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Escalated Oxycodone
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Christopher A. Blackwood, Michael T. McCoy, Bruce Ladenheim and Jean Lud Cadet*

Molecular Neuropsychiatry Research Branch, NIH/NIDA Intramural Research Program, Baltimore, MD, United States

Opioid use disorder (OUD) is characterized by compulsive drug taking despite
adverse life consequences. Here, we sought to identify neurobiological consequences
associated with the behavioral effects of contingent footshocks administered after
escalation of oxycodone self-administration. To reach these goals, Sprague-Dawley
rats were trained to self-administer oxycodone for 4 weeks and were then exposed
to contingent electric footshocks. This paradigm helped to dichotomize rats into two
distinct behavioral phenotypes: (1) those that reduce lever pressing (shock-sensitive)
and (2) others that continue lever pressing (shock-resistant) for oxycodone during
contingent punishment. The rats were euthanized at 2-h after the last oxycodone plus
footshock session. The dorsal striata and prefrontal cortices were dissected for use
in western blot and RT-qPCR analyses. All oxycodone self-administration rats showed
significant decreased expression of Mu and Kappa opioid receptor proteins only in the
dorsal striatum. However, expression of Delta opioid receptor protein was decreased
in both brain regions. RT-qPCR analyses documented significant decreases in the
expression of c-fos, fosB, fra2, junB, egr1, and egr2 mRNAs in the dorsal striatum
(but not in PFC) of the shock-sensitive rats. In the PFC, junD expression was reduced
in both phenotypes. However, egr3 mRNA expression was increased in the PFC of only
shock-resistant rats. These results reveal that, similar to psychostimulants and alcohol,
footshocks can dichotomize rats that escalated their intake of oxycodone into two
distinct behavioral phenotypes. These animals also show significant differences in the
mRNA expression of immediate early genes, mainly, in the dorsal striatum. The increases
in PFC egr3 expression in the shock-resistant rats suggest that Egr3 might be involved
in the persistence of oxycodone-associated memory under aversive conditions. This
punishment-driven model may help to identify neurobiological substrates of persistent
oxycodone taking and abstinence in the presence of adverse consequences.
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INTRODUCTION

Opioid use disorders (OUDs) continue to constitute a public
health crisis (Cicero et al., 2005; Skolnick, 2017). OUDs are
characterized by compulsive consumption of large amounts of
opioids despite adverse life consequences (American Psychiatric
Association and Dsm-5 Task Force, 2013). Adverse consequences
of OUDs are influenced by widespread use of opioids such
as oxycodone for the treatment of various pain syndromes
(Gaskell et al., 2016; Schmidt-Hansen et al., 2017) and their
over-prescription by medical professionals (Van Zee, 2009).
These have led to substantial increases in the number of deaths
caused by opioid overdoses (Skolnick, 2017). To develop more
effective treatment strategies for OUDs (Blanco and Volkow,
2019; Patel and Kosten, 2019), animal models that meet multiple
DSM criteria are needed to increase their translational validity
(Cadet, 2019).

Efforts to elucidate the molecular neurobiology of substance
use disorders (SUDs), including OUDs, have largely depended
on drug self-administration (SA) models (Wade et al., 2015;
Mavrikaki et al., 2017; Blackwood et al., 2018). However, as
suggested by several investigators (Chen et al., 2013; Belin-
Rauscent et al., 2016; Cadet, 2019), drug self-administration
alone represents only one DSM criterion and fails to replicate
the complex behavioral syndromes termed SUDs (American
Psychiatric Association and Dsm-5 Task Force, 2013). Some
groups have tried to remedy this conundrum by adding
contingent punishment during the performance of self-
administration of alcohol, cocaine, and methamphetamine by
rodents (Chen et al., 2013; Vanderschuren et al., 2017; Marchant
et al., 2018; Cadet et al., 2019). In these models, footshocks are
used to segregate rats that continue to self-administer drugs
[shock-resistant (SR), addicted] from those that significantly
reduce or stop [shock-sensitive (SS), non-addicted users]
their intake in the presence of punishment (Chen et al., 2013;
Vanderschuren et al., 2017; Marchant et al., 2018; Cadet et al.,
2019). Those rats that significantly reduced or stopped their drug
intake may represent a group of individuals who use illicit drugs
without meeting DSM criteria for SUD (Korf et al., 2010; Zaaijer
et al., 2014). Similar to observations with psychostimulants,
rats, given long access to oxycodone, escalate their intake and
exhibit compulsive drug seeking behaviors (Wade et al., 2015;
Blackwood et al., 2018; Bossert et al., 2018). However, it remains
to be determined if punishment could also help to dichotomize
rats that escalated their oxycodone intake into SR and SS rats as
reported for other drugs (Chen et al., 2013; Marchant et al., 2018;
Cadet et al., 2019).

Behaviors measured during drug self-administration have
been shown to depend on interactions of interconnected brain
regions that include the dorsal striatum and the prefrontal cortex
(PFC) among others (Everitt, 2014; Moorman et al., 2015; Smith
and Laiks, 2018). On the one hand, the dorsal striatum has
been reported to play prominent roles in the mediation of
habitual drug taking behaviors (Belin and Everitt, 2008; Everitt
and Robbins, 2016; Hodebourg et al., 2018). On the other
hand, the PFC is involved in drug seeking, reinstatement of
drug seeking, and other complex cognitive behaviors including

decision making in relation to drug taking behaviors (Bossert
et al., 2011; Perry et al., 2011; Hu et al., 2019). Human studies
have also documented abnormalities in these regions of humans
who suffer from SUDs (Bolla et al., 2004; Goldstein and Volkow,
2011; Cadet et al., 2014; Cadet and Bisagno, 2015). Of further
relevance to investigations of oxycodone use disorder and other
OUDs, in general, is the fact that these brain regions contain high
concentration of opioid receptors. For example, using receptor
autoradiographic techniques, Mansour et al. (1987) had reported
large concentration of mu and delta opioid receptors in the
frontal cortex and dorsal striatum of rats. The dorsal striatum also
contains high concentration of kappa opioid receptors (Mansour
et al., 1987). These regions also contain mRNAs that code for
these receptors (Mansour et al., 1994). Human studies using
PET and radiolabeled carfentanil have also identified mu opioid
receptors in these brain regions (Frost et al., 1985; Nummenmaa
et al., 2018; Burns et al., 2019). Of significance to the presence
study, post-mortem studies have reported decreased expression
of mu opioid receptors in the striatum (Sillivan et al., 2013)
and PFC of heroin abusers (Ferrer-Alcon et al., 2004b). Other
post-mortem abnormalities in signaling pathways have also been
reported in the PFC of opioid users (Ferrer-Alcon et al., 2004a;
Keller et al., 2017).

Thus, we reasoned that biochemical and molecular
adaptations in these brain regions might play important
roles in the behavioral manifestations of punishment-induced
separation of rats into resistant and sensitive rats. This idea is
supported by our recent demonstration that decreases in the
expression of Mu opioid receptor protein levels in the dorsal
striatum correlated with escalated drug intake and drug seeking
behavior in oxycodone self-administering rats (Blackwood et al.,
2018). This reasoning is also consonant with our findings of
dose-dependent changes in the mRNA expression of immediate
early genes (IEGs) following oxycodone seeking after a month
of withdrawal from escalated oxycodone SA (Blackwood
et al., 2019). We reasoned further that shock-resistant and
shock-sensitive rats may show differential expression of opioid
receptors in the dorsal striatum and of IEGs in both the dorsal
striatum and PFC. Changes in IEG expression have been reported
in several models of psychostimulant and OUDs (Bisagno and
Cadet, 2019), supporting the possibility that IEGs could be used
as markers of the two shock-induced divergent phenotypes.

As predicted, footshocks did help to separate oxycodone
SA rats into SR and SS phenotypes. These two phenotypes
showed differential expression of IEGs in the dorsal striatum
and PFC, with greater changes occurring in the striatum. These
data further implicate the dorsal striatum as a major node in
the chemical neuroanatomical pathways of habitual compulsive
oxycodone taking.

MATERIALS AND METHODS

Subjects
Male Sprague-Dawley rats (Charles River, Raleigh, NC,
United States), weighing 350–400 g before surgery, were used
in all experiments. Rats were maintained on a 12-h reversed
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light/dark cycle with food and water available ad libitum. This
study was carried out in accordance with the principles and
guidelines outlined in the National Institutes of Health (NIH)
Guide for the Care and Use of Laboratory Animals (eighth
Edition1) as approved by the NIDA (National Institute of Drug
Abuse) Animal Care and Use Committee at the Intramural
Research Program (IRP).

Intravenous Surgery and
Self-Administration Training
Surgical implantations of intravenous catheters were done as
previously described (Cadet et al., 2017). Briefly, we anesthetized
the rats with an intraperitoneal injection of ketamine (50 mg/kg)
and xylazine (5 mg/kg) and inserted a polyurethane catheter
(SAI Infusion Technologies, Lake Villa, IL, United States) into
the jugular vein. One end of the catheters was inserted in the
jugular vein while the other end was attached to a modified
22-gauge cannula (Plastics One, Roanoke, VA, United States)
that was mounted to the back of each rat. The modified
cannulae were connected to a fluid swivel (Instech, Plymouth,
PA, United States) via polyethylene-50 tubing that was protected
by a metal spring. These cannulae served as infusion ports for
the catheters. The ports were closed using dust caps (PlasticOne,
Roanoke, VA, United States). Thereafter, the catheters were
flushed every 48-h with gentamicin (0.05 mg/kg, Henry Schein,
Melville, NY, United States) in sterile saline to maintain patency.
Injections of buprenorphine (0.1 mg/kg) were used post-surgery
to relieve pain.

Rats were allowed to recover for 5–7 days before oxycodone
self-administration (SA) training. Rats were trained in SA
chambers located inside sound-attenuated cabinets and
controlled by a Med Associates System (Med Associates, St
Albans, VT, United States). Each chamber was equipped
with two levers located 8.5 cm above the grid floor. Presses
on the retractable active lever activated the infusion pump
and tone-light cue. Presses on the inactive lever had no
reinforced consequences.

Training and Punishment Phases
Rats (n = 28) were housed in Med Associates SA chambers
and were randomly assigned to either saline (Sal) (n = 8) or
oxycodone (n = 20) conditions. Rats were given long access to
oxycodone and were trained for two 3-h sessions during days
1–5, followed by three 3-h sessions during days 6–22 (Figure 1A).
Each of the 3-h sessions was separated by 30-min intervals during
which rats remained in operant chambers but had no access to
the levers to press for oxycodone. Lever presses were reinforced
using a fixed ratio-1 with a 20-s timeout accompanied by a 5-
s compound tone-light cue. Rats self-administered oxycodone
at a dose of 0.1 mg/kg per infusion given over 3.5-s (0.1 ml
per infusion). The house light was turned off and the active
lever retracted at the end of the 3-h session. After training
rats for 22 days, oxycodone rats that escalated their oxycodone

1https://grants.nih.gov/grants/olaw/guide-for-the-care-and-use-of-laboratory-
animals.pdf

FIGURE 1 | Long access to oxycodone self-administration and contingent
punishment dichotomize rats into shock-resistant and shock-sensitive
phenotypes. (A) Experimental timeline of oxycodone self-administration
training and footshock phases. Rats were trained to self-administer
oxycodone using a long access (LgA) paradigms of 6-h for 1–5 days, 9-h for
6–22 days, followed by oxycodone SA and contingent footshocks
(0.18–0.36 mA) for 9-h for 6 more days. (B) All rats escalate their intake of
oxycodone during long access self-administration training (n = 20). (C) During
the 9-h training paradigm rats showed significantly higher levels of oxycodone
on the last day compared to the first day (n = 20). (D) Footshocks caused
decreased lever pressing significantly more in the shock-sensitive (SS) than in
the shock-resistant (SR) rats (n = 5, SS; n = 6, SR). (E) SS rats took
substantially less oxycodone than SR rats. Key to statistics: ∗, ∗∗,
∗∗∗p < 0.05, 0.01, 0.001, respectively, in comparison to saline rats or last
2 days before shocks in the SR subgroup; #, ##, ###p < 0.05, 0.01, 0.001,
respectively, in comparison to SR rats or last 2 days of shocks in the SR
subgroup. !!!p < 0.001, in comparison to first day of 9-h training. Stats were
performed by two-way ANOVA followed by Bonferroni post hoc tests or
Student’s t-test.

intake equal to or greater than 50 daily infusions underwent the
punishment phase.

During the punishment phase, rats continued to self-
administer oxycodone every day (three 3-h sessions/day
separated by 30 min off intervals) as described above. During
that phase, ∼50% of the reinforced lever-presses also resulted in
the delivery of a 0.5-s footshock through the grid floor. We set
the initial footshock at 0.18 mA and increased the shock intensity
by 0.06 mA to a final value of 0.36 mA over the course of 6
punishment days.

Collection of Tissues
We euthanized rats 2-h after the last oxycodone plus punishment
day. Brains were removed from skulls and the dorsal striata
and PFC were dissected and snap frozen on dry ice. Dissections
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were performed as previously described (Blackwood et al., 2018).
In brief, we used stereotaxic coordinates to dissect the dorsal
striatum (A/P+ 2 to−2 mm bregma, M/L± 2 to 5 mm, D/V−3
to −6 mm) and the PFC (A/P + 2.7 to + 1.7 mm bregma, M/L
0 to + 4 mm, D/V + 7 to + 9 mm) using the Atlas by Paxinos
and Watson (1998). We also followed distinguishable anatomical
structures (olfactory bulb, corpus callosum, and lateral ventricle)
for further accuracy. Tissues were then processed for western
blotting and quantitative RT-PCR analyses.

Quantitative RT-PCR
Total RNA was isolated from one hemisphere of the dorsal
striatum and PFC using RNeasy Mini Kit (Qiagen, Valencia,
CA, United States). Total RNA (0.5 µg) was reverse-transcribed
(RT) with oligo dT primers using Advantage RT-for-PCR
kit (Clontech, Mountain View, CA, United States). RT-qPCR
was performed as previously described (Cadet et al., 2017;
Blackwood et al., 2019) with Roche LightCycler 480 II (Roche
Diagnostics, Indianapolis, IN, United States) using iQ SYBR
Green Supermix (Bio-Rad, Hercules, CA, United States).
Custom-designed primers were made and HPLC-purified by the
Synthesis and Sequence Facility of the Johns Hopkins University
(Baltimore, MD, United States). Primer sequences are listed
in Table 1.

Western Blotting
Western blotting was performed essentially as previously
described (Blackwood et al., 2018). In brief, soluble protein lysates
were prepared in solutions that contained 1x NuPage LDS Sample
Buffer (Thermo Fisher Scientific, Waltham, MA, United States),
and 1% β-Mercaptoethanol (Sigma, St. Louis, MO, United States).
Samples were then boiled and resolved using NuPage 10% Bis-
Tris Protein Gels (Thermo Fisher Scientific, Waltham, MA,
United States). Proteins were electrophoretically transferred

TABLE 1 | List of RT-qPCR primers.

Gene
name

Forward Reverse

c-fos GGG CAA AGT AGA GCA G CTC TTT CAG TAG ATT GGC A

fosB GAA GCT GGA GTT CAT GC ATG GGC TTG ATG ACA GA

fra1 CAC CCT CTC TGA CTC CTT
TTA

GAT TAA CAG GGA AAG GAG
ATG A

fra2 TGC AAA ATC AGT CCT GAG
GAA

CAA TGC TAA TGG GCT TGA
TGA

c-jun TCT CAG GAG CGG ATC AA TGT TAA CGT GGT TCA TGA C

junB TCT TTC TCT TCA CGA CTA CA CTA GCT TCA GAG ATG CG

junD GGA TTG AAA CCA GGG TC TAG AGG AAC TGC GTA CT

egr1 TGC ACC CAC CTT TCC TAC TC AGG TCT CCC TGT TGT TGT GG

egr2 CCT GAG ACC TCG AAA GTA CAG ATC CGA CAC TGG AA

egr2
(PFC)

CAA GGC CGT AGA CAA AAT
CCC A

CCC ATG TAA GTG AAG GTC
TGG T

egr3 AAA GAA GGG ATC TGA GAG
GCG GAT

TGT GAG TTC TGT GGG CGC
AAG TTT

egr3
(PFC)

TGT AAT GGA CAT CGG TCT G GGC TAA TGA TGT TGT CCT G

b2m GAT CTT TCT GGT GCT TGT AGC TCA ATT TCT ATT TGA GGT

onto Trans-Blot R© TurboTM Midi Nitrocellulose membranes
using the Trans-Blot R© TurboTM system (Bio-Rad, Hercules,
CA, United States). Primary rabbit antibodies used were anti-
OPRM1 (1:5000, ab17934), anti-OPRK1 (1:10000, ab183825),
anti-OPRD1 (1:1000, ab176324), and anti-Cyclophilin B (CYPB)
(1:10000, ab16045) purchased from Abcam (Cambridge, MA,
United States). Secondary antibodies used were goat anti-
rabbit (1:500, Sc-1404) conjugated HRP purchased from Santa
Cruz Biotechnology (Dallas, TX, United States). Following
secondary antibody incubation, ECL clarity (Bio-Rad, Hercules,
CA, United States) was used to detect gel bands on ChemiDoc
Touch Imaging System (Bio-Rad, Hercules, CA, United States),
and intensities were quantified with Image Lab version 6.0 (Bio-
Rad, Hercules, CA, United States) software.

Statistical Analyses
Behavioral data were analyzed using two-way analysis of variance
(ANOVA). Dependent variables were the number of oxycodone
infusions on training days. Independent variables were between-
subject factor reward types (saline, Oxy, SR, SS), within-subject
factor SA day (training days 1–22 or shock days 1–6), and their
interactions. If the main effects were significant (p ≤ 0.05),
Bonferroni post hoc tests were used to compare reward types
on each training/shock day. Biochemical data were analyzed
using one-way ANOVA followed by the Fisher’s PLSD post hoc
test if the main effect was significant. Genes that showed a
trend toward significance using ANOVA were also analyzed
by Student’s t-test. Linear regression analyses were performed
to detect potential relationships between the total amount of
oxycodone taken during the last 3 days of footshocks and
protein/mRNA expression. The null hypothesis was rejected at
p ≤ 0.05. Behavioral data were analyzed with SPSS version
24 (IBM, Armonk, NY, United States), Prism 8.2.0 (GraphPad
Software, San Diego, CA, United States) while biochemical
data were analyzed using StatView version 4.0 (SAS, Cary,
NC, United States).

RESULTS

Footshocks Separate Oxycodone
Self-Administering Rats Into Resistant
and Sensitive Phenotypes
Figure 1 shows the timeline and results of the behavioral studies.
The repeated-measures ANOVA for reward earned included
the between-subject factor group (Saline and oxycodone) and
the within-subject factor of SA day (training days 1–22), and
the group × day interaction. This analysis showed statistically
significant effects of group [F(1,572) = 272.8, p < 0.0001],
non-significant effects of day [F(21,572) = 1.133, p = 0.3081],
and significant group × day interaction [F(21,572) = 1.756,
p = 0.0201]. Oxycodone rats increased their drug intake
substantially after training day 6 when compared to saline rats
[F(1,416) = 230.6, p = 0.0001] (Figure 1B). There was also a
significant uptake of oxycodone between day 6 and day 22 during
the 9-h training period (Figure 1C).
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Similar to our previous reports (Cadet et al., 2016; Krasnova
et al., 2017; Torres et al., 2017), the introduction of footshocks
allowed for the separation of rats that had escalated their
oxycodone intake into (1) shock-resistant (SR) animals that
continue to press the lever slightly less than before and (2)
shock-sensitive (SS) that markedly decreased their intake of the
drug (Figure 1D). Fifty five percent (55%) of the oxycodone SA
rats were classified as SR while 45% were denoted SS animals.
Respectively, SR and SS exhibited 38 and 78% suppression
of drug infusion during the last 2 days of footshocks in
comparison to the last 2 days before the introduction of shocks
(Figure 1D), indicating different degrees of suppression of
individual oxycodone intake by the contingent shocks. For
these data, the repeated measures ANOVA for reward earned
included the SR and SS rats, and the within-subject factor days
of footshocks (1–6 days), and the group × day interaction. We
found statistically significant effects of shocks [F(1,54) = 75.0,
p < 0.0001] and day [F(5,54) = 2.4, p = 0.0484], and non-
significant effect of group × day interaction [F(5,54) = 0.1,
p = 0.9857] (Figure 1D). A similar ANOVA model for
reward earned prior to the punishment phase found statistically
significant effects of group [F(1,196) = 40.25, p < 0.0001], day
[F(21,196) = 4.369, p< 0.0001], and non-significant group× day
interaction [F(21,196) = 0.9484, p = 0.2076]. Further analyses
revealed no significant differences between SS and SR rats during
training days 1–22. We also compared the amount of oxycodone
taken during the last 2 days of SA training alone to the amount
taken during the phase of oxycodone SA plus footshocks with
shock intensity at 0.36 mA. Figure 1E shows that the amount
of oxycodone (mg/kg) consumed during the last 2 days of
punishment was significantly decreased in both SR and SS rats
[F(3,36) = 41.30, p < 0.0001], with the SR rats consuming much
more oxycodone than the SS rats.

Effects of Oxycodone
Self-Administration and Footshocks on
Opioid Receptor Protein Expression
Oxycodone exerts its actions by binding to opioid receptors in
the brain (Williams et al., 2013). We had previously reported that
rats that escalated their intake of oxycodone showed decreased
Mu opioid receptor protein levels in the dorsal striatum even
after a month of withdrawal (Blackwood et al., 2018). In contrast,
oxycodone-exposed rats showed comparable expression of Delta
and Kappa opioid receptor proteins to control rats (Blackwood
et al., 2018). Here, we tested the possibility that there might
be differences in the expression of the 3 opioid receptors in
the dorsal striatum and PFC of rats euthanized at 2-h after
the last session.

There were significant decreases in striatal Mu (OPRM1)
[F(2,16) = 5.352, p = 0.0166], Delta (OPRD1) [F(2,16) = 15.45,
p = 0.0002], and Kappa (OPRK1) [F(2,16) = 8.230, p = 0.0035]
protein levels in both SR and SS rats compared to the
saline SA animals (Figures 2A,C,E). In contrast, there were
no substantial changes in the protein expression of OPRM1
(p = 0.0837) and OPRK1 (p = 0.1030) in the PFC (Figures 2B,F).
However, significantly decreases in OPRD1 [F(2,16) = 9.219,

FIGURE 2 | Differential expression of Mu, Delta, and Kappa opioid receptor
proteins in the dorsal striatum and prefrontal cortex (PFC) of oxycodone- and
shock-exposed rats. (A–F) Quantitative measures and representative images
showing Western blot analyses of Mu (OPRM1), Delta (OPRD1), and Kappa
(OPRK1) in the SR and SS rats show decreased OPRM1 (A), OPRD1 (C), and
OPRK1 (E) in the dorsal striatum. There were also significant decreases in
OPRD1 (D), but not of OPRM1 (B) and OPRK1 (F), receptor protein levels in
the PFC (n = 8, Sal; n = 6, SR; n = 5, SS). Key to statistics: ∗, ∗∗, ∗∗∗p < 0.05,
0.01, 0.001, respectively, in comparison to saline-exposed rats or SR rats.
Stats were performed by one-way ANOVA and Fisher’s PLSD post hoc tests.

p = 0.0022] protein levels were observed in both SR and SS
subgroups compared to the saline group (Figure 2D) in the PFC.
These data suggest region-specific regulation of opioid receptor
expression in the brain.

Effects of Oxycodone SA and
Footshocks on Members of Fos Family
of IEGs
Dorsal Striatum
As noted in the introduction, because the expression of several
IEGs is known to be impacted by administration of opioid
drugs (Bisagno and Cadet, 2019; Blackwood et al., 2019), we
reasoned that differential expression of some IEGs of the Fos
family might occur in the SR and SS oxycodone SA phenotypes,
with the SR showing higher mRNA expression. Figure 3 shows
the effects of footshocks and oxycodone SA on c-fos, fosB,
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FIGURE 3 | Striatal Fos Family members show decreased mRNA expression. SS rats show decreased striatal c-fos (A), fosB (C), and fra2 (G) mRNA levels. mRNA
expression of c-fos, fosB, and fra2 correlated with doses of oxycodone (B,D,H). Striatal fra1 (E,F) show no significant changes in mRNA expression. No significant
changes in c-fos (I), fosB (K,L), fra1 (M,N), and fra2 (O,P) mRNA levels were detected in the PFC. The expression of c-fos correlated with doses of oxycodone (J)
(n = 7–8, Sal; n = 5–6, SR; n = 4–5, SS). Key to statistics: ∗, ∗∗, ∗∗∗p < 0.05, 0.01, 0.001, respectively, in comparison to saline rats. #p < 0.05, in comparison to SR
rats. Stats were performed by one-way ANOVA, Fisher’s PLSD post hoc, or Student’s t-test.

fra1, and fra2 mRNA levels in the dorsal striatum of the SR
and SS rats. We found that the expression of c-fos mRNA
levels showed a trend toward significance [F(2,13) = 3.47,
p = 0.0621]. Planned t-test between the oxycodone-exposed
rats and control rats revealed significant differences in c-fos
mRNA expression between the SS subgroup compared to
controls (p = 0.0212) but not compared to the SR subgroup
(Figure 3A). Regression analysis revealed that the levels of
mRNA expression were significantly related to the amount

of total oxycodone taken during the experiment (Figure 3B).
We also observed significant decreases in striatal mRNA levels
of fosB [F(2,13) = 6.554, p = 0.0108] (Figure 3C) and fra2
[F(2,13) = 14.326, p = 0.0005] (Figure 3G), but not of fra1
(Figure 3E) in SS rats in comparison to control and SR rats. The
fra2 mRNA levels also showed significant decreases in the SR
rats compared to saline rats. The mRNA expression levels of c-
fos, fosB and fra2 also showed significant linear correlation with
total oxycodone taken (Figures 3B,D,H) whereas fra1 expression
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did not show any significant correlation with oxycodone
SA (Figure 3F).

Prefrontal Cortex
Figure 3 also illustrates the results of footshocks on c-fos, fosB,
fra1, and fra2 mRNA levels in the PFC. In the PFC, although
the mRNA expression of c-fos did trend toward significance
(p = 0.0701) between the SR and SS subgroups, we detected no
significant changes (Figure 3I). However, the regression analysis
revealed significant relationship of c-fos mRNA expression
to amount of oxycodone taken (Figure 3J). There was no
significant change in fosB, fra1 or fra2 (Figures 3K,M,O).
Moreover, regression analysis revealed no significant correlations
between these genes expression and the amount of oxycodone
taken (Figures 3L,N,P).

Differential Expression of Members of
Jun IEG Family in the Dorsal Striatum
and PFC of Oxycodone Exposed Rats
Dorsal Striatum
Figure 4 shows the observations for JUN family of IEGs in
the dorsal striatum. The mRNA levels of c-jun or junD showed
no significant changes between the subgroups (Figures 4A,E)
and no correlation to oxycodone doses (Figures 4B,F). In
contrast, we observed significantly decreased mRNA levels of
junB [F(2,15) = 3.743, p = 0.0480) in SS rats compared to
controls (Figure 4C). However, there was no correlation between
mRNA expression of junB and the amount of oxycodone
taken (Figure 4D).

Prefrontal Cortex
Figure 4 also shows the quantification of JUN family IEGs in
the PFC. The mRNA expression of c-jun and junB showed no
significant changes (Figures 4G,I) and no correlation to the total
amount of infused oxycodone (Figures 4H,J). In contrast, we
found significantly decreased mRNA levels of junD in the SR and
SS rats [F(2,12) = 6.331, p = 0.0133] (Figure 4K). However, there
was no relationship between the mRNA expression of junD and
infused oxycodone (Figure 4L).

Effects of Oxycodone SA and
Footshocks on the Expression of
Members of Egr Family of IEGs
Dorsal Striatum
Figure 5 shows the effects of footshocks from oxycodone SA
on egr1, egr2, and egr3 mRNA levels in the dorsal striatum.
There were significantly decreases in mRNA levels of striatal
egr1 [F(2,14) = 7.588, p = 0.0059] and egr2 [F(2,13) = 8.019,
p = 0.0054] in the SS rats compared to saline rats (Figures 5A,C).
Striatal egr2 expression in the SS rats was also significantly
decreased in comparison to SR rats (Figure 5C). We found
no changes in egr3 mRNA expression (Figure 5E). Moreover,
there were no significant correlations between mRNA levels
of egr1, egr2, and egr3 and the amount of oxycodone
taken (Figures 5B,D,F).

Prefrontal Cortex
Figure 5 also illustrates the results of Egr family of IEGs in
the PFC. There were significantly decreases in mRNA levels
of egr1 (p = 0.0141) and egr2 (p = 0.0256) in the SS rats
compared to SR rats (Figures 5G,I). These changes showed a
significant correlation between the mRNA expression and the
amount of oxycodone taken (Figures 5H,J). In addition, we
detected significant increases in egr3 [F(2,13) = 4.314, p = 0.0331]
in the SR rats in comparison to both saline rats and SS rats
(Figure 5K). A significant correlation was also found between
the mRNA expression of egr3 and total amount of infused
oxycodone (Figure 5L).

DISCUSSION

The current opioid crisis (Boscarino et al., 2010; Rudd et al.,
2016; Fornili, 2018) has prompted renewed calls to develop better
treatment strategies for patients who misuse these drugs. We have
therefore begun to investigate the neurobiological consequences
of oxycodone SA behaviors in rats. We have reported recently
that rats, given long access to oxycodone, will escalate their intake
and show incubation of drug-seeking behaviors after several
weeks of withdrawal (Blackwood et al., 2018). As discussed
elsewhere (Cadet, 2019), because repeated drug use in humans
is not enough to reach a SUD DSM-V diagnosis, we have
added contingent footshocks during drug SA to encompass one
additional DMS criterion, namely, compulsive drug taking in the
presence of adverse consequences. This approach is consistent
with the observations that, in clinical situations, only small
percentages of individuals continue to misuse drugs when faced
with legal and financial consequences (Anthony et al., 1994;
Miller and Flaherty, 2000; Santiago Rivera et al., 2018). It needs to
be also noted that there exists a substantial number of individuals
who use opioids without meeting criteria for OUD (Korf et al.,
2010; Zaaijer et al., 2014).

The major findings of the present study include the following:
(1) the introduction of contingent punishment to rats that
had escalated their intake of oxycodone helped to dichotomize
them into two shock-induced phenotypes, with one group of
resistant animals that continued to press the active lever for
the drug and another group of sensitive rats that stopped or
reduced their intake substantially; (2) all oxycodone-exposed rats
showed significant decreased striatal protein levels of the three
opioid receptors; (3) SS rats showed reduced striatal mRNA
expression of several IEGs; whereas (4) egr3 mRNA expression
was significantly increased in the PFC of SR rats. These data are
summarized in Tables 2, 3 for readers to refer to. In what follows,
we discuss the potential role of some of these changes in gene
and protein expression in mediating shock-induced suppression
and/or continuation of compulsive oxycodone SA in these rats.

The present behavioral results are consistent with those of
previous papers that had reported that punishment can cause
some rats to significantly reduce or stop to self-administer
methamphetamine, cocaine, or alcohol (Chen et al., 2013;
Marchant et al., 2018; Cadet et al., 2019). The present findings
expand the punishment-induced phenomenon to opioids. Our
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FIGURE 4 | Striatal junB and cortical junD mRNA expression is significantly decreased in shock-sensitive rats. There were no significant changes in mRNA levels of
c-jun in the dorsal striatum (A,B) and PFC (G,H). SS rats show decreased junB in the dorsal striatum (C) but not in the PFC (I). No significant correlations between
junB and doses of oxycodone (D,J). The expression of junD mRNA was not affected in the dorsal striatum (E) but was significantly decreased in the PFC of both SR
and SS rats (K). There was no significant correlation in JunD (F,L) (n = 7–8, Sal; n = 5–6, SR; n = 4–5, SS). Key to statistics: ∗, ∗∗p < 0.05, 0.01, respectively, in
comparison to saline rats. Stats were performed by one-way ANOVA and Fisher’s PLSD post hoc tests.

results support the notion that there is not an one-to-one
correspondence between escalated drug taking behaviors and a
diagnosis of SUD (Cadet, 2019) and supports the idea of using
these two phenotypes to attempt to understand the neurobiology
of continued drug taking behaviors or abstinence in the presence
of adverse consequences.

The present observations of decreased expression of the three
opioid receptors in the dorsal striatum suggest that repeated
exposure to oxycodone can cause downregulation of these
receptors when measured after a short withdrawal interval
from oxycodone SA. These findings are consistent, in part,
with those of Blackwood et al. (2018) who had reported that
the protein levels of only striatal Mu opioid receptors were
downregulated in rats that had self-administered oxycodone over
a period of 20 days, and that were subsequently withdrawn
from the SA experiment for a period of 1 month. When taken
together, these observations suggest that there might exist certain
regional molecular mechanisms that drive the permanence of the

decreased expression of Mu opioid receptors whereas no such
mechanisms appear to exist for Delta and Kappa receptors whose
expression had returned to normal after 1 month of withdrawal
(Blackwood et al., 2018). The relative permanence of decreased
levels of striatal Mu receptor protein after long-term exposure
to oxycodone might be due, in part, to oxycodone-induced
changes in the stability, degradation, or trafficking of these
receptors (Williams et al., 2013). These reduced levels might,
in part, drive oxycodone SA and/or cue-induced incubation of
oxycodone seeking (Blackwood et al., 2018). These mechanisms
might not be in play for delta and kappa receptor proteins, of
which expression had normalized after a month of oxycodone
withdrawal (Blackwood et al., 2018). This idea will need to be
tested in future studies using diverse models of OUDs.

It is of interest to note, at this juncture, that clinical studies
have reported that several single nucleotide polymorphisms
(SNPs) in Mu receptors might influence the effects of oxycodone-
induced euphoric responses (Jones et al., 2019) and vulnerability
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FIGURE 5 | Differential expression of Egr family of IEGs in the dorsal striatum and PFC of shock-resistant and shock-sensitive rats. SS rats show decreased striatal
egr1 (A) and egr2 (C) mRNA levels. There were no significant changes in mRNA levels of egr1 (B) and egr2 (D) in the PFC. Striatal egr3 (E) showed no changes in
mRNA expression in either SR or SS rats. SR rats show increased egr3 (F) mRNA levels of in the PFC. SS rats showed significant correlation and decreased mRNA
levels of egr1 (G,H), egr2 (I,J), and egr3 (K,L) in the PFC (n = 7–8, Sal; n = 5–6, SR; n = 4–5, SS). Key to statistics: ∗, ∗∗p < 0.05, 0.01, respectively, in comparison
to saline. #p < 0.05, in comparison to SR rats. Stats were performed by one-way ANOVA and Fisher’s PLSD post hoc tests.

to OUDs (Drakenberg et al., 2006; Nielsen et al., 2008; Levy
et al., 2015; Randesi et al., 2016). One SNP of interest to our
present discussion is the OPRM A118G, which is associated with
increased risk for heroin addiction (Bond et al., 1998; Zhang et al.,
2015; see Burns et al., 2019, for a review of other SNPs linked
to opioid addiction). This SNP results in reduced maximum
binding of the mu opioid receptor ligand, DAMGO, in vitro
(Bond et al., 1998; Zhang et al., 2005) and in human tissues
(Zhang et al., 2005; Weerts et al., 2013). Mice that possess the
human equivalent of this SNP have been reported to exhibit
decreased expression of both mRNA and protein levels of Mu
opioid receptor protein (Mague et al., 2009). Of relevance to the
present study, these mice self-administered more heroin than
control mice (Zhang et al., 2015). Thus, the possibility exists that
the rats that continue to take more oxycodone during footshocks
might express a SNP similar to the human OPRM A118G and/or
other pro-addiction SNPs. This supposition will need to be tested
in future genetic experiments.

Although the changes in the expression of opioid receptors
were similar in both resistant and sensitive rats, we found
significant differences in the mRNA expression of several IEGs
including fosB, fra2, and egr2 that showed decreased expression
in the dorsal striatum, but not the PFC, of sensitive rats compared
to control and resistant rats. It is important to note that the
SR and SS phenotypes began to separate almost immediately
after the first day of the punishment phase (see Figure 1D).
Thus, it is possible to suggest that some of the changes observed
in IEG expression might be related to compensatory responses
that might have occurred in the SS but not in the SR rats.
This argument suggests that there is a need for more studies
focusing on quantifying the expression of IEGs at various time
points during oxycodone SA and the application of contingent
footshocks, once there is measurable evidence of a split between
SR and SS rats. It is worth noting that, in our studies of
methamphetamine SA and footshocks, we have not been able
to identify any effects of footshocks alone on IEG expression
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TABLE 2 | Summary of PCR data from the rat dorsal striatum.

Gene
symbol

Gene name SR vs.
Sal

SS vs.
Sal

SR vs.
SS

c-fos Fos proto-oncogene, AP-1
transcription factor subunit

NS ↓ NS

fosB FosB proto-oncogene, AP-1
transcription factor subunit

NS ↓↓ ↓

fra1/fosl1 Fos like 1, AP-1 transcription factor
subunit

NS NS NS

fra2/fosl2 Fos like 2, AP-1 transcription factor
subunit

↓ ↓↓↓ ↓

c-jun Jun proto-oncogene, AP-1
transcription factor subunit

NS NS NS

junB JunB proto-oncogene, AP-1
transcription factor subunit

NS ↓ NS

junD JunD proto-oncogene, AP-1
transcription factor subunit

NS NS NS

egr1 Early growth response 1 NS ↓↓ NS

egr2 Early growth response 2 NS ↓↓ ↓

egr3 Early growth response 3 NS NS NS

Arrow points to decreased ↓, IEG expression. Key to arrow: One, Two,
Three = p < 0.05, 0.01, 0.001, respectively. Non-significant (NS) p > 0.05.

TABLE 3 | Summary of PCR data from the rat prefrontal cortex.

Gene
symbol

Gene name SR vs.
Sal

SS vs.
Sal

SR vs.
SS

c-fos Fos proto-oncogene, AP-1
transcription factor subunit

NS NS NS

fosB FosB proto-oncogene, AP-1
transcription factor subunit

NS NS NS

fra1/fosl1 Fos like 1, AP-1 transcription factor
subunit

NS NS NS

fra2/fosl2 Fos like 2, AP-1 transcription factor
subunit

NS NS NS

c-jun Jun proto-oncogene, AP-1
transcription factor subunit

NS NS NS

junB JunB proto-oncogene, AP-1
transcription factor subunit

NS NS NS

junD JunD proto-oncogene, AP-1
transcription factor subunit

↓ ↓↓ NS

egr1 Early growth response 1 NS NS NS

egr2 Early growth response 2 NS NS NS

egr3 Early growth response 3 ↑ NS ↓

Arrow points to increased ↑, or decreased ↓, IEG expression. Key to arrow: One,
Two = p < 0.05, 0.01, respectively. Non-significant (NS) p > 0.05.

(Krasnova et al., 2017; Cadet et al., 2019). It is also possible that
rats with differential OPRM1 SNPs might respond differential to
contingent footshocks in terms of oxycodone SA and resulting
changes in IEG expression during the punishment phase of the
study, with the end result being abstention from lever pressing in
order to avoid footshocks.

Differential alterations in the expression of several mRNAs
and proteins have previously been reported in the dorsal striatum
of the SR and SS phenotypes in the case of methamphetamine
SA and footshocks (Cadet et al., 2016; Torres et al., 2017).
Therefore, we had predicted that the SR rats might show acute

increased expression of some IEGs because they were taking
oxycodone just 2-h before they were euthanized. We had,
indeed, previously found increased expression of c-fos in the
dorsal striatum of rats that were euthanized after 1 month of
withdrawal from escalated oxycodone intake (Blackwood et al.,
2019). We also thought that the levels of expression of IEGs
might be normal or might be reduced in the SS group in
comparison to the SR rats. We found, however, that striatal
IEG mRNA levels were mostly decreased in the SS animals
without there being any major changes in the SR rats. Of all
our observations, the decreases in fosB mRNA expression in
the dorsal striatum are of interest because fosB expression has
been reported to be altered after exposure to methamphetamine
(Krasnova et al., 2013; Cadet et al., 2015), cocaine (Hope
et al., 1992; Larson et al., 2010), opioid receptor agonists (Liu
et al., 1994), and nicotine (Saint-Preux et al., 2013), with most
papers reporting increased fosB expression. Thus, our findings of
decreased fosB in the shock-sensitive rats suggest that reduced
fosB expression might participate in a molecular cascade that
helps to suppress oxycodone-taking behaviors, possibly via a
SNP-dependent fashion (see section “Discussion” above). This
conclusion is consistent with the report that overexpression of
delta fosB, an alternative splicing product of fosB mRNA in
which Exon IV is truncated (Alibhai et al., 2007), can enhance
the rewarding effects of cocaine when mice were tested in
the conditioned place preference procedure (Kelz et al., 1999).
Because these authors used cocaine in that study, the effects
of this genetic manipulation will need to be tested in future
oxycodone SA experiments. It is important to indicate that
there are several fosB target genes that may be relevant to
this discussion (Nestler, 2015). These include the glutamate
AMPA receptor, GluA2/GluR2, the opioid peptide, dynorphin,
and CAMKIIalpha that have been implicated in models of SUDs
(Nestler, 2015).

Although the above discussion has focused on the potential
role of decreased FosB and/or delta FosB in suppressing
oxycodone SA, similar arguments could be put forward for fra2
and egr2 that also showed significant decreases in the dorsal
striatum of sensitive rats in comparison to the resistant animals.
It is also of interest that the changes in fosB, fra2, and egr2 mRNA
levels occurred only in the dorsal striatum, further implicating
that brain region in the manifestation of compulsive habit-
like behaviors (Everitt and Robbins, 2016; Hodebourg et al.,
2018) in oxycodone self-administering rats (Blackwood et al.,
2018). Although this discussion has focused on IEG expression,
several recent papers on oxycodone self-administration have
identified other genes that might be relevant to oxycodone use
disorder (Zhang et al., 2014, 2017, 2018). These included mRNAs
coding for GABA-, glutamate, and dopamine receptors that were
downregulated in the dorsal striatum (Zhang et al., 2018). In
contrast, NPY5 receptor and the glycine receptor, alpha 4 subunit,
were reported to show increases after oxycodone SA in the
dorsal striatum of mice (Zhang et al., 2015). In addition, some
structural genes, including integrins were also affected in the
dorsal striatum of oxycodone self-administering mice (Yuferov
et al., 2018). Because these authors had used all oxycodone-
exposed animals in their studies, it will be important to test
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whether the shock-induced SR and SS phenotypes will show
differential expression of some of these genes.

It is also noteworthy that egr3 (Patwardhan et al., 1991) was
the only gene that showed increased mRNA expression in the
PFC of resistant rats in comparison to control and sensitive
rats. Egr3 expression is rapidly regulated in hippocampal and
cortical neurons by electroconvulsive seizures (Yamagata et al.,
1994). Changes in the expression of this IEG may be relevant to
the effects of drugs of abuse because egr3 mRNA expression is
induced by acute administration of psychostimulants including
cocaine and methamphetamine (O’Donovan and Baraban, 1999;
Courtin et al., 2006; McCoy et al., 2011). Repeated injections of
cocaine also induced Egr3 expression (Jouvert et al., 2002) in
D1-containing neurons in the ventral striatum (Chandra et al.,
2015). Importantly, Egr3 knockdown in D1-containing neurons
reduced cocaine-associated conditioned place preference (CPP)
and cocaine-induced locomotor hyperactivity. Taken together,
our observations of increased egr3 expression in the PFC of
rats that took oxycodone compulsively extends the role of Egr3
to opioid-driven behaviors, possibly, by regulating executive
functions (Duverne and Koechlin, 2017; Jayachandran et al.,
2019) that may include decisions to continue to take oxycodone
compulsively in the presence of adverse consequences.

CONCLUSION

The present study provides the first evidence that contingent
footshocks can dichotomize oxycodone SA rats into two
phenotypes of resistant and sensitive animals in a fashion
similar to what has been reported for alcohol, cocaine, and
methamphetamine. Our findings of significant decreases in
striatal fosB, fra2, and egr2 mRNA levels in the sensitive in
comparison to the resistant rats suggest that IEGs of diverse
classes might participate in molecular networks that drive long-
term changes in striatal neuronal structures and functions that
might serve to suppress habitual drug-taking behaviors. In
contrast, increased egr3 expression in the PFC, a structure that
has been implicated in decision making and memory functions

(Duverne and Koechlin, 2017; Jayachandran et al., 2019),
supports the notion that Egr3 may regulate rewarding effects of
psychostimulants (Chandra et al., 2015) and the propensity to
continue to take oxycodone in the presence of punishment. These
ideas will need to be tested to identify the specific roles that these
diverse IEGs might play in the regulation of punishment-induced
abstinence or compulsive oxycodone taking.
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