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The coordination of brain activity between disparate neural populations is highly
dynamic. Investigations into intrinsic brain organization by evaluating dynamic resting-
state functional connectivity (dRSFC) have attracted great attention in recent years.
However, there are few dRSFC studies based on functional near-infrared spectroscopy
(fNIRS) even though it has some advantages for studying the temporal evolution of brain
function. In this research, we recruited 20 young adults and measured their resting-
state brain fluctuations in several areas of the frontal, parietal, temporal, and occipital
lobes using fNIRS-electroencephalography (EEG) simultaneous recording. Based on a
sliding-window approach, we found that the variability of the dRSFC within any region
of interest was significantly lower than the connections between region of interests but
noticeably greater than the correlation between the channels with a short interoptode
distance, which mainly consist of physiological fluctuations occurring in the superficial
layers. Furthermore, based on a time-resolved k-means clustering analysis, the temporal
evolution was extracted for three dominant functional networks. These networks were
roughly consistent between different subject subgroups and in varying sliding time
window lengths of 20, 30, and 60 s. Between these three functional networks, there
were obvious time-varied and system-specific synchronous relationships. In addition,
the oscillation of the frontal-parietal-temporal network showed significant correlation
with the switching of one EEG microstate, a finding which is consistent with a previous
functional MRI-EEG study. All this evidence implies the functional significance of fNIRS-
dRSFC and demonstrates the feasibility of fNIRS for extracting the dominant functional
networks based on RSFC dynamics.

Keywords: functional connectivity, resting state, dynamic, functional near-infrared spectroscopy,
electroencephalogram

INTRODUCTION

The human brain is a highly complex network with dynamic and context-dependent coordination
between disparate neural populations. Functional connectivity, which refers to the neural
synchronization between brain areas, has been shown to reflect the information interactions
between disparate neural populations. Based on the functional connectivity during the resting state
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(RSFC), researchers have produced a wealth of literature and
revealed a great deal of information about the large-scale
organization of the brain.

Although most RSFC studies are based on an implicit
assumption that the brain functional connectivity is temporally
stationary throughout the measurement period, rich evidence
has amply confirmed that RSFC is highly non-stationary (Chang
and Glover, 2010; Hutchison et al., 2013a; Mueller et al., 2013;
Allen et al., 2014; Damaraju et al., 2014; Kucyi et al., 2017).
In some cases, RSFC varies greatly between strongly positive
and strongly negative correlations within time scales of seconds
to minutes. Such temporal fluctuations of the dynamic RSFC
(dRSFC) have been shown to be an essential property that
can unveil flexibility in the dynamic functional coordination
between different neural systems (Allen et al., 2014) and are
not exclusive to humans (Majeed et al., 2011; Hutchison et al.,
2013b; Keilholz et al., 2013). Furthermore, disruptions in RSFC
dynamic characteristics are evidence of abnormal brain activity
in mental disorders, such as schizophrenia (Damaraju et al., 2014;
Zhang et al., 2016; Sanfratello et al., 2019), depression (Demirtas
et al., 2016), attention deficit hyperactivity disorder (Zhang et al.,
2016), and Alzheimer’s disease (Jones et al., 2011; Fu et al., 2019).
Some disease-related abnormalities have not been found using
stationary RSFC. Therefore, the characteristics of dRSFC have
great functional significance and should be able to provide new
perspectives on brain function.

Functional near-infrared spectroscopy (fNIRS) is an emerging
non-invasive brain imaging technique that has great potential
for evaluating the dynamic characteristics of the intrinsic
brain organization. First, the time sampling rate of fNIRS can
reach milliseconds (57 ms in the current study), much higher
than conventional functional MRI (fMRI). In theory, better
temporal resolution enables a richer temporal characterization
of dRSFC with greater degrees of freedom (Zalesky et al.,
2014). Second, fNIRS is not disturbed by electromagnetic
fields, making it possible to be synchronously used with
electroencephalography (EEG)/magnetoencephalography/fMRI
technologies and allowing researchers to investigate the neural
fundamentals of dRSFC. Furthermore, fNIRS can be portable,
comfortable, and quiet. This facilitates fNIRS-based dRSFC
applications in almost all human subjects, especially infants,
various in-bed patients, and in conditions where fMRI-based
dRSFC is difficult to apply (Bunce et al., 2006; Hoshi, 2007).
Recently, in addition to the large number of fNIRS-based
stationary RSFC studies (White et al., 2009; Lu et al., 2010;
Mesquita et al., 2010; Zhang H. et al., 2010; Zhang Y. J. et al.,
2010; Zhang et al., 2011; Homae et al., 2011; Duan et al.,
2012; Niu and He, 2014), the feasibility of fNIRS-based dRSFC
has been validated by two prior studies (Li et al., 2015; Niu
et al., 2019). Specifically, based on a sliding-window correlation
analysis, the variability (Q) of the fNIRS-based dRSFC between
long-distance intrahemispheric areas (>10 cm) was found to
be significantly greater than that between homotopic areas or
between short-distance intrahemispheric areas (<10 cm) (Li
et al., 2015), findings which are consistent with those from
fMRI studies. In addition, compared with healthy subjects, it
has been found that not only the global Q value increased

in both patients with amnestic mild cognitive impairment
and patients with Alzheimer’s disorder, but also there were
two abnormal brain RSFC states in patients with Alzheimer’s
disorder (Niu et al., 2019). However, these prior investigations
of fNIRS-based dRSFC just scratched the surface. Based on
fNIRS-based dRSFC, the possibility of evaluating a credible
temporal evolution of a specific functional system is not very
clear. With the exception of the Q value, other time-resolved
characteristics of dRSFC, such as time-varied synchronous and
antisynchronous changes between different networks, have not
been investigated.

In the present study, we measured the resting-state
brain fluctuations of several parts of the frontal, parietal,
temporal, and occipital lobes using fNIRS. Based on a sliding-
window approach and time-resolved k-means clustering, we
extracted the evolution of dominant functional networks
among these measured brain areas. We also evaluated
the dynamic characteristics within a functional network,
as well as the dynamic relationship between networks.
Furthermore, we tried to support the credibility of fNIRS-
based dRSFC analysis by exploring the relationship between
the dynamic fluctuations in dRSFC networks and the switching
of electrophysiological microstates based on fNIRS-EEG
simultaneously recorded datasets.

MATERIALS AND METHODS

Participants
Twenty young adults (mean age = 25.3, SD = 1.49, 11 male)
were recruited from Beijing Normal University to participate in
this study. No subjects had motor or other neurological diseases.
Before the experiment, informed consent was obtained according
to the procedure approved by the Review Board at State Key
Laboratory of Cognitive Neuroscience and Learning, Beijing
Normal University.

Data Acquisition
All subjects underwent two successive resting-state sessions
of fNIRS-EEG simultaneous measurements. One session was
scanned with eyes closed; another was scanned with eyes
open. Both resting-state sessions had a duration of 8 min.
During the experiments, the subjects were seated in a chair
in a silent room with dim lighting. The subjects were
instructed to keep still with their eyes closed/open, relax
their mind, and remain motionless as much as possible.
The trigger and the terminal signs of the experiments were
presented and synchronized with the fNIRS and EEG equipment
using E-prime software (v.1.2, Psychological Software Tools,
Pittsburgh, PA, United States). The subjects participated in these
two experiments in random order. In the present study, to avoid
interference from the RSFC difference between the eyes-closed
and eyes-open state (Zou et al., 2009; Wong et al., 2015), we
only used the eyes-closed resting-state session data to perform
the dRSFC analysis.

fNIRS measurements were conducted with the LABNIRS
fNIRS System for Research (Shimadzu Co., Kyoto, Japan). The
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absorption of near-infrared light at three wavelengths of 780,
805, and 830 nm was measured with a sampling time of 57 ms.
The 18 emitters and 20 detector probes were plugged into a
homemade holder that could combine fNIRS optodes and EEG
electrodes together. The holder resulted in 40 measurement
channels, including 36 standard-distance channels (interoptode
distance = 30 mm) and 4 short-distance channels (interoptode
distance = 15 mm). To make sure the channels could cover the
regions of interest that we had previously defined, we adjusted
the arrangement of the emitters and the detectors using a 3D
digitizer and the registration function in NIRS-SPM software (Ye
et al., 2009). With their help, we captured 3D coordinates from all
the standard-distance measurement channels, transformed them
to coordinates of the Montreal Neurological Institute standard
template, and probabilistically estimated the structural labels as
Brodmann areas according to the channels’ coordinates. Finally,
we set five regions of interest (ROIs), as shown in Figure 1A.
Furthermore, the four short-distance channels were located
above the bilateral frontal area (near channels 4 and 22) and
the temporoparietal junction (near channels 9 and 27). While
considering the needs of the group analysis, the locations of
the emitters and the detectors were marked according to the
international 10–20 system (Jasper, 1958).

Electroencephalography data were acquired simultaneously
with a 32-channel Ag–AgCl electrode cap (Neuroscan, Inc.)
(international 10–20 montage and the vertical and horizontal
electrooculograms). All the electrodes were referenced to the
linked electrodes placed on the right mastoid. The EEG sampling
rate was 1,000 Hz.

fNIRS Data Preprocessing
For the fNIRS raw dataset, we first removed the optical density
time courses before and after the experiments according to the
start and the end markers set by the E-prime software. The
data from one subject was removed because it lacked start/end
markers (these markers were necessary for the subsequent
analysis of the combined fNIRS and EEG). The concentration
changes in HbO and HbR for each channel were then calculated
according to the modified Beer–Lambert law (Cope and Delpy,
1988). Because several previous studies (Hoshi, 2007; Lu et al.,
2010) showed that the signal/noise ratio of HbO was much
higher than that of HbR, this study focused on the HbO
concentration changes.

A temporal low-pass filter (<1.5 Hz) and a high-pass filter
(>0.01 Hz) were applied to remove the high-frequency noise
fluctuations and the ultralow frequency trends. To further
remove the systemic physiological interferences arising from the
superficial layer (that is, the scalp and skull), such as the vascular
fluctuations arising from the cardiac pulsations, respiration,
Mayer waves, and other very low-frequency fluctuations, a
linear regression analysis was performed. Specifically, for each
standard-distance channel, the time course was regressed
the average time course for all the short-distance channels.
The residual time course after regression was finally filtered
again by a low-pass filter (<0.15 Hz) to eliminate the
remaining high-frequency noises and retain the spontaneous
brain fluctuations.

dRSFC Calculation
For each individual, as the pipeline shown in Figures 1B,C, we
estimated the dRSFC between any two measurement channels
using a sliding-window correlation approach. Specifically, a 20-
s time window was selected and then shifted along the entire
time course in steps of one 0.057-s time point each. Within each
time window, the Pearson correlation was calculated for each
pair of measurement channels. Therefore, all the 36 measurement
channels had an 8-min measurement duration and a 20-s sliding
time window, resulting in C36

2 = 630 pairs with 8,076 time
points of dRSFC.

To compare with previous studies that focused on the spatial
distribution of the variability of dRSFC, we first quantitatively
estimated the variance in the dRSFC fluctuations for each pair
of channels. Then, according to the five predefined ROIs, which
were described above and are shown in Figure 1A, we classified
the dRSFC into 15 categories, of which 5 were within ROIs and
10 were between ROIs. The mean value, as well as the standard
deviation, of the variability of the dRSFC of each category was
calculated. Finally, we compared the mean variability of the
dRSFC between two connection groups: within the ROIs and
between the ROIs, by a two-sample t-test.

For comparison, we also calculated the static RSFC (sRSFC).
As shown in Figures 1B,D, it was proposed for each subject using
a Pearson correlation analysis between any two measurement
channels over the whole length of the time series. Then, to assess
the sRSFC results at group level, a pair-by-pair one-sample t-
test was performed across all the subjects and corrected by false
discovery rate (FDR).

Clustering Analysis of the dRSFC
Fluctuations
To assess the temporal relationship of dRSFC between different
connections, we applied a k-means clustering algorithm to the
temporal fluctuations in the dRSFC. For each individual, we used
the L2 (Euclidean) distance function during k-means clustering
with random initialization of the centroid positions. The number
of clusters (k) varied from 2 to 10. To eliminate the influence of
random centroid positions, we repeated the clustering analyses
100 times with centroid positions updates. Then, for each k, a
ratio (A) between the between-cluster distance and the within-
cluster distance for each subject was computed. In our hypothesis,
an acceptable value of k should yield greater mean values of A for
all individuals with relatively low variance. Therefore, the final
k was determined at the group level using the elbow criterion
of the cluster validity index, defined as the ratio between the
standard deviation of A and the mean value of A across all the
subjects. Finally, as shown in Figure 1E, the temporal fluctuations
in the dRSFC from C36

2 = 630 pairs were classified into k clusters
for each subject, of which the centroid positions were the time
courses representing the most typical fluctuations in the dRSFC.

Because brain activity during the resting state is not time
locked, the fluctuations in the RSFC (temporal structure) could
not be directly compared between subjects, but their spatial
distribution (spatial structure) could. Therefore, as shown in
Figure 1E, we collected all the spatial distribution matrices
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FIGURE 1 | Illustration of functional near-infrared spectroscopy (fNIRS)-based dynamic resting-state functional connectivity (dRSFC) analysis. (A) Anatomical
positions of the fNIRS standard-distance channels. Green represents the 36 fNIRS measurement channels. Red and blue dots represent the fNIRS emitters and
detectors, respectively. The five ROIs were marked by black circles in the left and right views. The short-distance channels are not demonstrated here; two of these
were near channels 4 and 22, and the other two were near channels 9 and 27. (B) An example of fNIRS data from a random selected subject. (C) Static RSFC
analysis. The static RSFC was calculated from the time courses of the entire scanning between any two channels. (D) Dynamic RSFC analysis. The dRSFC was
calculated between any two measurement channels using a sliding-window correlation approach. In this approach, a time window with a fixed length was selected
and then shifted along the entire time course in a fixed step. Within each time window, the RSFC was calculated for each pair of measurement channels using the
Pearson correlation method. This process results in quantification of time-varying dRSFC over the whole scanning. Owing to the connectivity matrix is symmetric, the
effective number of connection pairs among all the 36 measurement channels is C36

2 = 630. (E) Pipeline of clustering analysis of the dRSFC fluctuations.

identified for each individual subject and reordered them by
two loops so we could use the same labels for the subsequent
group analysis. Specifically, for the first loop, we set the k spatial
matrices of a random selected subject as the initial template.
Then, we computed a spatial correlation of the template with
the individual matrices and labeled each individual matrix with
the template it best corresponded to. For the second loop, the
mean matrix of each cluster was calculated at the group level
and set as the updated template. After repeating the above
process, the individual spatial matrix was relabeled and unified
at the group level.

Furthermore, to assess the transient relationship between the
centroid time courses of different clusters, we quantified the
instantaneous phases of each time course by a wavelet transform
and calculated the time-varied phase difference between them.

Specifically, we computed the convolution of the individual
centroid time course of dRSFC with a complex Gabor wavelet
centered at frequency f :

G
(
t, f

)
= e
−

t2

2σ2
t e−j2πft

Here, we set f = 0.08 Hz, σt = 10 s. The phase for this convolution
was extracted for all time bins t:

θ (t) = angle(G (t) ∗x(t))

The phase difference between each of the two time courses (x and
y) was defined as:

1θ (t) = θx (t)− θy(t)
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EEG Data Processing
First, we checked the data to remove the redundant time courses
before and after the experiments according to the start and the
end markers set by the E-prime software. After band-pass filtering
from 1 to 100 Hz with a 50-Hz notch filter, the continuous
EEG data was re-referenced with the average time course of all
the effective channels. The channels with the great noise whose
amplitudes were higher than five times the standard deviation of
the entire time course were removed.

The EEG microstate was extracted according to the pipeline
(introduced in Van de Ville et al., 2010). In general, we first down-
sampled the EEG data to 125 Hz to reduce the computational
complexity. Then, as shown in Figure 2A, we calculated the
global field power index, which is the standard deviation of the
potentials at all electrodes, for each time point (Brunet et al.,
2011). All the time points that contained EEG global field power
maxima were determined. These time points were considered
to having relatively high signal/noise ratio (Brunet et al., 2011).
Therefore, the momentary EEG maps at those time points were
extracted as the best representative topographies. Next, using the
Cartool software (v 3.55, developed by Functional Brain Mapping
Lab, Geneva, Switzerland), a modified spatial cluster analysis
applying the atomize-agglomerate hierarchical clustering method
was used to identify the most dominant map (i.e., microstates)
topographies at the individual level and at the group level. During
this process, the optimal number of microstates was determined
to be 3 based on a cross-validation criterion, which is derived by
dividing the global explained variance by the degrees of freedom
(Brunet et al., 2011). To assess the switching time course of the
microstates, we calculated the spatial correlation between each
instantaneous EEG map and the three group-level template maps.
For each time point, the dominant microstate was selected as the
one with the greatest spatial correlation. The binary time series
corresponding to each microstate was considered to represent the
microstate activities.

Correlating With fNIRS-dRSFC and EEG
Microstates
Some previous studies have been found that, after convolution
with the hemodynamic response function, the prototypical EEG
microstates during rest may have ability to explain hemodynamic
activities in some specific large-scale resting state networks (Britz
et al., 2010; Musso et al., 2010). Therefore, here we evaluated the
relationship between the temporal fluctuations of each fNIRS-
based dRSFC (the centroid time course for each cluster) and the
time course of the EEG microstate switching for each subject.
Specifically, as shown in Figure 2B, we first convoluted the
binary time series of each EEG microstate with the canonical
hemodynamic response function, which was generated by SPM
toolbox. Then, the resultant smooth microstate time course was
down-sampled to 17.5439 Hz, the same as the sampling rate of
the fNIRS data, and correlated with the centroid time course for
each fNIRS-based dRSFC cluster using the Pearson correlation
index (Britz et al., 2010). Hence, we obtained a correlation matrix
between all the fNIRS-based dRSFC clusters and all the EEG
microstates for each subject. Using the Fisher Z transformation,

we got a z-score matrix from the correlation matrix. Finally, we
checked the z-scores at the group level using a one-sample t-test.

RESULTS

The sRSFCs between all the fNIRS channels with a standard
interoptode distance are demonstrated in Figure 3. For clarity,
the ROI-level sRSFCs are also shown in connectivity map form
and matrix form. Obviously, all the connectivities between the
homogeneous interhemispheric areas were significant (p < 0.01,
FDR corrected). There were also several significant connectivities
across the heterogeneous areas, but the connectivities of the
occipital area were very limited.

As shown in Figure 4A, the dRSFCs between any two ROIs
were highly non-stationary. Specifically, the variability of the
dRSFCs within the frontal ROIs was generally great and positive
at most time points. Such high values are consistent with the
results from the sRSFC over the whole measurement time
period (sRSFC = 0.649). By contrast, the dRSFC between the
heterogeneous regions (F-P and F-O in Figure 4A) were relatively
lower and exhibited both strongly positive and strongly negative
correlations. The sRSFCs in these connectivities were obviously
lower than those within the frontal ROIs (sRSFC = 0.208 for the
F-P connectivity, and sRSFC =−0.135 for the F-O connectivity).

For the quantitative analysis, we evaluated the dRSFC
variability of the connectivities within and between the ROIs. As
shown in Figure 4B, the variability of the dRSFC within the ROIs
was significantly lower than that between the ROIs (p < 0.001,
Bonferroni corrected); this is consistent with the findings in
previous studies (Allen et al., 2014; Li et al., 2015). In addition,
by comparison with the variability in the correlation between
the channels with a short interoptode distance, the variability
in the dRSFC between channels with standard interoptode
distances was significantly greater both within and between
ROIs (p < 0.001, Bonferroni corrected). This implies that the
dRSFC oscillations between the channels with a standard distance
have some functional significance, rather than being caused by
physiological noise. Specific to the connectivities between ROIs,
as shown in Figure 4C, the connectivities with the greatest
variability were primarily related to the frontal area, especially
occurring between the frontal and the temporal areas.

After the temporal clustering analysis, four dRSFC clusters
were extracted, and the probability of occurrence of each
connectivity across the subjects was calculated for each cluster.
For clarity, the connections for which the probability of
occurrence was more than 50% are shown in the channel-level
connectivity map (Figure 5). Furthermore, we averaged the
probability of occurrence according to the regions to which the
two nodes belong and drew the ROI-level group consistency
matrix for each cluster. Obviously, cluster 1 was primarily
concentrated in the connectivities between the bilateral frontal,
parietal, and temporal areas. Cluster 2 was concentrated in
the connections with the occipital area. Clusters 3 and 4 were
primarily concentrated in the connections with the sensorimotor
area, in which the first one was bilaterally symmetrical and the
latter one was obviously lateralized to the left. It should be noted
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FIGURE 2 | Illustration of electroencephalography (EEG)-microstate analysis and the correlation analysis between EEG microstates and fNIRS-based dRSFC
fluctuations. (A) EEG microstate analysis. The EEG microstate was identified by a modified spatial cluster analysis from all the individual momentary EEG maps with
the maxima global field powers. During this process, the optimal number of microstates was determined to be 3 based on a cross-validation criterion, which is
derived by dividing the global explained variance by the degrees of freedom. (B) After calculating the spatial correlation between each instantaneous EEG map and
the three group-level template maps, the dominant microstate was identified as the one with the greatest spatial correlation at that time point. The previous studies
have shown that after the convolution of the binary time course of a EEG microstate with the hemodynamic response function, the resultant temporal smoothed
signal correlated with hemodynamic fluctuations of the large-scale functional networks. Therefore, we proposed the correlation analysis between the smoothed
microstate-switching signals with fNIRS-dRSFC fluctuations.

FIGURE 3 | The static RSFC (sRSFC) between all the fNIRS channels with a standard interoptode distance. The sRSFCs, which are significantly greater/lower than
zero at the group level (p < 0.01, FDR corrected), are indicated by the red/blue lines, respectively. The width of the line represents the strength of the t-value
(one-sample t-test at the group level). For clarity, the ROI-level sRSFCs are shown in two forms: connectivity network map and matrix. They are the group-level
statistic results after categorizing and averaging the connection edges according to an ROI partition of the nodes for each individual. F, frontal area; C, sensorimotor
area; P, parietal area; T, temporal area; O, occipital area.
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FIGURE 4 | Variability of the dRSFCs. (A) Examples of dRSFC fluctuations for a representative subject (subject 1). The black line indicates the dRSFC between the
bilateral frontal ROIs; the red line indicates the dRSFC between the frontal and the parietal ROIs; and the blue line indicates the connectivity between the frontal and
the occipital ROIs. F, frontal area; P, parietal area; T, temporal area; O, occipital area. (B) Group comparison of variability of the dRSFC within and between ROIs and
between channels with a short interoptode distance (S-ch). Error bars indicate standard deviations. Asterisks represent significant group differences with a t-test at
p < 0.001 (Bonferroni corrected). (C) The means and standard deviations of the dRSFC variability between different ROIs at the group level.

that, as shown in the probability of the occurrence matrix, cluster
4 had a relatively low consistency across the subjects compared
with the other three clusters.

By a Gaber wavelet transform, we calculated the instantaneous
phase difference between the centroid time courses of the four
clusters. As shown in Figure 6, they constantly switched between
positive correlation, negative correlation, and anticorrelation,
accompanied by some system-specific preferences. For example,
cluster 1 was positively synchronized with cluster 3/4 most of the
time, but sometimes this was reversed. In contrast, cluster 1 was
primarily negatively synchronized with cluster 2 most of the time.

Figure 7 presents the topographies of the EEG microstates and
the relationship between the temporal fluctuations of each fNIRS-
based dRSFC (the centroid time course for each cluster) and the

switching time course of the EEG microstates. The oscillation of
cluster 1 was significantly correlated with the switching of the
EEG microstate 1 (p = 0.031, uncorrected), but the other clusters
did not demonstrate a significant correlation with the switching
between EEG microstates.

We also evaluated the reproducibility of the primary findings
in this study. First, based on a sliding time window size of
20 s, we randomly divided the subjects into two subgroups and
repeated the analysis to examine the impact of varying the subject
datasets. As shown in Figure 8A, the main results, e.g., based on
the temporal dRSFC clustering analysis, show that three kinds
of functional networks could be extracted: the frontal-parietal-
temporal network (cluster 1), the occipital network (cluster
2), and the sensorimotor network (cluster 3), keeping good
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FIGURE 5 | The spatial distributions of dRSFC clusters. For each cluster, the connectivity map with the dominant channel-level connectivity (left) and the ROI-level
group consistency matrix (right) are demonstrated. The red lines in the left maps represent the dominant connectivity that occurred in this cluster in more than half of
the participants. The values in the right matrix represent the average probability of occurrence at the group level.

FIGURE 6 | Demonstration of the instantaneous phase difference between the centroid time courses of the clusters from three representative subjects.
(A) Illustration of the instantaneous phase difference calculation. (B) An example of the fingerprint map which intuitively displays the result of phase difference in (A).
The fingerprint map refers to the percentage of each phase difference across the whole measurement time. The three concentric circles represent 10, 20, and 30%,
respectively. (C) Demonstration of the instantaneous phase difference between the centroid time courses of the clusters from three representative subjects. (D–F)
The corresponding centroid time courses of the clusters from the three subjects. The pink background represents the moments with positive synchronization
(−45–45◦), and the blue background shows the moments with reverse synchronization (135–225◦).

consistency with the results from the entire subject groups.
However, we also found that cluster 4, which had a relatively
lower consistency in the entire subject group (as shown in the
probability matrix of occurrence in Figure 5), also had relatively

low consistency between the different subgroups. Second, using
the entire subject group, we also separately used sliding time
window sizes of 20, 30, and 60 s to examine the impact of
varying the window lengths on the dynamic RSFC findings. The
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FIGURE 7 | The topographies of the EEG microstates (A) and the statistical analysis results (B) for the correlation between the temporal fluctuations of fNIRS-based
dRSFC clusters and the switching time course of the EEG microstates.

FIGURE 8 | Reproducibility of fNIRS-based dRSFC from two randomly selected subgroups of subjects (A) and fNIRS-based dRSFC with different time window
lengths (20, 30, and 60 s) (B).

cluster results (Figure 8B) were generally consistent with the
investigations reported above.

DISCUSSION

In this study, we first extracted the dynamic fluctuations
of fNIRS-based RSFC over specific regions in the frontal,
temporal, parietal, and occipital areas. Consistent with the
findings in previous studies (Li et al., 2015), the variability
of the dRSFC within the ROIs was significantly lower than
that between the ROIs (p < 0.001, Bonferroni corrected),

possibly resulting from relatively stable information interactions
within a local region (Allen et al., 2014; Zalesky et al., 2014).
The variability of the dRSFC, not only between ROIs but
also within ROIs, was significantly greater than the variability
in the correlation between the fNIRS channels with a short
interoptode distance, an area which is located above the
bilateral frontal area and the temporoparietal junction. It is
known that channels with a short distance primarily consist
of physiological fluctuations in the superficial layers. Therefore,
this evidence implies that our fNIRS-based dRSFC oscillations
have some functional significance, rather than being caused by
physiological noise.
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Second, by using time-resolved k-means clustering, we
extracted dRSFC clusters, which were primarily focused in the
three dominant functional systems. These were the frontal-
parietal-temporal network, the occipital network, and the
sensorimotor network. These networks are very consistent
between different subject subgroups and in varying sliding time
window lengths of 20, 30, and 60 s. These results confirm
that the dominant functional networks could be well identified
and extracted based on the time-resolved clustering of fNIRS-
based dRSFC. Most importantly, we reproducibly identified the
occipital network, as well as the connectivities between the
occipital area and anterior regions (such as the frontal area). Such
connections are critical for visual object processing (Sehatpour
et al., 2008) and consciousness (Giacino et al., 2014; Koch et al.,
2016) but may not be revealed by static fNIRS-based RSFC
(Mesquita et al., 2010). As reported in previous works, the
most dynamic connections always correspond to the weakest
stationary RSFC (Li et al., 2015) because the dynamic RSFCs are
near zero in the time averages. Thus, it is apparent that, since
analyses using the stationary assumption reduce the information
about RSFC fluctuations to time averages, these convenient RSFC
analyses may have led to an oversimplified characterization of
the brain’s functional networks. The successful extraction of the
occipital network in the present study suggests that assessing
functional connectivity from their dynamic characteristics could
rectify the deficiency of the static fNIRS-based RSFC by
identifying some “hidden” functional connectivity/system.

We also evaluated the synchrony between the different
functional networks and found how the synchrony varied
through time. The networks constantly switch between
positive correlation, negative correlation, and anticorrelation,
accompanied by some system-specific preferences. The frontal-
parietal-temporal network (cluster 1), for example, was primarily
positively synchronized with the sensorimotor network (cluster
3/4) and negatively synchronized with the occipital network
(cluster 2) during most of the time intervals, but sometimes
this was reversed. This finding is consistent with a previous
fMRI-based dynamic RSFC analysis that found that the temporal
fluctuations of the dRSFC were an essential property that can
unveil flexibility in the dynamic functional coordination between
different neural systems (Allen et al., 2014). In particular, based
on time-resolved methodologies for analyzing the variability
of the dRSFC, most dynamic connectivities were found to
be intermodular (i.e., to link elements from the separable
subsystems) and localized to known hubs, such as the default
mode regions, superior occipital networks, and fronto-parietal
systems (Allen et al., 2014; Zalesky et al., 2014). Their alternating
pattern of correlations and anticorrelations implies that these
intermodular regions may be connected with specific systems for
a fraction of the time. That is, the multiple functional associations
among these systems are realized through a dynamic process of
time-division multiplexing (Zalesky et al., 2014).

Similar to the dynamic functional connectivity of brain
hemodynamic activation, the momentary global state of the
neurophysiological activities does not change randomly and
continuously over time (Lehmann et al., 1987; Van de Ville et al.,
2010). These momentary global states, termed “EEG microstates,”

remain stable for ∼80–120 ms and can be assessed by analyzing
the temporal evolution of the EEG scalp topography. With a
limited number of prototypical configurations, EEG microstates
are persistently identified across the entire life span (Keilholz
et al., 2013). The changing of the EEG microstates in the resting
state indicates that rapid switching between the activities of
the neural assemblies of the brain occurs. Research has showed
that, after convolution with the hemodynamic response function,
the rapidly fluctuating EEG microstates correlate significantly
with the slow oscillations of fMRI resting-state networks (Britz
et al., 2010; Musso et al., 2010; Yuan et al., 2012). In the
present study, to further support the credibility of the dRSFC
data and to explore the neural basis of the RSFC dynamic
fluctuation, we evaluated the relationship between the temporal
fluctuations of each fNIRS-based dRSFC (the centroid time
course of each cluster) and the switching time course of
EEG microstates based on simultaneous recording fNIRS-EEG
datasets. We found that the oscillation of the frontal-parietal-
temporal network (cluster 1) was significantly correlated with
the switching of the EEG microstate 1. The spatial distributions
of the these three EEG microstates are generally consistent
with the map in the previous EEG microstate studies (Britz
et al., 2010; Khanna et al., 2015). EEG microstate 1 roughly
corresponded to map 4 in Britz et al., 2010, which was found to be
significantly correlated with the hemodynamic activity in a right-
lateralized dorsal frontoparietal network, mainly contributing to
switching and reorienting attention. It is consistent with the
findings in the present study, implying the credibility of fNIRS-
based dRSFC networks.

In previous fMRI-based dRSFC studies, the dorsal attention
areas and default-mode regions were consistently assigned to the
partition with a more variable connectivity (Allen et al., 2014;
Zalesky et al., 2014). In our study, however, the connections
with the greatest variability were primarily related to the frontal
area, especially between the frontal and the temporal areas. We
guess that this discrepancy may have result from the relatively
better signal/noise ratio in the frontal area during the fNIRS data
acquisition. This finding reminds us that the variability analysis
in fNIRS-based dRSFC could be influenced by the signal/noise
ratio of the data. Future research needs to be careful to avoid this
disruptive factor.

In this study, although clusters 1–3 were highly consistent;
cluster 4 had a relatively lower consistency between the different
subject subgroups, within any subject group, or across different
time window lengths. We are not sure about the exact reason but
speculate that this may have been due to uncontrollable behavior
and mental diversity between individuals and at different time
points. This may also have resulted from the diversity of the
spatial localization of the fNIRS measurement channels between
subjects. This needs to be further investigated in future studies
with a larger sample size and repeated measurements.

CONCLUSION

In conclusion, this study demonstrated the functional
significance of fNIRS-dRSFC and the feasibility of fNIRS for
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extracting the dominant functional networks based on RSFC
dynamics. Because of the advantages of fNIRS in clinical
applications, fNIRS-based dRSFC research could help researchers
gain insight into the relationship between time-varying brain
activity patterns and critical aspects of cognition and behavior by
making up for the deficiencies of stable RSFC research.
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