BlogCatalog3
https://linqs.soe.ucsc.edu/data
https://doi.org/10.1109/TIP.2018.2836324
https://doi.org/10.1016/j.physrep.2009.11.002
https://doi.org/10.1016/j.knosys.2018.03.022
https://doi.org/10.1109/2945.841119
https://doi.org/10.1016/j.physrep.2012.02.006
https://doi.org/10.1016/j.physa.2010.11.027
https://doi.org/10.1023/A:1009953814988
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Wang et al. Multi-Task Learning-Based Network Embedding

Musiał, K., and Juszczyszyn, K. (2009). “Properties of bridge nodes in social

networks,” in International Conference on Computational Collective Intelligence

(Wroclaw: Springer), 357–364.

Peng, C., Xiao, W., Jian, P., and Zhu, W. (2019). A survey on

network embedding. IEEE Trans. Knowledge Data Eng. 31, 833–852.

doi: 10.1109/TKDE.2018.2849727

Perozzi, B., Al-Rfou, R., and Skiena, S. (2014). “Deepwalk: online learning of

social representations,” in Proceedings of the 20th ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining (New York, NY: ACM),

701–710.

Qiu, J., Dong, Y., Ma, H., Li, J., Wang, C., Wang, K., et al. (2019). “Netsmf: large-

scale network embedding as sparse matrix factorization,” in The World Wide

Web Conference (New York, NY: ACM), 1509–1520.

Qiu, J., Dong, Y., Ma, H., Li, J., Wang, K., and Tang, J. (2018). “Network

embedding as matrix factorization: unifying deepwalk, line, pte, and node2vec,”

in Proceedings of the Eleventh ACM International Conference onWeb Search and

Data Mining (New York, NY: ACM), 459–467.

Ruder, S. (2017). An overview ofmulti-task learning in deep neural networks. arXiv

[preprint] arXiv:1706.05098.

Sen, P., Namata, G., Bilgic, M., Getoor, L., Galligher, B., and Eliassi-Rad,

T. (2008). Collective classification in network data. AI Magaz. 29:93.

doi: 10.1609/aimag.v29i3.2157

Shi, C., Hu, B., Zhao, W. X., and Philip, S. Y. (2018). Heterogeneous information

network embedding for recommendation. IEEE Trans. Knowledge Data Eng.

31, 357–370. doi: 10.1109/TKDE.2018.2833443

Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., and Mei, Q. (2015). “Line: large-

scale information network embedding,” in Proceedings of the 24th International

Conference on World Wide Web (Geneva: International World Wide Web

Conferences Steering Committee), 1067–1077.

Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., and Su, Z. (2008). “Arnetminer:

extraction and mining of academic social networks,” in Proceedings of the 14th

ACM SIGKDD International Conference on Knowledge Discovery and Data

Mining (New York, NY: ACM),990–998.

Tang, L., and Liu, H. (2009). “Relational learning via latent social dimensions,” in

Proceedings of the 15th ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining (New York, NY: ACM), 817–826.

Thung, K.-H., andWee, C.-Y. (2018). A brief review on multi-task learning.Multi.

Tools Appl. 77, 29705–29725. doi: 10.1007/s11042-018-6463-x

Tsoumakas, G., and Katakis, I. (2007). Multi-label classification: an overview.

Int. J. Data Warehous. Mining 3, 1–13. doi: 10.4018/jdwm.20070

70101

Wang, D., Cui, P., and Zhu, W. (2016). “Structural deep network embedding,” in

Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining (New York, NY: ACM), 1225–1234.

Wang, N., Wang, H., Jia, Y., and Yin, Y. (2018). “Explainable recommendation via

multi-task learning in opinionated text data,” in The 41st International ACM

SIGIR Conference on Research & Development in Information Retrieval (New

York, NY: ACM), 165–174.

Wang, X., Cui, P., Wang, J., Pei, J., Zhu, W., and Yang, S. (2017). “Community

preserving network embedding,” in Thirty-First AAAI Conference on Artificial

Intelligence (San Francisco, CA), 203–209.

Wei, X., Xu, L., Cao, B., and Yu, P. S. (2017). “Cross view link prediction by

learning noise-resilient representation consensus,” in Proceedings of the 26th

International Conference on World Wide Web (Geneva: International World

Wide Web Conferences Steering Committee), 1611–1619.

Zhang, D., Han, J., Yang, L., and Xu, D. (2018). Spftn: a joint learning

framework for localizing and segmenting objects in weakly labeled videos.

IEEE Trans. Pattern. Anal. Mach. Intell. doi: 10.1109/TPAMI.2018.28

81114. [Epub ahead of print].

Zhang, D., Yin, J., Zhu, X., and Zhang, C. (in press). Network representation

learning: a survey. IEEE Trans. Big Data. doi: 10.1109/TBDATA.2018.2850013

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2020 Wang, Wang and Gong. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is permitted, provided the original

author(s) and the copyright owner(s) are credited and that the original publication

in this journal is cited, in accordance with accepted academic practice. No use,

distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Neuroscience | www.frontiersin.org 10 January 2020 | Volume 13 | Article 1387

https://doi.org/10.1109/TKDE.2018.2849727
https://doi.org/10.1609/aimag.v29i3.2157
https://doi.org/10.1109/TKDE.2018.2833443
https://doi.org/10.1007/s11042-018-6463-x
https://doi.org/10.4018/jdwm.2007070101
https://doi.org/10.1109/TPAMI.2018.2881114
https://doi.org/10.1109/TBDATA.2018.2850013
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

	Multi-Task Learning Based Network Embedding
	1. Introduction
	2. Preliminaries
	2.1. Notations and Definitions
	2.2. PPMI and Random Surfing
	2.3. Multi-Task Learning

	3. The Framework
	3.1. An Overview of the Framework
	3.2. Multi-Task Learning Model

	4. Experiments
	4.1. Datasets
	4.2. Baseline Algorithms
	4.3. Parameter Setting
	4.4. Link Prediction
	4.5. Node Classification
	4.6. Visualization

	5. Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	References


