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A resting-state functional connectivity (rsFC)-constructed functional network (FN)
derived from functional magnetic resonance imaging (fMRI) data can effectively mine
alterations in brain function during aging due to the non-invasive and effective
advantages of fMRI. With global health research focusing on aging, several open fMRI
datasets have been made available that combine deep learning with big data and
are a new, promising trend and open issue for brain information detection in fMRI
studies of brain aging. In this study, we proposed a new method based on deep
learning from the perspective of big data, named Deep neural network (DNN) with
Autoencoder (AE) pretrained Functional connectivity Analysis (DAFA), to deeply mine the
important functional connectivity changes in fMRI during brain aging. First, using resting-
state fMRI data from 421 subjects from the CamCAN dataset, functional connectivities
were calculated using sliding window method, and the complex functional patterns
were mined by an AE. Then, to increase the statistical power and reliability of the
results, we used an AE-pretrained DNN to relabel the functional connectivities of each
subject to classify them as belonging to the attributes of young or old individuals.
A method called search-back analysis was performed to find alterations in brain function
during aging according to the relabeled functional connectivities. Finally, behavioral data
regarding fluid intelligence and response time were used to verify the revealed functional
changes. Compared to traditional methods, DAFA revealed additional, important
aged-related changes in FC patterns [e.g., FC connections within the default mode
(DMN) and the sensorimotor and cingulo-opercular networks, as well as connections
between the frontoparietal and cingulo-opercular networks, between the DMN and
the frontoparietal/cingulo-opercular/sensorimotor/occipital/cerebellum networks, and
between the sensorimotor and frontoparietal/cingulo-opercular networks], which were
correlated to behavioral data. These findings demonstrated that the proposed DAFA
method was superior to traditional FC-determining methods in discovering changes in
brain functional connectivity during aging. In addition, it may be a promising method for
exploring important information in other fMRI studies.
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INTRODUCTION

Functional networks (FNs) constructed by resting-state
functional connectivity (rSFC) analysis using data from
blood oxygen level dependence (BOLD)-based functional
magnetic resonance imaging (fMRI) have greatly deepened
our understanding of the functioning of the human brain.
During the resting-state, time series from the same FN are
temporally correlated with each other, and the FNs thus
reflect functional communication between brain regions. Due
to its non-invasiveness and effectiveness, resting-state FC
analysis has become the most extensive and important tool
for exploring changes in brain function (Biswal et al., 1995;
De Luca et al., 2006). With an increasing global emphasis on
human health, brain aging has become a research hotspot in
brain science. Functional connectivity analysis based on rs-fMRI
has been widely applied in brain aging studies (Ferreira and
Busatto, 2013). These studies have indicated that the strength
of multiple FNs, including the default mode network (DMN)
and dorsal attentional network (DAN), decreases during the
aging process. (Sheffield et al., 2015; Avelar-Pereira et al., 2017;
Vij et al., 2018), the phenomenon of which indicates that
attention, memory and executive control functions decline in
cognitive aging. Meanwhile, researchers have also found that
increased FC involving the frontal, parietal networks and motor,
subcortical networks was related to aging, which may reflect
the compensatory responses to the decreased strength of FC
during aging (Biswal et al., 2010; Tomasi and Volkow, 2012;
Ferreira and Busatto, 2013). These results have greatly enhanced
our understanding of aging in the brain; functional connectivity
analysis is expected to be a valuable tool for objectively evaluating
the health status of the brain in the function and cognition of
elderly individuals and thus may benefit the clinical diagnosis
and intervention of brain aging-related diseases (Geerligs et al.,
2017; de Vos et al., 2018). However, most of the present studies
primarily rely on traditional, relatively small samples (from
10 to a few 100 samples) based on statistical analyses (e.g.,
two-sample t-test and multiple linear regression), which may
result in insufficient analysis of resting-state FCs during brain
aging, thus ignoring some important underlying information
regarding FN alterations.

Machine learning is a set of algorithms used for the automatic
development of models and learning of complex patterns from
data. Over the past decade, machine learning has achieved great
success in mining functional connectivity. For example, Calhoun
et al. performed independent component analysis (ICA) to
decompose fMRI data into reduced-dimensional time series and
spatial patterns, which were further used for modal fusion and
classification prediction (Calhoun and Sui, 2016). Du et al. (2017)
proposed a new scheme of group information-oriented ICAs to
mine dynamic functional connectivity from the fMRI data of
patients with various mental disorders, detecting the differences
of brain function between groups related to diseases, which were
not found by traditional static methods. However, traditional
linear machine learning algorithms rely on feature extraction,
which cannot handle non-linear and complex relationships
in data, and lack the ability to process FCs directly as well

(Plis et al., 2014). Therefore, deep learning methods developed
based on machine learning is gradually attracting the attention
of neuroscience researchers. Accumulating evidence shows that
deep learning is superior to traditional machine learning with
regard to fMRI-related pattern recognition (Hu et al., 2018),
dimensionality reduction (Suk et al., 2016; Kawahara et al., 2017),
classification (Kim et al., 2016; Guo et al., 2017), and prediction
(Chae et al., 2018; Khosla et al., 2019). For example, in terms of
non-linear pattern recognition, Suk et al. (2016) applied auto-
encoders to extract the dynamic changes in brain function from a
time series of fMRI. These changes have significant sensitivity in
distinguishing individuals with mild cognitive impairment from
healthy people. For classification, Kim et al. (2016) used a DNN
to mine the resting-state FNs with physiological significance,
utilized mining features to classify schizophrenic patients and
health controls, and obtained an accuracy of classification that
was 22.3% higher than that of a support vector machine (SVM).
However, the number of data samples used in the training models
of these studies was still relatively small (<100), and so it is
possible that these methods missed some important information
due to inadequate learning (Xia and He, 2017).

With the continuous deepening of collaborative research
on global brain aging, research based on open data sets [e.g.,
Cambridge Centre for Ageing and Neuroscience (CamCAN)
dataset1] makes it possible to study brain aging from a big
data perspective. The increase in open data set samples for
analysis likely enhances the effectiveness of statistical analysis
and facilitates new research designs (Peter and Jayati, 2018;
Smith and Nichols, 2018). However, traditional statistics with
big data may lead to possible confounding effects (Smith and
Nichols, 2018), thus requiring the development of new data
analysis methods in the context of big data. Considering the
superiority of deep learning and big data analysis to traditional
modeling methods, combining deep learning with neuroimaging
big data is expected to deeply explore brain aging information by
taking into account the increase in sample size and the complex
relationships in the data.

Spontaneous brain activity during resting-state is an apparent
variability of interaction between brain regions and may be
dominated by traces of activity, which may involve different
subregions in a network at different times (Liu and Duyn, 2013;
Karahanoglu and Van De Ville, 2015). Furthermore, functional
connectivity, usually measured by temporal correlations between
brain regions, can reflect these functional interactions and
yield details maps of complex neural systems (Biswal et al.,
1995, 2010). Therefore, we proposed the hypothesis that most
of the functional activities in young adults may reflect the
“young FCs” (FCs which reflect intrinsic brain activities in
young adults), while those in old adults may largely reflect
the “old FCs” (FCs which reflect intrinsic brain activities
in old adults). Under this hypothesis, traditional static FC
method may miss some important information in comparing
functional connectivity differences between young and old
groups. Meanwhile, previous studies implied that deep learning
methods (especially DNN) were superior to traditional machine

1http://www.cam-can.com
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learning methods (Kim et al., 2016; Hu et al., 2018) both for
classification and mining underlying information in fMRI
data. Therefore, a new method based on the above-mentioned
assumption is expected to detect the information of functional
connectivity networks in normal aging. In this work, using
deep learning from a big-data perspective, we proposed a new
analysis method, named DNN with AE pretrained Functional
connectivity Analysis (DAFA), to deeply mine the important
functional connectivity changes in fMRI during brain aging.
A sliding window method was used to increase the sample size
of FCs for each subject by ∼100 times (∼hundred thousand) in
order to meet the requirements of deep learning from a big data
perspective to a certain extent. After calculating the resting state
FCs of each subject at different time windows, the FCs are first fed
to DAFA to train the AE-pretrained DNN model with a Softmax
layer as a classifier to relabel all FC samples to “young FCs” or
“old FCs.” Then, according to the predicted labels, we compared
the percentages of “young FCs” between young and old groups
using a two-sample t-test and further investigated the differences
between the mean “young FCs” in the young group and the mean
“old FCs” in the old group.

MATERIALS AND METHODS

Participants
In this study, as shown in Table 1, fMRI data was obtained from
a total of 412 individuals (after quality control, e.g., excluding
excessive head motion, missing T1 images, etc.), which included
220 young adults whose ages ranged from 18 to 45 and 192
elderly adults whose ages ranged from 66 to 88. The binary
young/old classes were based on the published paper of Cam-
CAN open dataset (Shafto et al., 2017). In each group, the
number of participants was approximately equal when divided
into 10 year-wide bins. The neuroimaging data used were a subset
of the Cambridge Centre for Ageing and Neuroscience (see text
footnote 1) (Taylor et al., 2017). Participants performed cognitive
tasks outside the MRI scanner. The tests used in this study were
the Cattell Culture Fair test, used to assess fluid intelligence (Horn
and Cattell, 1966), and the speed Choice Reaction Time (RT)
task, used to assess speed of processing. For the RT tasks, the
mean (M-RT) and variability (SD of RT values, SD-RT) were

TABLE 1 | Participants’ demographic information.

Group Number Range Mean SD

Age∗ Young 220 18–45 30.25 5.82

Old 192 66–88 75.29 6.17

Cattell∗ Young 213 22–44 36.59 4.35

Old 188 11–39 26.08 6.04

M-RT∗ Young 215 0.27–0.39 0.31 0.05

Old 140 0.29–0.48 0.34 0.07

SD-RT∗ Young 215 0.07–0.17 0.12 0.02

Old 140 0.01–0.30 0.08 0.04

∗ indicates a significant difference between groups using two-sample t-test,
p < 0.001.

computed from individual trials. Ethical approval for the study
was obtained from the Cambridgeshire 2 (now East of England –
Cambridge Central) Research Ethics Committee. All participants
gave written informed consent.

fMRI Acquisition and Preprocessing
Imaging data were collected by a 3 T MRI scanner (Siemens
TIM Trio). During the scanning period, all participants were
required to lie still and keep their eyes closed. The T1-weighted
anatomical images were gathered using an MPRAGE sequence
with the following parameters: TR/TE = 2250 ms/2.99 ms;
flip angle = 9◦; FOV = 256 × 240 × 192 mm3; voxel
size = 1 × 1 × 1 mm3. For rs-fMRI measurements, 261
volumes of echo planar imaging (EPI) sequences were acquired
with the following parameters: sequential descending order;
slice thickness 3.7 mm with a slice gap of 20% for whole-
brain coverage; TR/TE = 1970 ms/30 ms; flip angle = 78◦;
FOV = 192 × 192 mm2; voxel size = 3 × 3 × 4.44 mm3; number
of slices = 32; duration time = 520 s.

To remove T1 saturation effects, the first five volumes
were deleted from the resting-state fMRI data of each subject.
Then, SPM122 and NIT http://www.neuro.uestc.edu.cn/NIT.
html (Dong et al., 2018) were used to preprocess the resting-
state fMRI data. The fMRI preprocessing contained the following
steps: realignment, slice time correction, spatial normalization
using T1-weighted MRI data (3 × 3 × 3 mm3) and smoothing
[6-mm full-width at half-maximum (FWHM)]. Nuisance noises
such as linear trends, 12 head-motion parameters, global signals,
and individual mean WM and CSF signals were removed
using multiple linear regression analysis, and temporal bandpass
filtering (pass band 0.01–0.08 Hz) was conducted on the fMRI
data. The head motion of each participant was calculated using
the mean framewise displacement (mean FD) (Power et al., 2012).
Participants whose FD was two or more SD above the group mean
FD were excluded from further analysis.

Method Overview
In this paper, a method named DAFA was used to locate
significant differences in functional connectivity between the
old and young groups. Figure 1 shows the workflow of the
proposed procedure.

The entire procedure consisted of three steps. (A), whole-
brain functional connectivity patterns based on sliding windows
(window length: 50 time points, window step: 1 time point) were
calculated by the Pearson’s correlation coefficient of the time
courses from every pair of 160 ROIs (Dosenbach et al., 2010),
followed by Fisher’s r-to-z transformation. (B), an autoencoder
was trained on the whole FC dataset using gradient descent
learning with L2 norm regularization. Then, the weights learned
from the AE were set as an initialization of the parameters of
the bottom layer to a DNN with a Softmax classifier as the top
layer. DNN was used to relabel the FC samples to deeply mine the
important functional connectivity changes between young and
old groups (which may be not well captured with conventional
method), under the condition of mixed labels. FCs in the dataset

2http://www.fil.ion.ucl.ac.uk/spm
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FIGURE 1 | Workflow of the DAFA method. (A) Constructing FCs using sliding windows and Pearson’s correlation methods, all the FCs from a subject contains
most of “young FCs”/“old FCs” and mix FCs. (B) Relabeling all FCs via a DNN based on AE pretraining, and then calculating the average FC of “young FCs” in young
subject and “old FCs” in old subject as this subject’s FC. (C) Performing a search-back analysis to compare the percentages of “young FCs” and functional
alterations between the young and old groups.

were labeled as “young FCs” or “old FCs” by the DNN with
five-fold cross validation (the cross-validation procedure was
performed on subjects and each subject contained 212 FCs via
sliding window method, FCs from a subject were either divided to
training set or testing set). (C), a search-back analysis procedure
was performed to reveal the functional alterations between the
mean young FC in the young group and the mean old FC in the
old group and the differences between the percentages of “young
FCs” labeled in the young group and the old group.

Autoencoder
The architecture of an autoencoder is a three-layer feed-forward
neuro network that contains an input layer, a hidden layer, and
an output layer. All three layers are fully connected hierarchically
through weighted connections that are updated by a back-
propagation algorithm. An important property of the AE’s
structure is that the dimensions of the input layer and output
layer are the same, while the dimension of the hidden layer is
much smaller so that the output layer is forced to reconstruct
the pattern of the input layer with the smaller size of the hidden
nodes, the value in each hidden node could represent a low-
dimension feature from the input data, and the whole AE could
be interpreted as a dimension-reduction function.

The basic principle behind training the AE is the minimizing
of the residual error between the values of the input and
output layers. Let X = [x1, x2, x3, . . . , xd] denote all the FCs
for the entire dataset, y =

[
y1, y2, y3, . . . , yp

]
denote the

features that represent × after dimension reduction, and z =
[z1, z2, z3, . . . , zd] denote the corresponding reconstructed data.
The number of input and output layer nodes is indicated by
d, whose size is equal to the number of observations, and
the number of hidden nodes is denoted by p

(
p < d

)
; the

weight and bias of the encoder and decoder can be denoted
by w(1,0) ∈ R(p×d), b(1,0) ∈ Rp and w(2,1) ∈ R(d×ρ), b(2,1) ∈ Rd.
The features are computed by y = f

(
w(1,0)x+ b(1,0)

)
where f (x)

is a sigmoid function of the hidden nodes; the reconstructed
data are computed by z = g

(
W(2.1)x+ b(2,1)

)
, where g (x) is

the tanh function of the output nodes. In this paper, we chose
autoencoders to perform dimension reduction, and the weights
were transferred to the DNN model for pretraining. In every
training iteration, a set of edges generated by the Pearson’s
correlation of time courses in a window from a sample were fed
to the AE, following which the AE was trained using a back-
propagation algorithm. After the AE was trained from the whole
dataset, the cost function was converged, which ensures that
the average reconstruction error through the training set was
minimized, resulting in an AE that learned the essential features
in a relatively low dimension (from 12700 to 100).

Relabeling FCs via Training the DNN
Model
The DNN model consisted of two hidden layers and a Softmax
layer as the output layer. The sliding window-generated FCs of
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the young group were labeled with [1, 0]T , and those of the old
group were labeled with [0, 1]T . The cost function of the DNN
for the supervised fine-tuning step was defined using the cross-
entropy loss function, L2 norm regularization term as follows:

J(W) =

N∑
i=1

ti log yiW + (1− ti) log (1− yi)+
1
2
λ(J−1, J)

l∑
j=0

∣∣∣∣W(J+1, J)∣∣∣∣2 (1)

where yiW is a vector with elements of the output values from
the Softmax layer for subject n in the training set, ti is the
target output value of the window of the ith subject, λ(J−1, J)

is the parameter of the L2 norm regularization term between
the jthand (j+ 1)th layer, N is the total number of samples in
the training set, and l+ 1 is the number of layers, including
the input layer. The learning rate was initialized to 0.0015,
and the parameter of the L2 norm was set to 10−6 to prevent
overfitting. A total of 50 epochs were used, and the number
of hidden nodes in layers was set to [100:50:2]. A momentum
term was added to the current weight update term to accelerate
the learning procedure. Additionally, weights between the input
layer and the first hidden layer of the DNN were initialized as
weights obtained by the AE and were frozen during the fine-
tuning process (pretrain). In this work, we used five-fold cross
validation to prevent overfitting. Finally, the predicted labels
from each window for each of the subjects in the dataset were
obtained (relabeling).

RESULTS

Autoencoder Parameter Settings
The input size of our autoencoder was 12720, the number of edges
in a subject’s functional connectivity based on 160 ROIs. AE is
an unsupervised learning model, and the hyper parameters are
essential for the performance in an AE. The purpose of adjusting
the value of the parameters is to minimize the reconstructed
error. In addition, to avoid identical transformations and enhance
the learning ability of the AE, the activation functions used by
the encoder and the decoder were the sigmoid function and
the tanh function, respectively. As mentioned in the see section
“Materials and Methods,” the learning rate and parameter of
the L2 norm were 0.0005 and 10−5, respectively. As shown
in Figure 2, the loss increases with a larger batch size; in
this study, a batch size of 50 was chosen, as this was the
location of the inflection point (Figure 2A); then, the number
of epochs was set to 20, corresponding to the first minimum
loss value (Figure 2B); in order to minimize the reconstructed
error while avoiding redundant features, the number of hidden
nodes was empirically set to 100. The initialization of these
hyper parameters and learned parameters could best reduce
the reconstructed error both in terms of the empirical setup
and fine-tuning.

“Young FCs” in the Young and Old
Groups
The first column of Figure 3 illustrates the average functional
connectivity patterns in both the young and old groups
using three methods: static, the mean FC of the sliding
window and DAFA.

Using the static, sliding window and DAFA methods (the
second column of Figure 2), the distributions of “young FCs”
were different in both the young and old groups. In the static
case, one subject had one static FC, so the percentage of “young
FCs” is meaningless. In the sliding window case, all the FCs of an
individual subject were classified the same way as that subject’s
group (e.g., individuals in the young group only had “young
FCs”). When switching to the proposed DAFA, the percentage of
“young FCs” in each sample varied on an individual basis.

To evaluate our assumption, the FCs belonging to the young
group (“young FCs”) were relabeled using five-fold CV based
on each subject. For DAFA, the average percentage of “young
FCs” in the young group was 89.8% of the 212 FCs, and the
average percentage in the old group was 13.2%. A two-sample
t-test revealed a significant (T = 27.1, p = 1.5× 10−92) difference
between the percentage of “young FCs” in the young group and in
old group after controlling for the covariant variables of gender,
head motion parameter (mean FD) and intracranial volume.

Differences Between “Young and Old
FCs”
As illustrated in Figure 4, a two-sample t-test was conducted
on young and old groups to demonstrate the significant
connections among all ROIs [p < 0.01, familywise error rate
(FWE) corrected]. When comparing the results between the
two groups, the FCs revealed by DAFA were similar to those
from the static method. In detail, the connections within the
DMN and the frontoparietal and cingulo-opercular networks
were decreased, as well as connections between the frontoparietal
and cingulo-opercular networks. Meanwhile, the connections
within the sensorimotor network were increased, as well as the
connections between the DMN and the other five networks
and between the sensorimotor and frontoparietal/cingulo-
opercular networks. In addition, both increased and decreased
connections between the cingulo-opercular and cerebellum
networks were found.

For the sliding window method, the group FC differences
were similar to those of the static method, with the addition
of altered connections between the cingulo-opercular and
DMN and cerebellum networks. Further, compared with
the static method, additional alterations in FC patterns
(p < 0.01, FWE corrected) between the young and old groups
were found with the DAFA method. In detail, decreased
FCs were mainly within the cingulo-opercular networks, as
well as in the connections between the cingulo-opercular
and occipital/cerebellum networks. Increased FCs were
mainly found in the connections between the DMN and
the cingulo-opercular/occipital/cerebellum networks. Among
these additional changed FCs, the main nodes were located in the
postcingulate/precuneus/anterior cingulate cortex areas for the
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FIGURE 2 | Learnt parameters. (A) As the batch size increases, loss increases; (B) when the number of epochs = 20, loss reached its first minimum value and then
changed periodically with increasing number of epochs.

FIGURE 3 | The first column shows the average FC patterns of the young group and old group on the left and right, respectively; the second column shows the
distribution of “young FCs” (samples in blue indicate individuals in the young group whose percentage of “young FCs” is greater than 50%; samples in orange
indicate individuals in the young group whose percentage of “young FCs” is equal to or below 50%; samples in green indicate individuals in the old group whose
percentage of “young FCs” is above 50%; and samples in yellow indicate individuals in the old group whose percentage of “young FCs” is equal to or less than
50%); the third column shows the mean and standard deviation of “young FCs” in the two groups. YY indicates samples in the young group for whom more than
50% of the FCs were relabeled to young; YO indicates samples in the young group for whom more than 50% of the FCs were relabeled to old; OO indicates
samples in the old group for whom more than 50% of the FCs were relabeled to old; and OY indicates samples in the old group for whom more than 50% of the FCs
were relabeled to young.
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FIGURE 4 | Figures in the left column show significant changes in FCs (T-map, p < 0.01, FWE corrected) between the young and old groups via the static, sliding
windows and DAFA methods. Blue indicates that the FC from the old group is stronger than that from the young group (i.e., old > young), and red indicates that the
FC from the young group is stronger than that from old group (i.e., young > old). The figures in the right column show additional FCs revealed by the sliding
windows and DAFA methods compared with the static method. Areas marked by circle indicated the additional altered FCs found by DAFA, compared with the
sliding windows method.

DMN, dorsolateral frontal cortex for the frontoparietal network,
ventral prefrontal cortex/basal ganglia/mid-insula/thalamus for
the cingulo-opercular network, the supplementary motor area
for the sensorimotor network, the postoccipital region in the
occipital network, and infcerebellum/medcerebellum for the
cerebellum network (Figure 4). Noting that, compared with
the sliding window method, additional altered FC patterns
were found by DAFA. These altered FCs were: (1) decreased
connections within cingulo-opercular network, (2) increased

connections between DMN and cerebellum networks, and
(3) decreased connections between cingulo-opercular and
occipital networks.

Relations Between Changed FCs and
Behavioral Scores
To demonstrate the relationships between the altered FCs
(revealed by the DAFA method) and behavioral performance,
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partial correlations between the altered FCs and behavioral
scores (fluid intelligence and speed Choice Reaction Time)
were calculated while controlling for gender, head motion
and intracranial volume. Here, the Cattell score was related
to fluid intelligence, while M-RT and SD-RT were related to
the speed Choice Reaction Time. The detected FC patterns
were significantly correlated with fluid intelligence and the
speed Choice Reaction Time (p < 0.01). In detail, the FCs
within the DMN and the frontoparietal, cingulo-opercular
and cerebellum networks, the connections between the
DMN and the frontoparietal/sensorimotor networks and

the connections between the cingulo-opercular network
and the occipital/cerebellum/frontoparietal networks were
positively correlated with the Cattell scores. The FCs within the
sensorimotor and occipital networks were negatively correlated
with the Cattell scores, as well as the connections between
the cerebellum network and the DMN and sensorimotor
networks and the connections between the cingulo-opercular
and sensorimotor networks. In addition, the relationships
between the FCs and the M-RT/SD-RT scores had the opposite
trend from that of the results of the Cattell scores. The details are
shown in Figure 5.

FIGURE 5 | Significant relationships between the additional altered FCs (revealed by the DAFA method) and behavioral performance (p < 0.01). Figures on the top
were additional FCs revealed by DAFA. Red lines indicate young > old; blue lines indicate old > young. The first column (from second row to the bottom row) shows
the correlations between FCs (young > old) and the Cattell score/M-RT/SD-RT, while the second column (from second row to the bottom row) shows the
correlations between FCs (young < old) and the Cattell score/M-RT/SD-RT.
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DISCUSSION

In this paper, based on the hypothesis that most of the functional
activities in young adults may reflect the “young FCs”, while those
in old adults may largely reflect the “old FCs,” we proposed a
method named DAFA to analyze the changes in FCs during the
process of aging from a big data perspective. DAFA revealed
additional significant, altered FC patterns between the young
and old groups, which were ignored by the static method, and
these changes were correlated with behavior scores (Cattell score,
M-RT, and SD-RT), which might be indicative of cognitive
decline during aging.

DNN With AE Pretraining
For each training iteration, the sliding window method was used
to calculate Pearson’s correlation coefficient for 160 ROIs from a
subject’s brain, which enlarged the total sample size so that the
autoencoder could examine the functional connectivity patterns
more completely. The autoencoder is an unsupervised learning
algorithm that can effectively mine hidden low-dimensional
representations from data, which can then be used to reconstruct
the original data (Tschannen et al., 2018). In this paper, we used
a grid search to set and optimize the learning rate, batch size,
epoch and other parameters of the autoencoder (Figure 2). The
number of hidden nodes of AE is still open issue in deep learning.
For example, if the number of the hidden nodes is based on
the principle of minimum reconstruction error, the function of
AE may present an identity transformation function and lose
the ability of mining reasonable features. Therefore, referring to
previous articles on the application of AE in fMRI (Suk et al.,
2016; Guo et al., 2017) and empiricism setting of autoencoder, the
hidden node of autoencoder in this work was set to 100. Finally,
we obtained the model and corresponding parameters for the
resting-state fMRI from CamCAN data. Unlike PCA or ICA, the
autoencoder has no restrictions on whether the input data should
be independent of each other and has no undetermined problem.
It also revealed aging-related FCs from a comprehensive mining
point of view with big data. The reconstruction error of 0.008
indicated that the extracted pattern was the representation of
the FCs in low-dimensional space, which conveyed information
for reconstructing the original signal to the greatest extent. The
autoencoder could extract complex features; thus, the extracted
features were combinations of linear and non-linear properties.
The AE used in this work had a tradeoff between maximizing data
representation and numerous restrictions (e.g., avoiding identity
transformation and redundant feature extraction).

An AE-pretrained DNN can effectively reduce the training
complexity and improve the training effect (Kim et al., 2016).
In most cases, the DNN had been regarded as a black box.
However, in deep learning-based fMRI studies, the weights
between the input layer and the hidden layer of a neural
network were interpreted as functional connectivity networks
(Kim et al., 2016; Suk et al., 2016; Guo et al., 2017). In our
case, these functional connectivity patterns can be interpreted
as subnetworks of FNs during the resting-state or discriminable
patterns comparing young and old groups. Noteworthy, there
has been no fixed rule for hyper parameter settings in DNN

models. Therefore, in our work, we used four layers for the
network structure, and the number of nodes in each layer
were set by experience for classification. This work was not
concerned with the classification accuracy of the DNN model
but instead was designed to see whether the relabeling results
conform to our previous assumptions. Compared with SVM, the
relabeling results obtained by the DNN rarely misclassified the
FCs (e.g., the PCA + SVM results showed that more than 40%
of the old subjects were relabel to the young group, as seen in
Supplementary Material). Moreover, ICA + SVM requires that
the samples be independent of each other, yet FCs from the same
subject are not. Therefore, within the scope of this study, DNN
was better than SVM. In addition, an unsupervised machine
learning method, k-means clustering, was also applied to classify
FCs in two classes based on Squalidean distance. And it had poor
performance that the distribution of relabeled FCs by k-means
clustering was scattered, and might be hard to detect underlying
information of FCs (Supplementary Figure S3).

Big Data Perspective
In the data preprocessing section, the Pearson’s correlation
coefficient of time courses from every pair of ROIs was calculated
by the sliding window method for one subject’s rs-fMRI. Several
previous studies suggested that the window length should exceed
the slowest frequencies (in this work, the time series of calculating
FCs are high-pass filtered at 0.01 Hz) which commonly assumed
to comprise the BOLD signal (Andrew and Michael, 2015;
Leonardi and Van De Ville, 2015). Thus, the ideal window
length was 100 s. Considering the TR of rs-fMRI in Cam-CAN
dataset was 1.97 s, the window length of 50 time points was
used in this work (i.e., 100/1.97≈50). This procedure enlarged
the training dataset for the AE and satisfied the requirements
of big data analysis processing flow (Cobb et al., 2018). From
a big data perspective, with the increase in data volume, more
credible results can be obtained, and errors caused by individual
differences can be eliminated as much as possible (Xia and He,
2017; Peter and Jayati, 2018). However, a large data sample size
almost inevitably leads to confusion effects, such as an incorrect
attribution of samples (Smith and Nichols, 2018). In the proposed
method, supervised learning was used to relabel all sliding
window FCs. At the same time, deep learning performed better
with large data samples (Lecun et al., 2015). Thus, combined
with deep learning, DAFA enlarged the datasets and satisfied deep
learning applications under big data circumstances, which led to
more reliable results (Peter and Jayati, 2018). On the other hand,
when the sample size increased, there was a subset in the sample
that caused the statistical method to always produce significant
statistical results and lead to incorrect conclusions (Smith and
Nichols, 2018). Therefore, we averaged identical samples for each
subject and took the resulting mean FC as that subject’s final FC,
which made the samples used for statistical analysis independent
and eliminated interference factors. The search-back step only
considered the effect on the subject, not on the FCs derived from
sliding window, which prevented confounding effects during
the statistical analysis for big data (Smith and Nichols, 2018).
Additionally, since we only analyzed young and old groups,
each FC calculated from sliding window had a discriminatory
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prior (label), but according to the hypothesis, a small number
of samples may have been mislabeled, so it was necessary to
determine the samples corresponding to these false priors. Due
to the poor performance of the clustering algorithm with high-
dimensional data, it was not effective or sufficiently accurate to
classify the samples; thus, in this article, the DNN was pretrained
with the AE, and a supervised learning method was implemented
to relabel and filter out the mixed samples.

FC Changes in Aging
In our work, age-related FC changes were successfully revealed
by the DAFA method. First, these changes included age-
related decreased patterns, consisting of the FCs within the
DMN and the frontoparietal and cingulo-opercular networks,
as well as the connections between the frontoparietal and
cingulo-opercular networks. Previous studies have suggested
that decreased FC within the DMN and the cingulo-opercular
network reflected the decline in cognitive function related
to the attention, memory and executive functions in elderly
individuals (Dijk et al., 2010; Ferreira and Busatto, 2013; Geerligs
et al., 2015; Grady et al., 2016; Spreng et al., 2016), which is
also supported by our findings on the correlation between
behavioral score and the FCs in these networks. Regarding
the decreased between-network FCs, the frontoparietal and
cingulo-opercular networks have been hypothesized to support
the top-down control of executive function (Dosenbach et al.,
2008). The decreased FCs between the frontoparietal and
cingulo-opercular networks might be caused by a reduction of
harmonization of these networks and cognitive function loss in
normal aging. Second, the connections within the sensorimotor
network were increased, as were the connections between
the sensorimotor and the frontoparietal/cingulo-opercular
networks and between the DMN and the fronto-parietal/cingulo-
opercular/sensorimotor/occipital/cerebellum networks. The
sensorimotor function of elderly individuals shows a decline
compared with young adults, and the increased FCs with
the sensorimotor network might imply that a higher level
of anticipated preparation was required for the decline of
sensorimotor function (Mathys et al., 2014). Moreover,
the increased connectivity between the sensorimotor and
frontoparietal/cingulo-opercular networks might reflect a
compensatory response to the dysfunction of other brain
networks and neurotransmitter decline (He et al., 2016).
Furthermore, the increased FCs between the DMN and the
other FNs have also been found by previous studies (Zhang
et al., 2015; Grady et al., 2016; Spreng et al., 2016; Damoiseaux,
2017), which might be due to the DMN playing an enhanced
intermediary role in regulating primary and higher-order
networks (Margulies et al., 2016; Kernbach et al., 2018). Third,
both increased and decreased connections between the cingulo-
opercular and cerebellum networks were also found, which
might reflect other dysfunction in elderly individuals. In brief,
the results from DAFA were consistent with the abovementioned
studies to some extent.

Our DAFA method yielded additional changed FCs compared
to the static method, which showed decreased FCs compared
with the young group were mainly in the connections between

the cingulo-opercular and occipital/cerebellum networks.
Previous studies have implied that the cingulo-opercular
network is important for set maintenance and other functions,
including processing negative effects, pain and cognitive control
(Dosenbach et al., 2008; Church et al., 2009; Sylvester et al., 2012);
additionally, an alertness study found that the cingulo-opercular
network showed a task-positive response in an event-related
design with auditory and visual stimuli (Coste and Kleinschmidt,
2016). Therefore, the decreased FCs between the cingulo-
opercular and occipital networks in our work likely implied
the decline in high-order functions (e.g., set-maintenance and
alertness functions). Furthermore, the cerebellum is associated
with many cognitive functions involving emotion, executive
function, language and working memory (Keren-Happuch
et al., 2014). A decreased FC between the cingulo-opercular and
cerebellum networks might suggest a loss in the harmonization of
these networks in elderly individuals. Meanwhile, the increased
additional FCs were mainly in the connections between the DMN
and cingulo-opercular/occipital/cerebellum networks, which was
consistent with the trend in the static results, thereby adding
more detailed evidence to the FC changes in aging. In addition,
the result of additional FCs detected via DAFA might imply that
two kinds of neural circuits (decreased connections between
the cingulo-opercular network and the occipital/cerebellum
networks, and increased connections between DMN and
cingulo-opercular/occipital/cerebellum networks) existed,
which perhaps were corresponding to harmonization loss and
compensation mechanism, respectively.

Limitations
The limitations of current work are following: first, the aim of
this work was to detect the information between health young
group and old group (aging), and the current age division was
based on the published paper of Cam-CAN open dataset (Shafto
et al., 2017). However, a finer bin-based age classification may
be investigated in the future effort. Second, considering deep
learning performed better with large data samples (Lecun et al.,
2015) and it perhaps has satisfied performance on mixed labels
(Guan et al., 2017), we proposed a new method combining
deep learning with neuroimaging big data, to fully explore the
potentials of data with new hypotheses, and some replicate
existing findings were also obtained. However, our method may
need to be further improved, e.g., heuristic/clinically inspired
method could be developed to prevent the autoencoder on
digesting irrelevant connections. Third, the deep learning models
applied in this study were an autoencoder and a DNN. During
the training process, these models required initialization of their
hyper parameters, which generally relied on user experiences.
For example, there is no gold standard for the number of
hidden nodes in an auto-encoder. Another is that performing
the proposed DAFA method requires GPUs to train the deep
learning models; otherwise, it would consume more time than
traditional methods such as ICA and SVM. The current version of
DAFA codes was available on https://github.com/Xin-cqu/DAFA.
At last, more efforts were needed to verify that DAFA might
be a promising method for exploring important information in
other fMRI studies.
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CONCLUSION

In this work, we developed a new method named DAFA to deeply
detect important information about age-related FC changes. The
results demonstrated that DAFA had the following advantages:
(1) the potential confused relationships in the data was taken
into account and combined with deep learning methods, DAFA
could detect the complex information of functional connectivity
networks for normal aging in a more comprehensive way; (2)
from big data perspective, DAFA has enlarged the dataset and
reduced the cofounds effect of statistical analysis resulting in
improving the reliability of the analysis; and (3) DAFA was
constructed as a new method to detect underlying important
brain information from fMRI analysis. Additionally, it may
be a promising method for exploring important alteration
information in fMRI studies on diseases such as Alzheimer’s
disease and schizophrenia.
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