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Iron is an essential transition metal for numerous biologic processes in mammals. Iron
metabolism is regulated via several coordination mechanisms including absorption,
utilization, recycling, and storage. Iron dyshomeostasis can result in intracellular iron
retention, thereby damaging cells, tissues, and organs through free oxygen radical
generation. Numerous studies have shown that brain iron overload is involved in the
pathological mechanism of neurodegenerative disease including Alzheimer’s disease
(AD). However, the underlying mechanisms have not been fully elucidated. Ferroptosis,
a newly defined iron-dependent form of cell death, which is distinct from apoptosis,
necrosis, autophagy, and other forms of cell death, may provide us a new viewpoint.
Here, we set out to summarize the current knowledge of iron metabolism and
ferroptosis, and review the contributions of iron and ferroptosis to AD.
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INTRODUCTION

Iron is the second most abundant metal of the earth’s crust following aluminum and the most
abundant transition metal in biology. Iron plays a crucial role in various vital biological processes by
different oxidation states, including oxygen transportation, DNA synthesis and repair, respiratory
activity, myelin synthesis, and cellular metabolism (Patel and Ramavataram, 2012; Levi and
Taveggia, 2014; Ndayisaba et al., 2019; Xu, 2019). Iron homeostasis is maintained via multiple
mechanisms such as hepcidin and iron regulatory proteins (IRPs) at the systemic and cellular
levels (Pantopoulos et al., 2012). Disruption of iron homeostasis can result in excessive intracellular
iron accumulation, thereby damaging proteins, lipids, and DNA via generation of free radicals and
oxidative stress (Ward et al., 2014).

Accumulating studies have shown that iron dyshomeostasis is involved in the pathogenesis of
Alzheimer’s disease (AD). Iron depositions in the specific brain regions have been proved in AD
through imaging and histologic examinations (Altamura and Muckenthaler, 2009; Mills et al., 2010;
Apostolakis and Kypraiou, 2017; Lee and Lee, 2019). Ferroptosis is a newly non-apoptotic form
of cell death, which is characterized by the iron-dependent accumulation of lipid reactive oxygen
species (ROS) (Dixon et al., 2012; Yan and Zhang, 2019). Recent studies show that ferroptosis plays
a key role in neuronal death and neurological diseases including traumatic brain injury (TBI),
stroke, Friedreich’s ataxia, AD, Parkinson’s disease (PD), and Huntington’s disease (HD) (Alim
et al., 2019; Kenny et al., 2019). These studies provide us novel perspectives. Hence, we summarize
the current knowledge of iron metabolism and ferroptosis, and review the contributions of iron and
ferroptosis to AD.

BRAIN IRON METABOLISM

Iron is a vital element for a myriad of fundamental biological functions, because it can readily
donate and accept electrons to participate in oxidation–reduction reactions. But it is also toxic
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when excess “free” iron is present. Indeed, this redox-active
iron can catalyze the production of ROS by Fenton reaction,
thereby attacking cellular lipids, proteins, and nucleic acids and
causing cell damage (Dev and Babitt, 2017; Li et al., 2019; Wang
and Babitt, 2019). Iron plays a crucial role in the synthesis of
myelin and neurotransmitters in the central nervous system.
However, excessive brain iron concentrations are thought to be a
potential cause for various neurodegenerative diseases including
AD, PD, HD, and multiple sclerosis (Ward et al., 2014). And iron
deficiency in infants and the developing brain can easily cause
neurological deficits and mental retardation (Chiou et al., 2019b;
Thirupathi and Chang, 2019). Accordingly, iron metabolism
must be elegantly regulated by a complex network of processes
including absorption, utilization, recycling, and storage. This
complex, highly regulated process involves a series of proteins
such as ferritin (FTH1), transferrin (Tf), transferrin receptor
1 (TfR1), divalent metal transporter 1 (DMT1, SLC11A2),
ferroportin (FPN1), and hepcidin (Bogdan et al., 2016).

The blood–brain barrier (BBB) is the unique structure in the
brain that is different from other tissues and organs, which tightly
regulates the movement of ions, molecules, and cells between
the blood and the brain (Daneman and Prat, 2015). Thus, the
endothelial cells of the BBB are the key site for regulating brain
iron uptake, and the Tf/TfR1 pathway is the main brain iron
absorption route depending on BBB (Duck et al., 2017; Chiou
et al., 2019a; Qian and Ke, 2019). Research shows that Tf is
the iron carrier that is responsible for delivering ferric iron to
erythrocyte precursors and other tissues, but the ferrous iron
must be oxidized to ferric iron by hephestin, a multi-copper
ferroxidase enzyme, before it binds to Tf (Yiannikourides and
Latunde-Dada, 2019). TfR1 is highly expressed on the luminal
side of endothelial cells. Accordingly, Tf-bound serum iron
in circulation binds to its receptor (TfR1) firstly, and Tf/TfR1
complex is taken up through endocytosis; then ferric iron is
released from Tf, and ferric iron is reduced to ferrous iron by
ferric reductase six-transmembrane epithelial antigen of prostate
3 (STEAP3) in the acidic endosome, thereby transferring by
DMT1 for metabolic synthesis or for storage with ferritin in
the cytoplasm. DMT1 is a metal transporter that principally
transports iron from the endosome to cytoplasm (Skjorringe
et al., 2012; Yu and Chang, 2019). Furthermore, iron could also
be exported by FPN1 to the extracellular environment. FPN1 is
the sole known intracellular iron exporter in mammals, which
plays a vital role in the export of cellular iron. And FPN1is
controlled by the iron-regulatory hormone hepcidin, which is
mainly synthesized and secreted by hepatocytes (Ganz, 2013).
Hepcidin binds directly to FPN1 and triggers its internalization,
ubiquitination, and degradation (Sangkhae and Nemeth, 2017;
Cornelissen et al., 2019). Ultimately, iron across the BBB can
be absorbed by neurons, microglia, and astrocytes via the same
iron metabolism-related proteins (McCarthy and Kosman, 2015;
Simpson et al., 2015; Bu et al., 2019; Yan and Zhang, 2019).

But different cell types have different ways of iron absorption.
Neurons and microglia can acquire iron by means of the Tf/TfR1
pathway or absorb non-Tf-bound iron (NTBI) via the luminal
DMT1-dependent pathway (Ke and Ming Qian, 2003; Urrutia
et al., 2013; Zarruk et al., 2015). Recent studies show that the

binding of H-ferritin to the H-ferritin receptor (Tim-1/2) may be
the major source of iron uptaking for oligodendrocytes (Todorich
et al., 2011; Chiou et al., 2018; Qian and Ke, 2019). In addition
to the Tf/TfR1 or DMT1 pathway, astrocytes may acquire iron
by their end-feet processes (Biasiotto et al., 2016; Qian and Ke,
2019; Xu et al., 2019). In this way, brain iron levels are precisely
regulated to participate in normal neuronal function.

FERROPTOSIS AND IRON

Ferroptosis is a novel defined form of regulated cell death,
which is characterized by iron-dependent lipid peroxidation
that ultimately leads to oxidative stress and cell death (Doll
and Conrad, 2017). Ferroptotic cell death is morphologically,
biochemically, and genetically distinguished from other
forms of cell death including apoptosis, necrosis, autophagy,
and pyroptosis (Dixon et al., 2012; Stockwell et al., 2017).
In cytological changes, the chief distinguishing features of
ferroptosis are decreased or vanished mitochondria cristae,
condensed mitochondrial membrane, and mitochondria volume
shrinkage (Angeli et al., 2017; Stockwell et al., 2017). The
hallmark of ferroptosis is accumulation of iron-dependent
ROS, reduction of glutathione (GSH) level, and inactivation
of glutathione peroxidase 4 (GPX4); thereby this redox
dyshomeostasis triggers cell death (Friedmann Angeli et al.,
2014; Hirschhorn and Stockwell, 2019). Intracellular iron
accumulation can generate ROS and cause oxidative stress
via Fenton reaction, thereby promoting the peroxidation of
proteins, nucleic acids, and lipids, which is the key process
to propagate ferroptosis (Cao and Dixon, 2016; Fanzani and
Poli, 2017). Interestingly, ferroptosis inducers were firstly
found before the term ferroptosis was coined. To start with,
researchers unexpectedly found that the small molecule erastin
induced non-apoptotic cell death in tumorigenic cells (Dolma
et al., 2003). Afterward, two ras-selective lethal small molecular
compounds (RSL3 and RSL5) were screened out that induced
non-apoptotic and iron-dependent oxidative cell death. And
an iron chelator (desferrioxamine) and an antioxidant (vitamin
E) could prevent this form of cell death, which showed similar
properties with previous cell death form induced by erastin
(Yang and Stockwell, 2008, 2016). Thus, ferroptosis was named
for this novel non-apoptotic cell death in 2012, which suggests
that redox-active iron plays a critical role in this novel cell death
mechanism (Dixon et al., 2012; Mou et al., 2019).

Although the exact mechanisms of iron in the signaling
pathway of ferroptosis are still poorly understand, the
involvement of iron dyshomeostasis in the ferroptotic process
is beyond any doubt. Indeed, lipid peroxidation and lethal ROS
resulting from iron-mediated Fenton reaction or enzymatic
oxygenation is the essential step of ferroptosis (Dixon and
Stockwell, 2013; Xie et al., 2016; Doll and Conrad, 2017). Iron
homeostasis is a complex process and relies on coordination
of multiple iron metabolism proteins. Once the expression of
these molecules is altered, ferroptosis may be triggered. Recent
research found that the iron-carrier serum protein Tf and its
cell surface receptor, TfR1, played critical roles in ferroptotic
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cell demise. The Tf/TfR1 pathway is mainly responsible for
the absorption of cell iron. And abnormal TfR1 recycling and
palmitoylation can result in neurodegeneration with brain
iron accumulation (NBIA) (Gao et al., 2015; Drecourt et al.,
2018; Park and Chung, 2019). The DMT1, another important
iron-absorbing protein, is also closely associated with brain iron
accumulation in neurodegenerative diseases. Multiple studies
have shown that DMT1 overexpression contributed to iron
accumulation in the substantia nigra and dopaminergic neuron
loss (Salazar et al., 2008; Zhang et al., 2017; Ingrassia et al., 2019).
Ferritin is the main intracellular iron storage protein composed
of FTL1 (light chains) and FTH1 (ferritin heavy), which preserves
excess iron in a redox inactive form and prevents the cell and
tissue from oxidative damage (Theil, 2013; Dowdle et al., 2014;
Lal, 2019). Nuclear receptor coactivator 4 (NCOA4) is a selective
cargo receptor, which is responsible for binding to ferritin and
transporting it to the lysosome for degradation (Mancias et al.,
2014). Thus, this process is termed ferritinophagy, and NCOA4-
mediated ferritinophagy induces ferroptosis by degradation of
ferritin and increasing cellular labile iron levels (Gao et al., 2016;
Hou et al., 2016; Quiles Del Rey and Mancias, 2019). Indeed,
abnormal iron balance caused by dysfunctional ferritinophagy
is critical to induce ferroptosis and also plays a central role in
neurodegenerative diseases mediated by ferroptosis (Tang et al.,
2018). The mechanisms of iron overload in ferroptosis are not
well understood partly because of the difficulty of measurement.
Investigators currently have designed a unique fluorescence
resonance energy transfer (FRET) probe, FRET Iron Probe 1
(FIP-1), which provides direct evidence for changes in labile iron
status during ferroptosis (Aron et al., 2016).

Furthermore, iron is also an important component
that composes a subunit of oxidase for lipid peroxidation.
Lipoxygenases (LOXs) are a family of non-heme iron enzymes,
which can drive ferroptosis by peroxidation of cellular membrane
polyunsaturated fatty acids (PUFAs). The iron in LOX active sites
plays an important role in generating toxic lipid hydroperoxides.
And the iron chelators (deferoxamine and deferiprone) also could
rescue ferroptosis through removing the essential catalytic iron
from LOXs (Abdalkader et al., 2018; Zhou et al., 2019). Recent
studies show that arachidonate-15-lipoxygenase (ALOX15) plays
a significant role in erastin-induced ferroptosis by facilitating
the formation of lipid peroxides (Kagan et al., 2017; Shintoku
et al., 2017). And intracellular iron accumulation and lipid
peroxidation are two key events initiating ferroptosis (Vanden
Berghe et al., 2014). Iron not only directly catalyzes the formation
of ROS, but also synthesizes the LOXs that oxidize PUFAs to
result in lipid peroxides in ferroptosis. Altogether, iron is the
essential component of ferroptosis (Stoyanovsky et al., 2019).

IRON METABOLISM LINKING WITH AD
PATHOLOGY

Alzheimer’s disease is considered currently as a complicated
neurodegenerative disease with multiple cerebral pathologies.
The most typical histopathological features of AD are the
deposition of extracellular amyloid-β (Aβ) in senile plaques

(SPs) and intracellular neurofibrillary tangles (NFTs) formed by
hyperphosphorylation of tau protein. These changes of nerve cells
are ultimately accompanied by dead and dying neurons (Belaidi
and Bush, 2016; Lane et al., 2018). Many studies have shown that
brain iron dyshomeostasis is tightly associated with Aβ plaques
and NFTs. Indeed, iron deposition has been involved in the two
misfolding process. SP and NFT complexes cover redox-active
transition metals (Sayre et al., 2000; Weinreb et al., 2016).

Aβ precursor protein (APP) is a type 1 transmembrane
glycoprotein, which is the crucial precursor to the production
of Aβ. APP can undergo proteolytic cleavage first by α-secretase
or β-secretase and then γ-secretase. In health, α-secretase
firstly cleaving APP means being on the non-amyloidogenic
pathway. However, once APP is cleaved first by the β-secretase
enzyme, it finally can produce the neurotoxic 40- to 42-amino-
acid amyloid (the amyloidogenic pathway). And furin plays
a key role in mediating the proteolytic activation ratio of
α-secretase or β-secretase. Indeed, the concentration of furin
protein was positively correlated with α-secretase activity and
negatively correlated with β-secretase activity (Guillemot et al.,
2013). Excessive intracellular iron concentration is responsible
for reducing transcriptional regulation of furin. And iron can
reinforce the β-secretase activity by the decrease of furin protein,
thereby directly increasing Aβ production by the amyloidogenic
pathway (Ward et al., 2014). Furthermore, APP mRNA encodes
iron-responsive elements (IREs) in the 5’-untranslated region (5’-
UTR mRNA), which is closely related to intracellular iron content
(Rogers et al., 2008). When the intracellular iron concentrations
increase, it upregulates the translation of APP by virtue of IREs
in the 5’-UTR mRNA, thereby increasing the amount of APP
protein and potentially producing more Aβ (Becerril-Ortega
et al., 2014; Peters et al., 2015; Telling et al., 2017). Additionally,
iron also directly binds to Aβ in His6, His13, and His14 amino
acid residues, thereby strengthening the neurotoxicity of Aβ

(Uranga and Salvador, 2018; Wojtunik-Kulesza et al., 2019).
Indeed, it is widely accepted that APP also physically

interacts with the cell surface FPN1 through stabilizing and
locating FPN1, and enabling intracellular iron efflux. Recent
research indicates that brain FPN1 levels reduce brain iron
accumulation in APP-KO mice, and the ability of cerebral
iron export was significantly decreased, which reveals that
APP/FPN1 plays a crucial role in modulating cerebral iron
homeostasis (Belaidi et al., 2018). New research shows that
post-translational modulation plays a key role in locating and
trafficking of APP to the cell surface. The study confirmed
that damaged N-glycosylation or phosphorylation of APP
impeded the trafficking of APP to the cell surface, which
disturbed FPN1 stability and reduced cell surface FPN1 levels,
thereby altering neuronal iron homeostasis and resulting
in intracellular iron retention. Meanwhile, Post-translational
modifications of APP induced conformation changes and altered
the cleavage preference of each secretase, thereby dysregulating
APP processing and Aβ generation (Wang et al., 2017; Tsatsanis
et al., 2019). Indeed, there is also a study that shows that iron
accumulation induces binding of APP to β-secretase, thereby
resulting in Aβ accumulation (the amyloidogenic pathway), and
reduces the affinity of APP/FPN1 mediating iron export in
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microglia (Gong et al., 2019). Furthermore, synchrotron X-ray
spectromicroscopy technology also shed light on the presence of
ferrous iron (redox-active iron phases) in amyloid plaque cores.
The research indicates that Aβ plays a important role in reducing
ferric iron into ferrous forms; this transformation process leads
to excess free radical generation and inducing neuronal damage,
which could promote the understanding of the role of iron in the
pathology of AD (Everett et al., 2018).

Neuroinflammatory response and microglial activation also
are the typical changes of AD pathogenesis. Recent studies have
shown that iron accumulation in microglia also contributes to
microglial dysfunction and Aβ accumulation. In APP/PS1 mice,
a commonly used animal model of AD, which overexpresses
the APP and presenilin 1 (PS1), the researcher attests that
iron accumulation can drive microglia to switch to a glycolytic
metabolic, thereby reducing the capacity to phagocytose Aβ,
ultimately leading to Aβ accumulation (McIntosh et al., 2019).
And microglia has two polarization states with opposite functions
including M1 proinflammatory, cytotoxic cell type and anti-
inflammatory, prorepair M2 cell type. M1 phenotype microglia
plays an important role in the pro-inflammatory response. Recent
research shows that iron accumulation can drive microglia
polarization to M1 phenotype. And it was found out that
there is a large amount of activated iron-containing microglia
around Aβ plaques (Kroner et al., 2014; van Duijn et al., 2017).
Additionally, cortical iron deposition is increasingly recognized
as a novel imaging marker for AD diagnosis through using high
field magnetic resonance imaging (MRI) to scan hemispheres
of AD patients (Peters et al., 2015; van Duijn et al., 2017; Bulk
et al., 2018; Kenkhuis et al., 2019). And cerebral quantitative
susceptibility mapping (QSM), an MRI method sensitive to brain
iron, reveals that the brain iron burden is elevated in AD patients,
combined with Aβ positron emission tomography (PET), which
indicates that brain iron load is positively associated with Aβ

deposition-related cognitive decline, suggesting that iron may
combine with Aβ to exacerbate the cognitive function damage.
The pathologic mechanism could be that iron promotes the
production of free radicals and oxidative stress and possibly
also involves ferroptosis (Ayton et al., 2017b; van Bergen et al.,
2018). And other research validates that spatial colocalization of
cerebral iron with Aβ plaques increased the risk for AD dementia
(van Bergen et al., 2016). Moreover, in mild and moderate AD
patients, the researchers determined the magnetic susceptibility
values of deep gray matter nuclei with QSM and evaluated
the cognitive functions through Montreal cognitive assessment
(MoCA) and mini-mental state examination (MMSE). They
found that the magnetic susceptibility of the left caudate
nucleus was significantly correlated with the severity of cognitive
questionnaire scores (MMSE and MoCA) in AD (Du et al., 2018).
Altogether, these studies indicate that it is possible for brain iron
levels quantified by QSM to be a biomarker of the severity of AD.

Ferritin is the major iron storage protein, and cerebrospinal
fluid (CSF) ferritin could reflect cerebral iron levels. Studies
have shown that CSF ferritin can be recognized as a potential
biomarker, which is better to predict disease progression and
future cognitive impairment, especially in patients with high
Aβ deposition or APOE-ε4 carriers. And high CSF ferritin

levels in the presence of Aβ accumulation indicate a high risk
of brain hypometabolism and cognitive decline. It is generally
accepted that APOE-ε4 is the greatest genetic risk for AD. And
research shows that APOE-E4 could intervene in brain iron
homeostasis by increasing ferritin levels, thereby strengthening
the susceptibility to AD. These findings also indicate that CSF
ferritin has the potential to be a biomarker of AD and highlight
the role of iron in the AD pathological mechanism (Ayton et al.,
2015, 2017a; Ayton et al., 2018; Diouf et al., 2019).

Under physiological conditions, tau is a microtubule-
associated protein that supports neuronal microtubule structure,
which plays a key role in axonal transport, protein trafficking,
and cognitive function (Wang and Mandelkow, 2016; Joppe
et al., 2019). However, tau hyperphosphorylation aggregates into
NFTs, which is a major pathological hallmark of AD. And
it is widely believed that brain iron dyshomeostasis is closely
associated with the formation of NFTs and the progression of
tau-mediated neurodegeneration. Iron not only can regulate
tau phosphorylation but also can induce the aggregation of
hyperphosphorylated tau (Kim et al., 2018; Rao and Adlard,
2018). Indeed, iron deposition is colocalized with NFTs in
a special brain region associated with the progression of
neurodegeneration (Rao and Adlard, 2018). Furthermore, many
proline-directed protein kinases are also closely interrelated
with tau phosphorylation in AD such as glycogen synthase
kinase-3 (GSK3), cyclin-dependent protein kinase-5 (CDK5),
and mitogen-activated protein kinases (MAPKs) (Jouanne
et al., 2017). Indeed, excess neuronal iron can promote tau
hyperphosphorylation and facilitate the formation of NFTs
through cyclin-dependent kinase (CDK5)/P25 complex and
GSK-3β kinase pathways (Guo et al., 2013; Vossel et al., 2015;
Kim et al., 2018; Wang et al., 2019). Additionally, the study
also shows that dysfunctional insulin signaling is associated
with iron-induced abnormal phosphorylation of tau in AD
(Wan et al., 2019).

Research shows that tau plays an important role in protein
trafficking via stabilizing neuronal microtubules. And tau can
mediate cellular iron efflux through trafficking APP to the
cell surface in normal physiology (Lei et al., 2012; Wang and
Mandelkow, 2016). Tau hyperphosphorylation and aggregation
impair surface trafficking of APP, thereby contributing to toxic
neuronal iron accumulation and aggravating NFTs, which leads
to a vicious cycle (Wong et al., 2014; Ndayisaba et al., 2019).
Indeed, the tau-mediated APP pathway can prevent ferroptotic
damage by reducing iron-mediated neurotoxicity in a transient
middle cerebral artery occlusion (MCAO) rat model (Tuo et al.,
2017). Therefore, iron- and tau-mediated generation of ROS is an
important mechanism of neuron damage and death.

FERROPTOSIS LINKING WITH AD

Aging is one of the greatest risk factors for the disease.
And iron accumulates in the brain with aging processes;
brain iron deposition is more serious in special regions in
neurodegenerative diseases associated with oxidative stress and
neuronal death (Hare et al., 2013; Ward et al., 2014). Indeed, brain
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iron dysregulation along with reduced endogenous antioxidant
systems including GPX is closely linked to AD pathology. The
level of brain iron is positively correlated with AD progression
and cognitive decline (Ayton et al., 2017b; Derry and Kent,
2017). Patients with mild cognitive impairment accompanying
high Aβ plaque load showed higher cortical iron, which increased
the risk of AD (Hare et al., 2013; van Bergen et al., 2016;
Lupton et al., 2017).

The brain is more susceptible to oxidative damage than other
tissues owing to high demand for dynamic energy metabolism.
And neurons are less tolerant of oxidative stress due to a low
antioxidant defense system (Dringen, 2000). The progressive loss
of neurons is a direct cause of clinical symptoms correlating with
AD. And oxidative stress is an essential pathological mechanism
of AD (Thapa and Carroll, 2017; Cobley et al., 2018). Iron
is an essential cofactor for metabolic reactions, but iron also
can generate ROS and causes oxidative stress in the same
microenvironment. Indeed, iron-induced oxidative stress directly
causes destructive DNA, lipid, and protein damage, thereby
leading to cell death (Liu et al., 2018). Recent studies also found
that iron plays a key role in ferroptosis, a newly defined non-
apoptotic cell death. Lipid peroxidation and iron dyshomeostasis
and accumulation, two essential conditions of ferroptosis, have
long been noted in AD brains. That ferroptosis may contribute
to the neuronal loss of AD attracts more and more attention
(Masaldan et al., 2019). Ferroptosis, a novel form of cell death
characterized by intracellular iron overload, may provide us a
new perspective to understand the pathological mechanism of
AD (Weiland et al., 2018; Nikseresht et al., 2019).

Glutathione peroxidase 4 is a unique anti-peroxidant enzyme,
which inhibits lipid peroxidation through directly reducing
membrane lipid hydroperoxides to lipid alcohols (Cozza et al.,
2017). And GPX4 is considered as the central regulator
of ferroptosis (Imai et al., 2017). Indeed, multiple studies
showed that lipid peroxidation and depletion or reduction
of GSH levels, the other signature of ferroptosis, also occur
in AD. Recent studies revealed that hippocampi’s and frontal
cortices’ GSH levels have the potential to be a predictive
biomarker for AD and MCI (Mandal et al., 2015; Ayton
et al., 2019). The research shows that ablation of GPX4
induces ferroptosis of spinal motor neurons, thereby resulting
in rapid onset and progression of paralysis and death in
adult mice. Further research shows that ferroptosis triggers
the major cell death in hippocampal neurodegeneration by
ablation of forebrain neuron GPX4, which directly relates to
cognitive impairment. And the hallmarks of ferroptosis (iron
dysregulation, lipid peroxidation, inflammation) are recognized

as important preclinical signs of AD and cognitive impairment
(Chen et al., 2015; Hambright et al., 2017). In addition, research
shows that α-lipoic acid (LA) administration could block tau-
induced iron overload, lipid peroxidation, and inflammation,
which are involved in ferroptosis (Zhang et al., 2018). Iron
interacts with Aβ and tau through the deposition of iron
and the formation of a peptide–hemin complex, thereby
participating in generating ROS that possibly involves the
ferroptotic death pathway (Derry et al., 2019). Taken together,
although ferroptosis in AD is unproven, it is gradually attracting
more and more attention.

CONCLUSION

Alzheimer’s disease is characterized by progressive cortical
and hippocampal neuronal dysfunction and death; the major
hypothesis mechanisms are Aβ depositions in SPs and NFTs of
hyperphosphorylated tau protein (Dugger and Dickson, 2017;
Roubroeks et al., 2017). However, a large number of drug clinical
trials based on these two hypotheses worldwide have failed;
there is still no effective way to treat it. Furthermore, the two
hypotheses are subject to a growing challenge (Liu et al., 2019;
Nikseresht et al., 2019). Indeed, it has been widely accepted
that iron participates in the pathogenesis of AD. Iron not only
aggravates toxic Aβ and hyperphosphorylated tau aggregation
but also directly induces neuronal oxidative damage (Thirupathi
and Chang, 2019). Considering the particularity and importance
of iron in ferroptosis and the pathomechanism of AD, ferroptosis
may provide a new insight into the molecular pathophysiology
of the disease (Morris et al., 2018; Leong et al., 2019). Thus,
future research aimed at validating the role of ferroptosis
in AD is needed.
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