
ORIGINAL RESEARCH
published: 09 January 2020

doi: 10.3389/fnins.2019.01395

Frontiers in Neuroscience | www.frontiersin.org 1 January 2020 | Volume 13 | Article 1395

Edited by:

Huajin Tang,

Zhejiang University, China

Reviewed by:

Zexuan Zhu,

Shenzhen University, China

Jinghui Zhong,

South China University of Technology,

China

*Correspondence:

Maoguo Gong

gong@ieee.org

Specialty section:

This article was submitted to

Decision Neuroscience,

a section of the journal

Frontiers in Neuroscience

Received: 30 August 2019

Accepted: 10 December 2019

Published: 09 January 2020

Citation:

Xie Y, Gong M, Gao Y, Qin AK and

Fan X (2020) A Multi-Task

Representation Learning Architecture

for Enhanced Graph Classification.

Front. Neurosci. 13:1395.

doi: 10.3389/fnins.2019.01395

A Multi-Task Representation
Learning Architecture for Enhanced
Graph Classification
Yu Xie 1, Maoguo Gong 1*, Yuan Gao 1, A. K. Qin 2 and Xiaolong Fan 1

1 Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education, School of Electronic

Engineering, Xidian University, Xi’an, China, 2Department of Computer Science and Software Engineering, Swinburne

University of Technology, Melbourne, VIC, Australia

Composed of nodes and edges, graph structured data are organized in the

non-Euclidean geometric space and ubiquitous especially in chemical compounds,

proteins, etc. They usually contain rich structure information, and how to effectively

extract inherent features of them is of great significance on the determination of

function or traits in medicine and biology. Recently, there is a growing interest in

learning graph-level representations for graph classification. Existing graph classification

strategies based on graph neural networks broadly follow a single-task learning

framework and manage to learn graph-level representations through aggregating node-

level representations. However, they lack the efficient utilization of labels of nodes in a

graph. In this paper, we propose a novel multi-task representation learning architecture

coupled with the task of supervised node classification for enhanced graph classification.

Specifically, the node classification task enforces node-level representations to take

full advantage of node labels available in the graph and the graph classification task

allows for learning graph-level representations in an end-to-end manner. Experimental

results on multiple benchmark datasets demonstrate that the proposed architecture

performs significantly better than various single-task graph neural network methods for

graph classification.

Keywords: multi-task learning, representation learning, graph classification, node classification, graph neural

network

1. INTRODUCTION

Learning with graph-structured data, such as chemical compounds or proteins, requires effective
representations of their internal structure (Hamilton et al., 2017b), as the structural changes usually
have an impact on the traits they express. Nodes with different properties and unique connections
make up a variety of graphs, and one of the graph learning tasks is to predict the labels for graphs.
Specifically, nodes represent entities and edges represent relationships between them, and the
category of a graph is always correlated with the graph structure and node labels in real world.
Therefore, models capable of capturing node features and graph structure have been shown to
achieve superior performances on classification tasks (Rossi et al., 2012).

In recent years, there has been a surge of interest in Graph Neural Networks (GNNs) (Cao
et al., 2016; Monti et al., 2017; Schlichtkrull et al., 2018; Zou and Lerman, 2019) for learning
representations of graphs and nodes. The general approach with GNNs broadly follows a recursive
neighborhood aggregation scheme by passing, transforming and aggregating feature vectors of
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nodes across the graph (Gilmer et al., 2017; Hamilton
et al., 2017a; Xu et al., 2018). Empirically, these GNNs have
achieved outstanding performance in many tasks such as graph
classification and node classification. However, a major limitation
of these GNN architectures is that they only focus on a specific
task and their design is based on heuristics or experimental
trial-and-error, and there is little theoretical understanding of
the properties. As a result, GNNs’ representational capacity and
generalization ability are limited (Xu et al., 2019).

In real-world applications, the graph classification task
is always correlated with the node classification task, and
effective node representations are conducive to learning graph
features with the same aggregation scheme (Petar et al., 2018).
For example, a graph classification task is to predict the
carcinogenicity of proteins, for which categories of nodes that
represent different amino acids are of crucial importance.
Nevertheless, previous related deep graph embedding methods
treat real problems as several single tasks, while ignoring the rich
correlation information between these related tasks. They do not
follow human’s cognitive laws of new things that people often
apply the knowledge they have acquired by learning related tasks,
whereas working on a single task from scratch is inefficient and
increases the risk of overfitting. Moreover, they usually require
multiple training steps that are difficult to optimize for each
task (Tran, 2018).

To address the aforementioned challenges, we present a
multi-task representation learning (MTRL) framework for
both graph classification and node classification, schematically
depicted in Figure 1. The MTRL framework is capable of
learning representations of latent node embeddings and graph
embeddings from local graph topology, and the shared
representations between different tasks enable our model to
generalize better on each task. A densely connected neural
network is trained end-to-end to learn embeddings for nodes
and graphs from the adjacency vector or feature vector, in which
the READOUT function aggregates node representations from
the final iteration to generate the entire graph’s representation.
The weighted sum of losses of graph classification and node
classification is utilized in the back propagation of the multi-
task learning process, thus graph-level features and fine-
grained node features can be captured synchronously, and
the generalization ability of models is improved through
collaborative training. Specifically, our contributions in this
paper are as follows:

• We propose a novel multi-task representation learning
architecture and extend it further for different models
designed specifically for graph classification. Compared with
single-task learning models, our approach shows better
performance in different tasks.

• Our architecture is efficiently trained end-to-end for the joint
and simultaneous multi-task learning of supervised graph
classification and node classification in a single stage.

• We conduct empirical evaluation of our architecture on five
challenging benchmark graph-structured datasets, and the
experimental results demonstrate significant improvement
over state-of-the-art baselines.

The full text is structured as follows. After a basic introduction,
the related backgrounds and algorithms about GNNs are shown
in section 2. In section 3, we give a clear definition of the
graph classification and the node classification, then the MTRL
architecture is developed. Section 4 provides the experimental
results of two classification tasks. Finally, in section 6 we
conclude with a discussion of our architecture and summarize
the future work.

2. RELATED WORK

Representation learning (Bengio et al., 2013) has been widely
utilized in various fields such as computer vision (Du and Wang,
2015; Butepage et al., 2017) and natural language processing
(Janner et al., 2018). With the rapid development of biology,
chemistry, and medical science, the microscopic structure of
molecular compounds as proteins and genes are paid more
attention. This kind of graph-structured data attracts the interests
of researchers in graph classification, and various methods are
presented to learn graph representations.

Recently, a wide variety of GNN models have been proposed,
including approaches inspired by convolutional neural networks
(Defferrard et al., 2016; Kipf and Welling, 2016; Lei et al., 2017),
recursive neural networks (Scarselli et al., 2008) and recurrent
neural networks (Li et al., 2016). These methods have been
applied to various tasks, such as graph classification (Dai et al.,
2016; Zhang et al., 2018) and node classification (Kipf and
Welling, 2016; Hamilton et al., 2017a). Instead of using hand-
crafted features suited for specific tasks, deep learning techniques
enablemodels to automatically learn features and representations
for each node. In the context of graph classification, which is our
main task, the major challenge is going from node embeddings to
the representation of the entire graph. Most methods (Duvenaud
et al., 2015; Li et al., 2016; Gilmer et al., 2017) have the limitation
that they simply pool all the node embeddings in a single layer
and do not learn the hierarchical representations, so they are
unable to capture the natural structures of large graphs. Some
recent approaches have focused on alleviating this problem by
adopting novel aggregation approaches.

A latest research (Xu et al., 2019) developed theoretical
foundations for reasoning about the expressive power of GNNs
and presented a Graph Isomorphism Network (GIN) under the
neighborhood aggregation framework. They proved that GNNs
are at most as powerful as the Weisfeiler-Lehman (WL) test in
distinguishing graph structures, and showed the discriminative
power of GIN is equal to that of the WL test. They developed a
“deep multisets" theory, which parameterizes universal multiset
functions with the neural network, and a multiset is a generalized
concept of a set that allows elements in it have multiple instances.
Besides, multi-layer perceptrons (MLPs) are utilized in the model
so that different graph structures could be discriminated through
aggregation, combination and READOUT strategy. GIN updates
node representations as:

h(l)v = MLP(l)
(

(1+ ǫ
(l)) · h(l−1)

v +
∑

u∈N (v)
h(l−1)
u

)

. (1)
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FIGURE 1 | Schematic depiction of the Multi-Task Representation Learning (MTRL) architecture.

They applied the sum aggregator that adds all neighbors of the
current node, and set the combination method as (1+ ǫ

(l)) in lth
layer, so that all nodes can be effectively integrated and mapped
to the next layer. As a theoretical framework, GIN outperforms
popular GNN variants, while some other researchers focus on
coarsening the input graph inspired by the pooling method in
convolutional neural networks.

DIFFPOOL (Ying et al., 2018) is a differentiable graph pooling
module that can be adapted to various GNN architectures in
a hierarchical and end-to-end fashion. DIFFPOOL learns a
cluster assignment for nodes at each layer, which then forms
the coarsened input for the next layer, and it is able to extract
the complex hierarchical structure of graphs. Given the input
adjacency matrix and node embedding matrix, the DIFFPOOL
layer coarsens the input graph and generates a coarsened
adjacency matrix as well as a new embedding matrix for each
node or clusters in the coarsened graph. In particular, they
applied the two following equations:

X(l+1) = S(l)
T
Z(l) ∈ R

nl+1×d, (2)

A(l+1) = S(l)
T
A(l)S(l) ∈ R

nl+1×nl+1 , (3)

where A(l) represents the adjacency matrix at this layer. Z(l)

and X(l) denote the input node embedding matrix and the
cluster embedding matrix respectively. S(l) is the probabilistic
assignment matrix that assigns each node at layer l to a specific
cluster in the next coarsened layer l + 1. Each row of S(l)

corresponds to a node or cluster at layer l, and each column
corresponds to a target cluster at layer l + 1. The assignment
matrix is generated from the pooling GNN using input cluster
features X(l) and the cluster adjacency matrix A(l):

S(l) = softmax
(

GNNl,pool(A
(l),X(l))

)

, (4)

where the softmax function is utilized in a row-wise fashion.
The output dimension of GNNl,pool is pre-defined as the
hyperparameter of the model, which corresponds to the

maximum number of clusters in each layer. Besides, the
embedding GNN is a standard GNN module applied to A(l)

and X(l):

Z(l) = GNNl,embed(A
(l),X(l)). (5)

The adjacency matrix between the cluster nodes A(l) from
Equation (3) and the pooled features for clusters X(l) from
Equation (2) are passed through a standard GNN to obtain new
embeddings Z(l) for the cluster nodes. GIN and DIFFPOOL can
learn to discriminate and capture the meaningful structure of
graphs in terms of aggregation and pooling, respectively, and they
are powerful in the graph classification task.

In many real-world applications, such as network analysis and
molecule classification, the input data is observed with a fraction
of labeled graphs and labeled nodes. Thus it is desirable for the
model to predict the labels of graphs and nodes simultaneously
in a multi-task learning setting. Multi-task learning (MTL) refers
to the paradigm of learning several related tasks together, which
has been broadly used in natural language processing (Chen et al.,
2018; Schulz et al., 2018; Sanh et al., 2019), computer vision (Choi
et al., 2018; Kendall et al., 2018; Liu et al., 2019) and genomics
(Yang et al., 2018). To be specific, SaEF-AKT (Huang et al.,
2019) introduces a general similarity measure and an adaptive
knowledge transfer mechanism to assist the knowledge transfer
among tasks. EMT (Evolutionary multitasking) via autoencoding
(Feng et al., 2018) allows the incorporation of multiple search
mechanisms with different biases in the EMT paradigm. MTL is
inspired by human learning activities where people could transfer
the knowledge learned from the previous problems to facilitate
learning a new task. Similar to human learning, the knowledge
contained in a problem can be leveraged by related problems
in the multi-task machine learning process. A main assumption
of MTL is that there is an optimal shared parameter space for
all problems, which is regularized by a specific loss, manually
defined relationships or other automatic methods that estimate
the latent structure of relationships among problems. Due to the
shared processes that give rise to strong dependencies of multiple
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tasks, the MTL approach is able to explore and leverage the
commonalities among related tasks in the learning process.

3. METHODOLOGY

The key idea of the MTRL architecture is that it enables
the graph classification and node classification tasks to be
performed simultaneously. Along the way, it helps to improve the
generalization ability of the model and avoid falling into the local
minimum. In this section, we outline the MTRL structure and
demonstrate how it works on the GIN and DIFFPOOL models.
Before introducing the architecture, we start by discussing the
statement of the problem.

3.1. Problem Statement
The input to the MTRL architecture is a set of labeled graphs
D = {(G1, y1), (G2, y2), ...}, where yi ∈ Y is the label associated
with graph Gi ∈ G, and G = (A, F,V) denotes a graph with
an adjacency matrix A ∈ {0, 1}n×n and node feature vectors
F ∈ R

n×d, assuming each node v ∈ V has d features. There
are two tasks of interest: (1) Graph classification, where graph
labels yG are given and the goal is to learn a representation vector
rG that helps predict the label of the graph, yG = g(rG); (2)
Node classification, where each node v has a corresponding label
yv and we aim to learn a representation vector rv such that v′s
label could be predicted as yv = h(rv). The main symbols are
listed in Table 1.

3.2. Multi-Task Representation Learning
In this work, we build upon theMTRL architecture to learn useful
representations for graph classification and node classification
in an end-to-end fashion. The graph classification is set as
the primary task while the node classification as the secondary
task, and the performance of the model could be improved by
sharing the training information in the primary task and the
auxiliary related task. Since these two classification tasks are
related, it is intuitive to assume that they share a common feature
representation based on the original features, which do not have
enough expressive power for multiple tasks. A more powerful
representations could be learned for both tasks by the MTRL
architecture and it will bring improvement on the performance.

Follow the GNN structure, the architecture adopts a
neighborhood aggregation and combination strategy, where the

TABLE 1 | Main symbols and descriptions in the paper.

Notations Descriptions

G Input labeled graph

A Adjacency matrix

F Feature information matrix

n Number of nodes in a graph

d Dimension of node features

rG Graph embedding representation

rv Node embedding representation

representation of a node is iteratively updated by aggregating its
neighbors’ representations and combining its representation of
the previous layer. Especially, after k iterations of aggregation and
combination, representations of each node is able to capture the
structural information within its k-hop graph neighborhood. For
node classification, the node representation of the final layer is
utilized for prediction. For graph classification, there should be
a READOUT method that aggregates all node representations of
the final iteration to generate the graph representation.

Based on the normal GNNmodels for graph classification, the
MTRL architecture adds an additional softmax layer for node
classification. Given an input graph G, the parameters of the
model are trained to minimize the cross-entropy of the predicted
and true distributions,

Lv = −
∑

v∈V

∑

c∈C
ycv · log(ŷ

c
v) (6)

where ycv is the ground-truth label; ŷcv is prediction probabilities,
and C indicates node classes. The loss of graph classification LG

is similar to Equation (6).
During the multi-task learning process, the related

information is exchanged and supplemented by a shared
representation at a shallow level, and the accuracy of
node classification and graph classification are optimized
simultaneously. The node classification task enforces node-level
representations to take full advantage of node labels available in
the graph and the graph classification task allows for learning
graph-level representations in an end-to-end manner. More
precisely, we achieve multi-task learning on graphs by designing
a joint loss function that combines the two masked categorical
cross-entropy losses for supervised graph classification and
node classification:

LMTRL = LG + α · Lv (7)

where α is used for the integration of the loss so that the scale
of all losses is close. Noted that when α is 0, the architecture is
equal to a single-task graph classification model. Besides, how
we extract node representations is crucial to the discrimination
task. In particular, we consider two state-of-the-art models that
employ the above MTRL architecture.

3.2.1. Multi-Task GIN

The original GIN applies five GNN layers and all MLPs have
two layers. It utilizes information from all depths of the
model to consider all structural information in Equation (8),
because features from deep layers are key to achieving better
discriminative performance while features from shallow layers
could generalize better.

rG = CONCAT
(

READOUT({r(l)v |v ∈ G}) | l = 0, 1, ..., L
)

. (8)

The READOUT is set as a simple permutation invariant function
such as summation. Similarly, to obtain both global and refined
representations of nodes, we achieve node features extraction that
concatenated across all layers as follows, and then the softmax
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activation function is used to produce a probability distribution
over node labels.

rv = CONCAT(r(l)v | l = 0, 1, ..., L). (9)

In the multi-task GIN (MT-GIN), all parameters in the network
except for two softmax layers are shared. Considering that
different tasks may have various sample noises in all directions
with different patterns, the hard parameter sharing method could
offset some noises through learning from multiple tasks, which
will result in better performance on each task.

3.2.2. Multi-Task DIFFPOOL

Different from GIN, DIFFPOOL applies a more sophisticated
graph-level pooling READOUT function. The GNN model used
for DIFFPOOL is built on top of the GRAPHSAGE (Hamilton
et al., 2017a) architecture as it has superior performance
compared with the standard graph convolutional network. It
sets a DIFFPOOL layer after two GRAPHSAGE layers, then
three layers of graph convolutions are performed before the final
READOUT layer. Since the DIFFPOOL layer will reduce the
number of nodes by 90%, which makes it impossible for the
node classification task, we extract the features matrix from the
GRAPHSAGE layer before the DIFFPOOL layer and utilize each
row in the matrix as the node representation, which is shown
in Figure 2.

For this reason, in the multi-task DIFFPOOL (MT-
DIFFPOOL), only parameters in the first two GRAPHSAGE
layers are shared. The backpropagation of the graph classification
loss starts from the last layer of the network, and the vanishing
gradient problem leads to slower learning in the first few
layers, thus their parameters may be dominated by the node
classification task. These GRAPHSAGE layers before the pooling
layer aim to learn efficient node representations, therefore the
node classification task could facilitate capturing enhanced
node features.

3.3. Complexity Analysis
Although applying multi-task framework requires additional
computation of the node classification loss, we observed
that the MT-GIN and the MT-DIFFPOOL do not incur
substantial additional running time compared with GIN and
DIFFPOOL in practice. Specifically, for the DIFFPOOL model,
the computing cost is concentrated on GRAPHSAGE layers
and the computation of an assignment matrix in DIFFPOOL
layers, whereas the node classification loss is calculated in the
first GRAPHSAGE layer, and it introduces only a few additional
computation. Suppose K is the number of layers. n is the total
number of nodes. m is the total number of edges. r is the
number of neighbors being sampled for each node, and d is the
dimensions of the node hidden features remain constant. The
time complexity of a GRAPHSAGE layer isO(rKnd2), and that of
the DIFFPOOL algorithm could be denoted as O(n2). Similarly,
the time complexity of GIN is O(m), and our MTRL framework
has the same time complexity as them respectively.

4. EXPERIMENTS

In this section, two state-of-the-art models employed with the
proposed multi-task learning architecture are compared with
the single-task learning ones. We evaluate the algorithms on
an unsupervised learning task: visualization, and two supervised

TABLE 2 | Statistics of datasets used in our experiments.

Datasets MUTAG PTC ENZYMES PROTEINS NCI1

Num. of Graphs 188 344 600 1113 4110

Avg. Number of Nodes 14.29 25.56 32.63 39.06 29.87

Avg. Number of Edges 14.69 25.96 62.14 72.82 32.30

Node Attr. (Dim.) – – +(18) +(1) –

Num. of Graph Classes 2 2 6 2 2

Num. of Node Classes 7 19 3 3 37

FIGURE 2 | A graphical illustration of the Multi-task DIFFPOOL model.
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learning tasks: graph classification and node classification. Before
we analyze the effect of the presented framework, we first
introduce the datasets and model configurations.

4.1. Datasets
We use five bioinformatics graph classification benchmarks. For
the ENZYMES dataset, the nodes have feature vectors, while
for the other datasets, we set the adjacency matrix as input
features since that have no features. The statistics of datasets are
summarized in Table 2, and details of datasets are as following:

MUTAG (Debnath et al., 1991) is a dataset of 188
mutagenic aromatic and heteroaromatic nitro compounds,
and the classification is based on whether or not they
have a mutagenic effect on the Gram-negative bacterium
Salmonella typhimurium.

PTC (Predictive ToxicologyChallenge) dataset (Toivonen
et al., 2003) contains 344 chemical compounds tested for
carcinogenicity in mice and rats. The classification task is to
predict the carcinogenicity of the chemical compounds.

ENZYMES (Borgwardt et al., 2005) is a dataset of protein
tertiary structures consisting of 600 enzymes from the BRENDA
enzyme database (Schomburg et al., 2004). In this case, the
task is to correctly assign each enzyme to one of the six EC
top-level classes.

PROTEINS (Dobson and Doig, 2003) is similar to ENZYMES,
where nodes are secondary structure elements. If two nodes are

neighbors in the amino acid sequence or 3D space, there will be
an edge between them. Each node has a discrete type attribute
(helix, sheet or turn). Different from ENZYMES, it comes with
the task of classifying into enzymes and non-enzymes.

NCI1 (Wale et al., 2008) represents a balanced subset of
chemical compounds screened for activity against non-small cell
lung cancer. This dataset contains more than 4,000 chemical
compounds, each of which has a class label between positive
and negative. Each chemical compound is represented as an
undirected graph where nodes, edges and node labels correspond
to atoms, chemical bonds, and atom types respectively.

4.2. Model Configurations
In our experiments, we evaluate the MTRL framework on GIN
and DIFFPOOL model. Following (Yanardag and Vishwanathan,
2015; Niepert et al., 2016), we report the average of validation
accuracy across the 10 folds within the cross-validation. For
DIFFPOOL and MT-DIFFPOOL, the mean variant is used in
GRAPHSAGE layers, and the l2 normalization is added to the
node embeddings at each layer to make the training more stable.
For GIN and MT-GIN, ǫ in Equation (1) is fixed to 0, since
this variant is proved to have strong empirical performance (Xu
et al., 2019). Batch normalization (Ioffe and Szegedy, 2015) is
applied for each layer in the two models. All models are trained
for 350 epochs and 10 iterations for each epoch. We use the
Adam optimizer (Kingma and Ba, 2015) with the initial learning

FIGURE 3 | Visualization of the MUTAG dataset. Each point represents a node in the dataset, and triangles of different colors represent graphs of different classes.

(A) GIN, (B) MT-GIN, (C) DIFFPOOL, (D) MT-DIFFPOOL.
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rate 0.01 and decay it by 0.5 every 50 epochs. Besides, the
hyperparameter we tune is the weight of the node classification
task α ∈ {0, 0.5, 0.75, 1.25, 1.5, 2}.

5. RESULTS

5.1. Visualization
Visualizations are indispensable for analyzing high-dimensional
data, which is able to intuitively reveal the intrinsic structure
of data. Graphs and nodes of a smaller dataset, MUTAG, are
represented as representation vectors with different models, and
these vectors are further mapped into a two-dimensional space
using t-SNE (Maaten and Hinton, 2008).

Figure 3 shows the visualization of graph and node
representations. For MT-GIN and MT-DIFFPOOL, the
hyperparameter α is fixed to 1. There are obvious differences
between GIN and DIFFPOOL, as GIN could distinguish the
graph representations from the node representations, while
graph representations of different classes learned by DIFFPOOL
are further away. All models are able to learn distinguishable
graph representations, whereas GIN has a part of outliers on
the right side and the same thing happens with DIFFPOOL in
the lower left corner. In contrast, MT-GIN and MT-DIFFPOOL
achieve more compact clusters. These models differ greatly in
the performance of node representation learning. The node

visualization results of GIN and DIFFPOOL are not meaningful,
in which nodes with different tags are clustered together. Models
with the MTRL framework achieve superior performance on
node visualization, and both MT-GIN and MT-DIFFPOOL form
clear boundaries among three main classes of nodes. Intuitively,
this experiment demonstrates that the MTRL framework could
help learn more meaningful and robust representations.

5.2. Training Set Performance
We validate the performance of our architecture and baselines by
comparing their training accuracies, and we measure the effect
of the key parameter α. An attributed dataset – ENZYMES and
a large dataset – NCI1 are taken as examples. Figures 4, 5 show
training curves of MT-GIN and MT-DIFFPOOL with different
α, noted that the multi-task architecture is equal to a single-task
graph classification model when α is 0. In our experiments, the
multi-task learning model has a relatively rapid convergence rate,
and they brings gain in fitting training compared to fixing α to
0 as in MT-GIN (MIN-0) and MT-DIFFPOOL (DIFFPOOL-0).
It should be noted that the node classification accuracy of the
MIN-0 and DIFFPOOL-0 tends to decline as iteration increases
on ENZYMES, as latent representations of nodes are learned
to fit the graph classification task. In particular, the training
accuracy aligns with the models’ representation power, and the
multi-task learning models with different α tend to have higher

FIGURE 4 | Training set performance of different models on the ENZYMES dataset. (A) Training loss for graphs of MT-GIN. (B) Training loss for nodes of MT-GIN.

(C) Training loss for graphs of MT-DIFFPOOL. (D) Training loss for nodes of MT-DIFFPOOL.
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FIGURE 5 | Training set performance of different models on the NCI1 dataset. (A) Training loss for graphs of MT-GIN. (B) Training loss for nodes of MT-GIN.

(C) Training loss for graphs of MT-DIFFPOOL. (D) Training loss for nodes of MT-DIFFPOOL.

TABLE 3 | Graph classification accuracy (%) of the MTRL architecture as well as

the state-of-the-art baselines.

Datasets MUTAG PTC ENZYMES PROTEINS NCI1

GIN 89.55 69.71 65.67 73.29 77.12

MT-GIN 91.63 72.65 69.55 75.48 82.59

DIFFPOOL 87.21 65.04 62.68 72.08 68.91

MT-DIFFPOOL 87.36 70.52 64.90 76.18 71.26

The best results are shown in bold.

training accuracies than the single-task learning ones. Moreover,
the weight of node classification loss is not always positively
correlated with the training accuracy for graphs or nodes, thus
the hyperparameter α is important and should be well tuned.

5.2.1. Test Set Performance

Next, we compare test accuracies.We fix the training ratio to 90%
and display the average accuracy of graph classification and node
classification, as shown in Tables 3, 4. The MTRL architecture
consistently outperforms the original GNN models, and it is
able to efficiently capture graph structure and node features. By
means of node classification task that accurately extracts node
attributes, theMTRL architecture can achieve better performance
in graph classification.

TABLE 4 | Node classification accuracy (%) of the MTRL architecture as well as

the state-of-the-art baselines.

Datasets MUTAG PTC ENZYMES PROTEINS NCI1

GIN 28.21 18.60 27.33 26.49 2.08

MT-GIN 94.35 91.02 71.23 61.85 80.48

DIFFPOOL 19.76 3.11 31.87 29.27 1.22

MT-DIFFPOOL 97.20 88.33 82.71 73.02 83.99

The best results are shown in bold.

For graph classification, both MT-GIN and MT-DIFFPOOL
outperform the original models on all datasets. The MUTAG
dataset is relatively small with simple structure thus the
improvement is not obvious. Specifically, even if node adjacency
vectors are provided as input features, it still reaches higher
accuracy on PTC and NCI1 dataset. The experimental results
demonstrate that models’ generalization performance is
improved as the potential information contained in multiple
tasks is leveraged.

For node classification, it is observed that the MTRL
architecture shows significant improvement on five protein
datasets, since the results of single-task GNN models are hardly
better than random guesses, and their accuracy is relative to the
number of nodes in each class. The training accuracy of node
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classification is very close to the test accuracy on ENZYMES and
NCI1, which means the learning of graph-level structure is able
to prevent the overfitting of fine-grained node-level features from
a macroscopical view.

6. CONCLUSION

In this paper, we develop a novel multi-task representation
learning architecture coupled with the task of supervised node
classification for enhanced graph classification. Along the
way, we extend the architecture to two state-of-the-art GNN
models, thus the model could perform node classification
during the process of graph classification. We conduct
extensive experiments on multiple benchmark datasets, and the
experimental results demonstrate that the proposed architecture
performs significantly better than various superior GNN
methods for graph classification as well as node classification.

Moreover, we will explore the following directions in
the future:

(1) The MTRL architecture could simultaneously optimize
graph classification and node classification task, and we will make
it scalable for other graph applications such as unsupervised link
prediction or community detection.

(2) We have analyzed the effect of the weight parameter α,
and we plan to explore a self-adaptive parameter or structure
that could balance losses of each task. Moreover, it would
also be interesting to investigate soft parameter sharing or
regularization-based sharing.
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