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Stochastic gradient descent requires that training samples be drawn from a uniformly

random distribution of the data. For a deployed system that must learn online from

an uncontrolled and unknown environment, the ordering of input samples often fails to

meet this criterion, making lifelong learning a difficult challenge. We exploit the locality of

the unsupervised Spike Timing Dependent Plasticity (STDP) learning rule to target local

representations in a Spiking Neural Network (SNN) to adapt to novel information while

protecting essential information in the remainder of the SNN from catastrophic forgetting.

In our Controlled Forgetting Networks (CFNs), novel information triggers stimulated firing

and heterogeneously modulated plasticity, inspired by biological dopamine signals, to

cause rapid and isolated adaptation in the synapses of neurons associated with outlier

information. This targeting controls the forgetting process in a way that reduces the

degradation of accuracy for older tasks while learning new tasks. Our experimental

results on the MNIST dataset validate the capability of CFNs to learn successfully over

time from an unknown, changing environment, achieving 95.24% accuracy, which we

believe is the best unsupervised accuracy ever achieved by a fixed-size, single-layer

SNN on a completely disjoint MNIST dataset.

Keywords: lifelong learning, continual learning, catastrophic forgetting, controlled forgetting, dopaminergic

learning, Spiking Neural Networks, Spike Timing Dependent Plasticity, stability-plasticity dilemma

1. INTRODUCTION

Artificial neural networks have enabled computing systems to successfully perform tasks previously
out of reach for traditional computing, such as image and audio classification. These networks,
however, are typically trained offline and do not update during deployed inference. One of the
current obstacles preventing fully autonomous, unsupervised learning in dynamic environments
while maintaining efficiency is the stability-plasticity dilemma, or the challenge of ensuring
that the system can continue to quickly and successfully learn from and adapt to its current
environment while simultaneously retaining and applying essential knowledge from previous
environments (Grossberg, 1987).
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There have been a handful of terms used in literature to
describe the process of learning from data that is temporally
distributed inhomogeneously, such as the terms incremental
learning, sequential learning, continual learning, and lifelong
learning. In this work, we will use the term “lifelong learning.”
Lifelong learning is the process of successfully learning from
new data while retaining useful knowledge from previously
encountered data that is statistically different, often with the
goal of sequentially learning differing tasks while retaining
the capability to perform previously learned tasks without
requiring retraining on data for older tasks. When traditional
artificial neural networks are presented with changing data
distributions, more rigid parameters interfere with adaption,
while more flexibility causes the system to fail to retain important
older information, a problem called catastrophic interference or
catastrophic forgetting. Biological neuronal systems dont seem to
suffer from this dilemma. We take inspiration from the brain to
help overcome this obstacle.

To avoid catastrophic forgetting, important information from
older data must be protected while new information is learned
from novel data. Non-local learning rules may not provide such
isolation. Localized learning, on the other hand, may provide
the desired segmentation while also being able to perform
unsupervised learning, which is critical for lifelong learning
in unknown environments. Spike Timing Dependent Plasticity
(STDP) is a localized biological Hebbian learning process where
a synaptic weight’s adjustment is a function of the timing of
the spikes, or firing events, of its locally connected pre- and
post-synaptic neurons. Spiking Neural Networks (SNNs), which
have been explored for their potential energy advantages due to
sparse computing (Han et al., 2018), have been shown to perform
successful unsupervised clustering tasks with STDP (Diehl and
Cook, 2015).

However, even though STDP learning is localized, it is still
susceptible to catastrophic forgetting because the algorithms
that employ STDP are traditionally designed for randomized
input ordering. Certain features, such as homeostasis, attempt
to distribute the effect of input groupings globally in order to
benefit from the full network. Without a temporally uniform
distribution of classes, traditional STDP algorithms still lose
important older information, which is either replaced by or
corrupted with information from newer samples (Allred and Roy,
2016).

We present a new learning paradigm, inspired by the
dopamine signals in mammalian brains that non-uniformly,
or heterogeneously modulate synaptic plasticity. We create
Controlled Forgetting Networks (CFNs) that address the
stability-plasticity dilemma with rapid/local learning from new
information, rather than the traditional gradual/global approach
to learning. Our approach allows fixed-size CFNs to successfully
perform unsupervised learning of sequentially presented tasks
without catastrophically forgetting older tasks.

Many recent papers have tackled the challenge of lifelong
learning without catastrophic forgetting, but they are not
designed to target the goal of this paper, which is autonomous
learning on a deployed neuromorphic system. This goal requires
real-time unsupervised learning, energy efficiency, and fixed

network resources. Wysoski et al. (2006), Srivastava et al. (2013),
Wang et al. (2014), Wang et al. (2015), Rusu et al. (2016),
Fernando et al. (2017), Kirkpatrick et al. (2017), Lee et al. (2017),
Aljundi et al. (2018), Li and Hoiem (2018), Bashivan et al. (2019)
and Du et al. (2019) all employ supervised or reinforcement
learning methods, in some way provide the network with the
knowledge of when a task change occurs, or provide access
to previous samples for retraining. For example, the work
by Aljundi et al. (2018) requires that the system be allowed
a parameter-“importance update” period on the older task(s)
before proceeding to a new task. Similarly, Panda et al. (2018)
requires that samples from earlier distributions be presented in
disproportionately larger quantities than later distributions to
avoid catastrophic forgetting, which would require knowledge of
a task change. Additionally, Srivastava et al. (2013), Rusu et al.
(2016), Fernando et al. (2017), Kirkpatrick et al. (2017), Lee et al.
(2017), Li and Hoiem (2018) and Rios and Itti (2018) are also
not applicable to localized learning rules that may be employed
on spiking networks. And Wysoski et al. (2006), Dhoble et al.
(2012), andWang et al. (2017) are morphological systems that do
not work with static-sized networks, which would exclude them
from direct mapping onto physical hardware implementations.

2. MATERIALS AND METHODS

2.1. The Challenge of Lifelong Learning
Backpropagation has proven a successful learning algorithm for
deep neural networks. The accuracy of this approach depends
on proper stochastic gradient descent or SGD, also known
as incremental gradient descent, in which many small, global
adjustments to network weights are performed while iterating
over samples from a training dataset. These samples, however,
must be drawn from a random distribution of the dataset—hence
the name “stochastic” gradient descent—intermixing the classes
so that each class can affect the direction of descent for correct
error minimization throughout the entire training process.

The need to draw training samples from a random
distribution is an obstacle for on-line learning, especially when
the system encounters novel data. Backpropagation in an on-line
system for real-time learning proves difficult when the input from
the environment is uncontrolled and unknown. With traditional
SGD, the system typically has three choices to attempt learning
from novel data: (1) train normally on inputs in the order seen;
(2) periodically go offline and retrain from an updated dataset;
(3) maintain an online storage of previous samples to intermix
with the new samples, providing a simulated random sampling.
The latter two choices are costly and inhibit real-time learning,
while the first catastrophically violates SGD.

2.1.1. Catastrophic Forgetting Due to Global

Interference
If a uniformly randomized order is not provided, e.g., samples
are grouped by class and classes are presented sequentially to the
network, then the gradient descent followed by latter samples will
likely disagree with the direction from previous samples. This
conflict causes the network to fail to reach an error minimum
that respects older tasks, as at each period of time in the training
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process the network essentially attempts to globally optimize
for only the current tasks, agnostic as to whether or not that
particular direction increases the error for older tasks. Latter
samples erase or corrupt the information learned from previous
samples, causing catastrophic forgetting.

One of the largest underlying causes of catastrophic forgetting
in backpropagation algorithms is the reliance on a global error.
Calculating weight updates from the current sample’s global
error means that the current sample may globally affect network
weights. Biological neuronal learning, on the other hand, appears
to be significantly localized, with synaptic weight updates being
a function of local activity, causing different regions to be
responsible for different tasks. While distributed representations
promote generalization in neural networks, rapid learning of
novel information may not require significant modifications
to low-level distributed representations in a sufficiently trained
network. It has been shown that the IT cortex contains a
large-scale spatial organization, or “shape map,” that remains
significantly stable over time (Op de Beeck et al., 2007), even
while learning novel information. Lee and DiCarlo (2019) have
shown that the stable earlier levels of the visual cortex are capable
of representing the generic structure and composition of never-
before-seen inputs with an already-learned understanding of the
physical world that remains constant through the remainder of
life–for example, an understanding of lines, edges, curves, and
colors at the lowest levels and an understanding of rotations,
shading, and physical properties at subsequent levels. Thus, it
is likely that lifelong learning need only occur in the last one
or two layers of a neural network, where local learning may
sufficiently classify from a read-out of the higher-dimensional
generalizations that have been learned previously.

2.1.2. Catastrophic Forgetting in Localized Learning

Due to Homeostasis
Many leading STDP-trained SNNs employ adaptive thresholding,
in which a neuron’s firing threshold increases each time it
fires and otherwise decays, preventing specific neurons from
dominating the receptive field. Adaptive thresholding helps
achieve homeostasis by distributing the firing activity between
neurons. However, adaptive thresholding assumes a temporally
random distribution of input samples and often causes
catastrophic interference when the environment changes (Allred
and Roy, 2016). For lifelong learning, adaptive thresholding
must be modified to account for long-term variations in spiking
activity that would occur when processing temporally variant
input distributions.

2.1.3. The Need for Forgetting
For successful lifelong learning, there must be network resources
available to learn new information. In a deployed system with
finite resources, some forgetting of older knowledge is required to
make room for information from new data. As mentioned earlier,
there are morphological systems that logically grow the network
to accommodate new information, even employing pruning
techniques when necessary if the network grows too large.
However, for our goal of deployed learning on neuromorphic
hardware, inserting and removing physical components of the

network is not an option, and existing network components must
be re-purposed to learn a new task when network capacity is
reached, requiring some forgetting.

Additionally, in some cases, forgetting may actually be
beneficial. Forgetting outlier data can improve generalizations,
and forgetting stale data can allow the system to adapt to a
changing environment if new information directly contradicts
older information. Because some forgetting must occur, we
seek to control the forgetting process to protect the most vital
information, minimizing accuracy loss.

2.2. Controlled Forgetting With
Dopaminergic Learning
The stability-plasticity dilemma can be addressed by allowing
for dynamic, heterogeneously modulated plasticity. Consider
the example of unsupervised clustering where neurons are
trained to center on input clusters (see Figure 1). Temporarily
making the synaptic weights of some neurons more plastic while
keeping the weights of other neurons more rigid can allow for
isolated adaptation by the plastic parameters while protecting the
information associated with the rigid parameters. The challenge
then becomes how to dynamically control the plasticity and for
which parameters.

STDP embeds local, generalized representations of correlated
inputs within the synaptic weights of individual neurons. Lateral
inhibition between neurons, similar to the architecture in Diehl
and Cook (2015), creates competition that prevents multiple

FIGURE 1 | The stability-plasticity dilemma in unsupervised clustering.

Lifelong learning is achieved with a strategic heterogeneous modulation of

synaptic plasticity.
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neurons from learning the same information. We seek to
control the forgetting process by harnessing the segmentation
of localized and distinct representations that are created by
STDP with competition. Interference from novel information
may be isolated by stimulating specific network elements to adapt
to that information, protecting the remainder of the network
from change. The forgetting caused by this interference may
be minimized and controlled by targeting network elements
associated with less useful information. We draw on inspiration
from biology to heterogeneously modulate STDP learning to
perform such isolated adaptation, creating Controlled Forgetting
Networks (CFNs).

2.2.1. Biologically Inspired Dopaminergic Plasticity

Modulation
Dopamine acts as a neuromodulator which gates synaptic
plasticity. Dopamine signals are most commonly thought of as
reward signals. In addition, though, dopamine releases are also
associated with encountering novel data, which allows the brain
to quickly adapt to new information (Frémaux and Gerstner,
2016). We adopt this concept of novelty-induced plasticity
modulation for our goal of local, rapid adaptation. We mimic a
novelty-induced dopamine release by including a dopaminergic
neuron at a given layer of a CFN (see Figure 2). We discuss how
to identify novel information in an STDP-trained SNN, how the
dopaminergic neuron is designed to fire under those conditions,
and how the dopaminergic neuron modulates plasticity.

In STDP-trained SNNs, the weight vectors stabilize on the
radial center of seen input clusters and are more likely to fire
for inputs to which they are angularly closer–meaning inputs
where the angle between the input vector and the weight vector
are smaller for a given vector magnitude (see sections 2.3.4.1,
2.4.2.4). In other words, a sample from an unseen distribution

FIGURE 2 | Single-layer CFN architecture. The dopaminergic neuron fires

when the other neurons on its layer are not firing, often a sign of novel

information. The firing of the dopaminergic neuron stimulates firing in the other

neurons while temporarily enhancing plasticity. The stimulation signals from the

dopaminergic neuron are weighted to provide heterogeneous, targeted

stimulation. The other neurons within a layer each have additional laterally

inhibitory connections for competition (not shown here).

will be less likely to induce firing than a sample from a learned
distribution. Thus, when an input sample results in little-to-no
firing activity at a given layer of neurons, we may assume that it
contains information novel to that layer. (Data in Figure S3 in the
Supplementary Material validate this assumption, showing that
a dopaminergic neuron designed to fire under these conditions is
indeed triggered more frequently whenever the system switches
to an unseen class and otherwise sees a reduction in triggered
dopaminergic activity as the new class is learned over time. See
Supplementary Section S3 for more details).

We design the dopaminergic neuron with a resting potential
higher than its firing potential, giving it a self-firing property. It
is additionally suppressed via inhibitory connections from the
other neurons in its layer so that it only spikes when they do
not. This setup allows the dopaminergic neuron to fire only when
novel information is detected.

When it fires, the dopaminergic neuron enhances plasticity by
temporarily boosting the learning rate of the other neurons in its
layer all the way to one while simultaneously stimulating firing in
those other neurons via excitatory synaptic connections that we
are calling dopaminergic weights. Because of the lateral inhibition
discussed previously, once one of the stimulated neurons fires,
it prevents or reduces the probability of the other neighboring
neurons from firing. A neuron with a boosted learning rate
then resets its learning rate the next time it fires or receives an
inhibitory signal from a neighboring neuron, indicating that one
of its neighbors has fired. Thus, while the dopamine signal is
sent to many neurons, only the first neuron(s) to fire undergo
the enhanced plasticity, creating heterogeneous plasticity and
allowing the dopamine signal to perform an isolated targeting
for local, rapid adaptation rather than global interference.
Temporarily modulating the learning rate to the full value allows
the first neuron that responds during a dopamine release to
undergo a one-shot rapid learning of the current, novel sample
and be “reassigned” without corruption from its old weight
values. Then the learning rate is reset, allowing the representation
to generalize with traditional, gradual weight changes. Figure 3
presents an example of the dopaminergic neuron in operation.
The dopaminergic neuron fires for novel representations and
does not fire if an input is similar to one already seen.

Due to the rapid learning that occurs in the presence of
dopamine and the lack of traditional homeostatic threshold
dynamics, we also modify the STDP learning rule for improved
stability, discussed later in more detail in section 2.4.2.2.

2.2.2. Targeted Stimulation for Controlled Forgetting

via Trained Dopaminergic Weights
We have addressed how to make the forgetting process rapid
and local in order to reduce interference between old and new
information. However, we must also control the specific locality
of the forgetting so as to maintain high accuracy for previous
tasks. A uniform stimulation would cause the neuron that is
angularly closest to the input to fire first and adapt to the
novel information, independent of how useful that neuron is
for previous tasks. When the network is refining representations
that have already been seen, adjusting the closest weight vector
is appropriate to promote generalization. However, when novel
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FIGURE 3 | Example spiking activity (top) showing the interaction between the dopaminergic neuron and the other neurons during training for the first several

samples (bottom) for a CFN of 400 neurons. Only neurons that fired during this small time interval are shown. The membrane potential of the dopaminergic neuron is

shown (middle), demonstrating its self-firing property unless inhibited, with a firing threshold at 1 (A break is shown in the graph at zero indicating a different scale for

the positive and negative values).

data in presented in high-dimensional space, the closest neuron is
more likely to be one that has already learned a distribution from
a previous class rather than an unused neuron that is completely
uncorrelated. Thus the stimulation must be controlled to avoid
overwriting the most essential information from previous tasks.
We provide this control by heterogeneously stimulating the other
neurons to fire during the release of dopamine via the excitatory
dopaminergic weights. Training these weights allows specific
neurons to be targeted to undergo forgetting and re-learning.

To minimize accuracy degradation caused by forgetting, we
would ideally like to forget outlier or stale information rather
than commonly-used or recent information that may be essential
for returning to previous tasks, applying knowledge from old
tasks to new tasks, or generalizing the rapidly learned novel
information. As a proxy for this categorization, we target neurons
with low overall firing frequency (outliers) or less recent firing
activity (stale). Considering firing age over firing frequency is
a tunable parameter that controls how much if any preference
should be given to more recent tasks. For the experiments in this
paper, we consider all tasks as equally important no matter how
recently seen, so we target neurons with low firing frequency.

For these purposes, we enact a simple local learning rule:
a dopaminergic weight depresses each time its post-synaptic
neuron fires. This rule causes a dopaminergic weight to be
smaller when the post-synaptic neuron it is targeting has a
higher firing rate, and vice versa. To maintain positive values,
the depressions are proportional to the current value, causing

an exponential decay. Otherwise, the dopaminergic weights
experience a gradual potentiation. Potentiation must occur to
prevent the weights from tending toward zero with differences
between weights too small to distinguish on implementations
with finite precision. The rate of potentiation is irrelevant in our
setup as long as it is the same for all dopaminergic weights in the
layer, maintaining their relative values, because the dopaminergic
neuron continues to send the dopaminergic signal until one of the
other neurons in the layer fires. For the experiments in this work,
we effect this potentiation by L2-normalizing the fan-out vector
of dopaminergic weights after a depression.

2.3. Models
In this subsection, we describe the input, synapse, and neuron
models and associated probability distributions that are useful
in selecting the appropriate hyperparameters for unsupervised
lifelong learning.

2.3.1. Input Encoding
Input samples are encoded as Poisson spike trains, following
the mathematical model of a Poisson point process (PPP),
where the spike rate λi of an input neuron is proportional
to the pixel intensity of input i. Thus, the number of spikes
in a given time window follows the distribution of a Poisson
random variable with an expectation proportional to the input
value. For perception tasks on static images, there is no
temporal information in a single sample, and thus rate encoding
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is one of the most common encoding methods for SNN
image perception implementations as it maintains statistical
independence between individual input spikes, which is useful
for the computationally less expensive one-sided STDP curve,
discussed later in section 2.4.21.

Each spike is modeled as a time-shifted delta function. The
precise time of the kth most recent spike from input i is
represented as tik. Being a PPP, the timing between two sequential
spikes on a given input channel are drawn from an exponential
random distribution, also with rate λi. The time passed since the
kth most recent spike from i at time t is represented as t|ik| =
t − tik and follows the distribution of a gamma random variable
T|ik| ∼ gamma(α = k;β = λi). The vector of all input rates for

each dimension of the given sample is represented as Eλ.

2.3.2. Synapse Model
We model the synaptic connections between neurons as a
multiplicative weight which is applied to the delta spike from
its pre-synaptic neuron and then added to the membrane
potential of its post-synaptic neuron, creating a exponential
kernel response2. We represent the weight of the synapse
connecting input i to neuron j as wij and the vector of all inputs
to neuron j as Ewj.

2.3.3. Spiking Neuron Model
We use the common Leaky-Integrate-and-Fire (LIF) neuron
model, in which a neuron’s membrane potential vmem undergoes
a continuous decay according to the differential equation in (1),
where τmem is the membrane decay constant and vrest is the
resting potential. The membrane potential is also potentiated
or depressed by incoming excitatory or inhibitory signals,
respectively. If the membrane potential reaches or surpasses the
neuron’s firing threshold vth then the neuron fires, producing an
output spike and resetting its potential to vreset . Without loss of
generality, we set vrest to zero as a reference voltage. For model
and evaluation simplicity, we also set vreset to zero and have no
refractory periods.

v̇mem = −(vmem − vrest)

τmem
(1)

2.3.4. Membrane Potential Distribution
To estimate the relative firing distributions of competing LIF
neurons, it is useful to understand the distribution of their
membrane potentials. Assuming a firing event has yet to occur,
the effect of a Poisson spike train on a neuron’s membrane
potential with exponential leakage may be viewed as a shot-
noise process (Hohn and Burkitt, 2001). A Poisson spike train
from input i is the summation of many spikes represented as
delta functions:

Ni =
∑

k

δT|ik| (2)

1Other input encodings that use time-encoding such as rank-order may provide

energy efficiency improvements but at the moment provide no obvious benefit in

addressing catastrophic forgetting and are thus beyond the scope of this work.
2Non-instantaneous potentiation kernels, such as the alpha response, are beyond

the scope of this work due to the added difficulty to event-driven simulation.

This stochastic process produces the following pre-firing
membrane potential induced on neuron j by the spike train from
input i:

Vij(t) =
∫

fij (t) N(dt) =
∑

k

fij (t − Tk), (3)

where fij(t) = wije
−t/τmem . The Laplace transform of this shot-

noise process is:

L(θ) = E[e−θVij(t)] = eg(θ) (4)

where g(θ) = λi
∫ t
0 (e

−θ fij(v) − 1)dv.

2.3.4.1. Mean pre-firing membrane potential
The 1st moment, which is the mean pre-firing potential caused by
input channel i, is given by:

E[Vij(t)] = −
[dL(θ)

dθ

]

θ=0
= −

[

deg(θ)

dθ

]

θ=0

= −
[

eg(θ)
]

θ=0

[dg(θ)

dθ

]

θ=0

= −λi

[ ∫ t

0
(−fij(v)e

−θ fij(v))dv

]

θ=0

= λi

∫ t

0
fij(v)dv = λiwijτmem(1− e−t/τmem ) (5)

For all inputs, represented as the rate vector Eλ, the mean
combined pre-firing potential of neuron j is:

E[Vj(t)] = τmem

∑

i

λiwij(1− e−t/τmem )

= τmem( Ewj • Eλ)(1− e−t/τmem ) (6)

In steady-state this converges to: τmem( Ewj•Eλ), which is important
for discussions later in sections 2.4.2, 2.4.3.1.

2.3.4.2. Variance of pre-firing membrane potential
Continuing to the second moment, we can calculate the variance
of the pre-firing membrane potential that is induced on neuron j
by incoming spikes received from input i:

Var(Vij(t)) = E[Vij(t)
2]− E[Vij(t)]

2

=
[d2L(θ)

dθ2

]

θ=0
− E[Vij(t)]

2

= [eg(θ)(g′(θ)2 + g′′(θ))]θ=0 − E[Vij(t)]
2

= E[Vij(t)]
2 + λi

∫ t

0
fij(v)

2dv− E[Vij(t)]
2

= 1

2
λiτmemw

2
ij(1− e−2tτmem ) (7)

The combined variance of the potential induced by all inputs is:

Var(Vj(t)) =
1

2
τmem

∑

i

λiw
2
ij(1− e−2tτmem )

= 1

2
τmem(Eλ • Ewj

◦2)(1− e−2tτmem ) (8)
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where Ewj
◦2 represents the Hadamard square of the weight

vector. This equation is important for discussions later
in section 2.4.2.2.

2.4. Experimental Methodology
To evaluate the effectiveness of our proposed lifelong learning
approach, we simulated CFNs on the MNIST dataset (Lecun
et al., 1998) on network sizes of 400, 900, 1,600, 2,500, 3,600,
4,900, and 6,400 excitatory neurons, each for five different seeds.
We compare the CFNs that have dopaminergic neurons to
the same setups without dopaminergic neurons, both with and
without homeostasis from adaptive thresholding. This section
details the experimental methodology of the simulations for the
CFNs and the comparison networks.

2.4.1. Simulation Setup
Each network was evaluated on the MNIST dataset for two
different scenarios: (1) interleaved classes where classes are
distributed uniform randomly, providing the network with
samples from each class throughout the entire training process;
and (2) disjoint classes where all samples from one digit are
presented before moving to the next digit and never returning
to previous digits after changing classes. The first scenario
is meant to represent traditional offline training in which all
training data is already available. The second scenario is meant
to test lifelong learning by representing a changing environment
with samples presented in the worst-case possible ordering–
entirely sequential. In both scenarios, class labels are not provided
during training. This means that the network receives no
external indication of when a task/digit change occurs in the
disjoint scenario.

Other than sequentializing the MNIST dataset in the disjoint
scenario, our training and testing procedure follows closely with
that of Diehl and Cook (2015), who demonstrated competitive
unsupervised STDP training on MNIST in the traditional
interleaved scenario.

2.4.1.1. Training process
In both training scenarios, samples are presented one-by-one
to the network. For the current sample, input neurons fire at
the sample rate until the system registers at least five output
spikes, as followed by Diehl and Cook, which is generally enough
to confidently identify the input in view of the stochasticity in
the SNN.

In contrast to Diehl and Cook, if a given sample does not
produce enough output spikes we do not continue to increase
the input firing rate during training on the CFNs, since the
dopaminergic neuron takes care of stimulating neurons in the
absence of a good match. After five output spikes are registered,
all membrane potentials are reset to avoid one sample interfering
with the next, and then the next sample is presented. Details
of the STDP learning rule implementation are provided in
section 2.4.2.

2.4.1.2. Testing process
In the disjoint scenario, we measure effective lifelong learning
over time by evaluating each network after each task change to

determine its current accuracy for all classes seen up to that point.
Networks in the interleaved scenario are only evaluated at the end
of the training process. During evaluation we pause learning and
freeze network parameters to prevent samples from older classes
or samples from the testing set from affecting the network.

As training is performed entirely without supervision and
without knowledge of a task change, the final network outputs
must be assigned class labels for evaluation. While the network
is frozen, label assignment is done by inference on the training
set, followed by evaluation on the testing set. The MNIST dataset
is already highly clustered in its input space, and therefore
a supervised linear classifier is already capable of competitive
accuracy. Because of this, no final linear readout classification
layer is added to avoid the label assignment process acting
as a traditional supervised linear classifier. Instead, following
the unsupervised evaluation method of Diehl and Cook, each
trained neuron is directly assigned a class label and no linear
combination of these neuron outputs is performed. Rather, the
class decision is winner-take-all, choosing the class of the neuron
that spiked the most for that sample. As a control, we also
perform this same label assignment and evaluation process on
networks with randomized weights, also averaged over five seeds,
to compare with the accuracy achievable solely by this label
assignment process.

With frozen parameters, dopaminergic adaptation does not
occur during label assignment and testing set evaluation. Instead,
for inference a poorly-recognized input is assigned the class of
the closest trained neuron by continuing to increase input firing
rates until a sufficient response is recorded as is done in the
other networks.

2.4.1.3. Event-driving computation
Using exponential kernels, we treat spikes as inducing
instantaneous voltage potentiations in the respective post-
synaptic neuron membranes with exponential decay. As such,
neurons only fire upon receiving an incoming spike and will
not fire between incoming spikes, with the exception of the
dopaminergic neurons which are handled separately. This
allows us to emulate the networks using purely event-driven
computation rather than breaking time into discrete time
steps and updating neurons states at each time step. Because
we encoded input spike trains as Poisson point processes, the
time between spikes is an exponential random variable with
λi = inputi. Therefore, rather than incrementing time in fixed
intervals, we calculate the time until the next input spike arrival
and decay all the traces and membrane potentials according to
that time interval before processing that input spike.

The dopaminergic neurons are an exception, as they fire in
the absence of input spikes. Therefore, before processing an input
spike, we first check to see if the dopaminergic neuronwould have
fired earlier, in which case, it is processed at its respective time
interval first.

2.4.2. STDP Learning
STDP’s Hebbian learning rule involves potentiation or depression
of a synaptic weight based on the timing of firing events.
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This section details how it is implemented and modified for
these experiments.

2.4.2.1. One-sided STDP
As the input information in our system is encoded only in the
spike rate, we can employ the computationally less-expensive
one-sided version of STDP, evaluated at the post-synaptic
firing event:

1w = α(pre− offset) (9)

where α is the learning rate, pre is a trace of pre-synaptic
firing events, and offset is the value to which the pre-
synaptic traces are compared, determining potentiation
or depression.

The pre trace follows a similar distribution as the membrane
potential (see section 2.3.4), only with a different time constant
and without being weighted by the synapse, and so its expected
value is also proportional to the input spike rate (e.g., E[prei] =
λiτpre). Correlated potentiations in the direction of Epre therefore
provide Hebbian learning by angularly migrating Ew toward
the angle of the input vector Eλ. Anti-Hebbian depression
reduces weights from uncorrelated inputs and is provided
by subtracting the offset term for one-sided STPD rather
than performing additional weight processing at pre-synaptic
firing events.

2.4.2.2. Stabilizing STDP
Typically, offset is a constant value identical across all dimensions
and can be thought of as a scaled ones vector, applying
uniform anti-Hebbian depression. Such uniform depression
does not, however, create a weight change in exactly the
direction desired (see Figure 4) and causes instability in the
STDP learning rule. This instability is usually controlled by
adaptive thresholding and weight capping via exponential
weight-dependence.

However, our CFNs with rapid one-shot dopaminergic
learning of novel inputs cannot use such gradual approaches
to stabilize. We provide the required stability to this STDP
learning rule by correcting the direction of the weight change.
Rather than a constant offset, we dynamically tie offset to the
current weight value, which is an adaptation based on Oja’s rule
(Oja, 1982). To place pre and the weight on the same scale, we
scale the pre-synaptic trace by the inverse of its decay rate τpre,
changing (9) to:

1w = α

( pre

τpre
− w

)

(10)

This corrected weight change allows our CFNs to rapidly
and accurately capture information from novel inputs during
dopaminergic learning and otherwise gradually stabilize on the
center of the cluster of input samples for which it has fired.
Additionally, the stochasticity of the presynaptic trace can allow
the values of some dimensions to significantly overshoot or
undershoot their mean. Because of the rapid learning in the
presence of dopamine, we capped each individual weight between
0 and 0.2 before normalization to prevent the outliers from
distorting the normalization.

2.4.2.3. Modulating STDP
Dopaminergic modulation of plasticity is implemented by
dynamically changing the learning rate α. During normal
operation, α is set to 0.01 for gradual generalizing refinement
of the synaptic weights. When the dopaminergic neuron fires,
α is temporarily set to one for the reasons discussed in
section 2.2.1.

2.4.2.4. Normalization
The MNIST dataset is a magnitude insensitive dataset, meaning
that increasing or decreasing the intensity of a sample does not
alter its class and that angular distance is more important than
Euclidean distance. As given in (6), the mean pre-firing potential
of a spiking neuron is proportional to the L2-norm of its weight
vector and also to the L2-norm of the input rate vector. Although
a larger mean pre-firing potential does not always correspond
to a larger firing rate due to differing variances caused by the
Hadamard square of the weight vector as shown in (8), the
correlation between E[V] and the firing rate sufficiently holds for
datasets like MNIST with inputs of large enough dimensions and
fairly comparable input sparsity between samples.

As such, for a given input and assuming equal weight vector
magnitudes, the neuron that is angularly closest to the input
will be more likely to fire, allowing for unsupervised Hebbian
learning by training neurons on correlated inputs. Therefore,
we L2-normalize each neuron’s weight vector, and for the same
reason the input rate vectors are also L2-normalized. Weight
normalization has recently been shown to occur in biology (El-
Boustani et al., 2018) and may still be considered a localized
function, as the processing can occur at the post-synaptic
neuron to which all the weights in a given weight vector are
directly connected.

2.4.3. Timing and Time Constants
As our evaluations and simulations are purely event-driven, the
concept of discrete computational time steps is not applicable.
Timing parameters are thus purely relative. Therefore, without
loss of generality, the L2 normalized input rate vectors were
defined as having an L2 ratemagnitude of one spike per time unit,
and all other timing values are relative to that. This subsection
discusses the timing values used in the simulations.

2.4.3.1. Membrane decay time constant
According to Equation (6), the expected value of the membrane
potential saturates in time according to (1 − e−t/τ ). A smaller τ

results in a faster convergence to the steady state, or, equivalently,
fewer input spikes to converge. E.g., in five time constants, the
expected potential reaches over 99% of is steady-state value.
However, using (8), the steady state standard deviation of the
potential in proportion to the mean decreases as the decay
rate increases:

√
Var(V)

E[V]
∝ 1√

τ
(11)

Thus, a larger membrane decay constant is better for proper
discrimination between two differing inputs, but increases
the number of computations. For the L2-normalized MNIST
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FIGURE 4 | Instability of one-sided STDP. (A) Example vectors showing how a static offset does not result in a correct weight change. The goal is to migrate Ew toward

the Epre trace, which is proportional to the input Eλ. The Eoffset vector that is subtracted from Epre must be dynamically tied in each dimension to Ew, rather than being the

same in every dimension. (B) Weight change results for various starting positions where the target vector is equal to the current weight vector, which would ideally

result in no weight change. With a static offset in each dimension, even scaled to the appropriate magnitude, the weight vectors do not stabilize on the target and

instead migrate toward the axes, creating binarized weights when capped at zero.

dataset with 784 input dimensions, the angular distances
between samples of differing classes are close enough to
require at least 10 to 15 normalized time units for τmem

in order to successfully establish a firing threshold that can
discriminate between classes, and so τmem was set to 15
time units.

2.4.3.2. Time to recognize
A τmem of 15 still produces enough variance according to
(8) that two to three time constants (between 30 and 45
time units) is on average sufficient time for the potential
to rise above its steady-state mean. As mentioned earlier,
we identify successful recognition of an input sample after
registering five output spikes. Therefore, a total of 150–225
time units was generally sufficient to produce five sequential
firing events in a reference vector neuron with a center close to
the input.

In our simulations, we found little accuracy change by
adjusting this hyperparameter within this range as long as the
threshold voltage was appropriately tuned, so we fixed the time
to recognize at 200 normalized time units for each simulation.
We tuned the dopaminergic neuron to fire after those 200 time
units unless it has been otherwise inhibited as discussed in section
2.2. Specifically, with vreset set to zero as a reference voltage,
the dopaminergic neuron’s firing threshold vth was set to one
with a resting voltage set higher at two, causing the membrane
potential to rise until it fires. Setting its rising time constant to
200

ln(2/1)
then meets this objective. Figure 3 shows the membrane

potential of the dopaminergic neuron during simulation for
the first several samples as an example of its operation
over time.

We also set τpre to the same timing value of 200 time units to
capture as much of the input train as possible because of the rapid
one-shot dopaminergic learning of novel samples.

2.4.4. Determining vth Without Adaptive Thresholding
As discussed in section 2.1.2, adaptive thresholding for
homeostasis can interfere with lifelong learning on changing
input distributions by temporally and spatially distributing
the firing activity. Long-term adaptive thresholding may still
be used with controlled forgetting if properly tuned, but
our proposed method of enhanced plasticity and stimulated
firing of infrequently-firing neurons is itself a form of
deliberate, controlled homeostasis. Therefore, for a more
accurate evaluation of the CFNs, we do not have the CFNs
employ any adaptive thresholding–having static thresholds
instead. With normalized weight vectors and input vectors, the
larger the ratio vth :E[V(t)] the closer the input rate vector
must be angularly to the weight vector to produce a given
firing probability. Determining the proper vth without dynamic
adaptation, therefore, depends on the tightness of the clustering
in the dataset. With this context, we included vth in our hyper-
parameter search, discussed next.

2.4.5. Hyper-Parameter Sweep
SNNs are known to be highly sensitive to hyper-parameters,
especially during unsupervised learning without error signals
to provide dynamic corrections. We perform a small search
in the hyper-parameter space, adjusting vth and the number
of training epochs. Results from this search are shown in
Table 1, with hyperparameters resulting in the best accuracy
highlighted for each size. Good machine learning practice
requires that we choose the system parameters based only on
the training set, so only training set accuracy results are shown
here. Testing accuracy results are discussed later in the section
3. A similar hyper-parameter sweep was performed for the
non-dopaminergic SNNs that also do not have homeostatic
adaptive thresholding, as well as for the SNNs with randomized
weight vectors.
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TABLE 1 | Training accuracy results of hyper-parameter sweep for each network

size across both vth and number of training epochs per task.

# of training epochs per task

Neurons vth 1 (%) 5 (%) 10 (%) 20 (%)

400 13.50 87.63 83.82 79.23 74.15

13.75 87.63 84.07 78.34 75.18

14.00 86.64 82.49 77.11 75.20

14.25 85.50 83.59 75.75 75.06

900 13.50 89.78 91.07 89.36 85.31

13.75 89.11 90.91 89.81 86.24

14.00 87.83 91.47 89.71 84.75

14.25 86.82 91.46 89.94 84.14

1,600 13.50 91.54 92.42 92.21 91.35

13.75 91.24 92.87 92.48 91.40

14.00 90.08 93.34 92.20 91.30

14.25 88.48 93.06 92.85 91.74

2,500 13.50 93.15 93.62 93.46 93.13

13.75 92.82 93.65 94.06 93.20

14.00 91.80 93.37 94.28 93.53

14.25 90.06 93.18 94.04 93.49

3,600 13.50 93.88 94.09 94.04 93.80

13.75 93.90 94.12 94.48 94.52

14.00 93.31 94.02 94.53 94.52

14.25 92.33 93.27 94.40 94.27

4,900 13.50 94.51 94.91 94.67 94.77

13.75 95.00 94.92 94.82 95.09

14.00 94.61 94.85 94.97 95.21

14.25 93.59 93.82 94.54 95.29

6,400 13.50 95.39 95.25 95.28 95.25

13.75 95.42 95.55 95.39 95.68

14.00 95.33 95.59 95.42 95.79

14.25 94.79 94.99 95.21 95.88

Highlighted cells are best configuration for each size.

2.4.5.1. Neuron firing thresholds, vth
Based on the discussion above, vth should be close to but slightly
less than τmem in voltage units, which is set to 15 time units. For
MNIST, we initially found that if vth is much less than 13.5, a
neuron may too likely fire for samples from other classes, while if
vth is much higher than 14.25, a neuronmay not fire for very close
samples, even different stochastic instances of the same sample.
We therefore tested each setup with four different threshold
values in this range: 13.5, 13.75, 14.0, and 14.25. Smaller networks
require each individual neuron to capture a larger subset of input
samples, generally requiring slightly lower thresholds than those
in larger networks.

2.4.5.2. Number of training epochs
Larger networks can capture representations that are less
common but still useful. As such, for larger networks
more epochs within a class are required before proceeding
to subsequent tasks in order to refine the less common
representations. For smaller networks, on the other hand, more

FIGURE 5 | Comparison of the static vth selected in the hyperparameter

sweep with the corresponding dot product of the nearest training error in a

kmeans network of the same size. The kmeans error bars represent two

standard deviations over 100 trials each.

epochs may reinforce less useful outliers, making it more difficult
to make room for subsequent tasks.

2.4.6. Comparison of E[V(t)] at vth With K-Means

Clustering Angular Error
We can compare the vth values selected in the hyper-parameter
search with the mean angular distance to a neuron’s weight
vector that would on average result in a membrane potential
equal to that threshold. Performing a simple k-means clustering
on the L2-normalized MNIST dataset yields information on
the relative desired scope of each reference vector, depending
on the number of reference vector neurons. Figure 5 shows
the dot product associated with the angular distance of the
closest training sample/reference vector pair from differing
classes for each network size after k-means clustering. The
figure also shows the average membrane potential of a spiking
neuron corresponding to these angles. For SNNs, neurons
that are able to fire for samples that are further away than
these angles are thus more likely to fire for samples of
the wrong class. As the number of reference vector neurons
increases, the portion of the input space per neuron decreases,
improving accuracy by allowing each individual neuron to
be more restrictive in its angular scope, which is relatively
similar to those associated with the vth values selected in the
hyper-parameter sweep.

3. RESULTS

In this section, we present the results of simulating the CFNs
and the non-dopamine comparison networks for the various
sizes in both the interleaved classes scenario and the fully
disjoint classes scenario. We present both the combined accuracy
and the per digit accuracy, with final results and (in the
disjoint scenario) results throughout the attempted lifelong
learning process.
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3.1. Combined, Across-Task Accuracy
Results
Figure 6 shows the final combined, across-task classification
accuracy of the CFNs and comparison networks for both the
interleaved scenario and the disjoint scenario for all network
sizes. The comparison with Diehl and Cook (2015) is provided
for the network sizes for which results were published (400,
1,600, and 6,400). In the fully disjoint scenario, the 6,400
CFN achieves on average 95.24% classification accuracy across
all digits, compared to 32.97% for a non-dopamine SNN
without homeostasis, 61.95% accuracy for a non-dopamine
SNN with homeostasis, and 53.30% accuracy for an SNN with
random weights (Per-neuron activity statistics are available in
the Supplementary Material).

Figure 7 shows the combined, across-task accuracy over time
for the CFNs and comparison networks for network sizes of 1,600
and 6,400 neurons. (CFN results for the other sizes are available
in the Supplementary Material). The combined, across-task
accuracy over time is defined as classification accuracy on the
portion of the testing set consisting of all previously-seen classes,
up to and including the current task. For the 6,400 size, the
CFN incurs its largest accuracy drop at the last stage, adding
digit ‘9,’ dropping 1.06 percentage points. In comparison, at that
size the non-dopamine SNN without homeostasis incurs a 34.41
percentage point drop when adding digit ‘2,’ the non-dopamine
SNN with homeostasis incurs a 10.41 percentage point drop
adding digit ‘9,’ and the SNN with random weights incurs an
11.82 percentage point drop adding digit ‘2.’

3.2. Per-Digit Accuracy Results
Figure 8 shows the final accuracy of each individual task/digit
by the end of the training process for 6400 neurons, comparing
the distribution of accuracy across tasks for the CFNs in
both the interleaved and disjoint scenarios, as well as with
both the non-dopamine SNNs in the disjoint scenario and the
randomized weights. In the disjoint scenario, the CFN’s final
worst performing class is digit ‘9’ at 91.18% accuracy, which is
also the worst performing class in the interleaved scenario at
93.60% accuracy. In comparison, for the other networks in the
disjoint scenario, the final worst performing class is digit ‘8’ at
38.81% accuracy for the non-dopamine SNN with homeostasis;
digits ‘5,’ ‘7,’ and ‘8’ tied at 0.00% accuracy for the non-dopamine
SNN without homeostasis; and digit ‘8’ at 33.37% accuracy for
the SNN with random weights.

Figure 9 shows the per-digit accuracy over time for each
network of 6,400 neurons. (Per-digit false positives over time are
provided in the Supplementary Material). The CFN incurred
its largest per-digit accuracy drop for digit ‘4’ after adding
digit ‘9,’ decreasing 3.89 percentage points for digit ‘4’ during
that task change. In comparison, the non-dopamine SNN with
homeostasis incurred a 23.07 percentage point drop for digit
‘4’ at that same transition; the non-dopamine SNN without
homeostasis incurred a 69.52 percentage point drop for digit ‘1’
after adding digit ‘7,’ and the SNN with random weights incurred
a 10.98 percentage point drop in accuracy for digit ‘4’ when
adding digit ‘9.’

4. DISCUSSION

In this section, using a qualitative analysis we discuss reasons why
the non-dopamine SNNs failed at lifelong learning in the disjoint
scenario and how the CFNs avoided those failures. We also
discuss the expected sequential penalty and graceful degradation
of accuracy.

4.1. A Qualitative Analysis
In these fully-connected one-layer SNNs, each neurons weight
vector can be viewed as a reference vector that captures a
specific input representation, ideally successfully generalized. As
such, we may qualitatively observe the success of dopaminergic
learning over time by viewing these representations. For
a better visual demonstration of the disjoint scenario, we
show the weights of the networks for the first four digits
‘0’ through ‘3’ in Figure 10, with 100 neurons arranged
in a 10x10 grid.

Note that in the CFN case (Figure 10A) there are two very
distinct categories of representations. The digit representations
that appear to have a more consistent pixel intensity and a
more consistent line width and curvature are generalized
representations refined by many similar samples in a cluster.
On the other hand, the digit representations that appear
less defined and with more irregularity in pixel intensity
are outlier representations from only one or a few samples.
Notice that the digit representations that are preserved from
one task to another are the useful generalizations rather
than the outliers, which on the other hand are the first to be
overwritten when space for a new task is required. In addition,
the representations that are preserved from previous tasks
experience very little and infrequent corruption during later
learning stages. The dopamine signals are able to successfully
replace old information with new information without
interference and while maintaining accuracy because of the
targeted localization.

In contrast, we can visually see the failure of the non-
dopamine SNNs in the disjoint scenario. In the network
without homeostasis (Figure 10B) we see that only a few
neurons experienced any learning. Without homeostasis
the neurons that fired first migrated closer to the input
distributions and dominated the firing activity. Even when the
input distribution changed between tasks, the already used
neurons were closer to the new distributions than the unused
neurons with random weight vectors. Continuing the reuse
the same neurons caused the SNN to overwrite and forget
previous tasks.

Next, in the network with homeostatic adaptive thresholding
(Figure 10C), we see a better use of network resources from
the distributed firing activity. But without targeted dopaminergic
modulation homeostasis distributes the learning for a new task
over all the neurons previously used in earlier tasks. Even
when the learning per-digit is reduced (Figure 10D), the activity
for the new tasks are still globally distributed by the adaptive
thresholding, causing corruption between tasks.

The CFNs with dopaminergic learning avoid globally
distributing firing activity during a single task by not having
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FIGURE 6 | Final classification accuracy at various sizes of the CFNs compared to SNNs without dopamine. Accuracy is shown for both the interleaved class

scenario and the disjoint class scenario, showing the resulting accuracy reduction by sequentializing the classes. CFNs show average over five seeds.

FIGURE 7 | Classification accuracy over time at each stage of the learning process (i.e., after each new task/digit) in the disjoint scenario, comparing the proposed

CFNs to SNNs without dopamine and to the randomized weight control. Accuracy is for all previous tasks, up to and including the current task. CFN results are

averaged over five seeds.

FIGURE 8 | Final per-digit accuracy (size 6,400), comparing interleaved CFN accuracy to the disjoint CFN accuracy. Also showing failure for individual digits in the

disjoint scenario for SNNs without dopamine.
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FIGURE 9 | Per-task/digit classification accuracy as new tasks/digits are added over time for the following networks, all of size 6,400: (A) the proposed CFN (B) no

dopamine SNN with homeostasis (C) no dopamine SNN without homeostasis, (D) SNN with random weights.

traditional homeostatic adaptive thresholding. In addition,
the CFNs avoid continuing to reuse the same neurons by
proactively identifying novel data and targeting specific neurons
to learn the novel data, preserving essential information from
previous tasks.

We note that for the failed networks where older classes are
entirely overwritten by new classes, the networks still report
some, albeit poor, accuracy for the forgotten tasks. This is because
the varied intra-class distributions can still be somewhat useful
at differentiating inter-class distributions. For this purpose, the
accuracy comparisons to the SNNs with random weights are
essential at identifying catastrophic forgetting, indicating that
around 40–50% is a failure baseline for unsupervised learning
using SNNs of these sizes on the MNIST dataset.

4.2. The Expected “Sequential Penalty”
We see that the CFNs in the disjoint scenario perform on
par with the interleaved scenario, averaging only a 1.04%
accuracy reduction across all sizes. This penalty is expected
due to sequentializing the tasks. In fact, such a penalty may
be impossible to completely avoid, as the interleaved scenario
provides more information to the network throughout training
by providing all distributions up front, whereas the disjoint
scenario never provides an opportunity to temporally overlap
learning of different distributions. Even so, the sequential penalty
for the CFNs is minimal, andmay be acceptable given the systems
avoidance of catastrophic failure in the disjoint scenario. In
fact, even with this penalty, the 6400 neuron CFN achieves a
respectable 95.24% test accuracy after lifelong learning, which we
believe is the best unsupervised accuracy ever achieved by a fixed-
size, single-layer SNN on a completely disjoint MNIST dataset.

The CFNs in the disjoint scenario even outperform (Diehl and
Cook, 2015) in all cases for which they provide results, even
though that work is in the interleaved scenario.

4.3. Graceful Degradation Instead of
Catastrophic Forgetting
Controlled forgetting allows the network to gracefully degrade
its accuracy in exchange for the ability to learn new tasks
with limited resources, rather than failing. The true success
of a lifelong learning system is shown not just by the
final accuracy, but also by its performance throughout the
training process and across training tasks. Notice how in
Figure 8 while the system expectedly performs better for
some tasks rather than others, there is no single task for
which the system fails; i.e., the sequential penalty is spread
between tasks. In fact, the lifelong system performs best at
the same tasks (digits ‘0,’ ‘1,’ and ‘6’) and worst at the
same tasks (digits ‘8’ and ‘9’) that the offline/non-lifelong
system does.

We believe that this type of approach with modulated
plasticity and targeted stimulation can be useful for
allowing deployed systems to gracefully adapt to changing
environments rather than failing to adapt or requiring frequent
offline retraining.

4.4. Future Work
We expect that a deeper network will improve accuracy
beyond that of these results and allow for learning of more
complicated datasets. As mentioned earlier, in a deeper network,
it may be that only the last few layers would require
lifelong learning, performing a readout from a liquid state
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FIGURE 10 | Grid view of the weight vectors of reference neurons over time, showing the first four digits, learning ‘0’ through ‘3’ for (A) the proposed CFN, (B) a

non-dopamine SNN without homeostasis, and (C) a non-dopamine SNN with homeostasis, each with 400 neurons, although only the 100 top-firing neurons are

shown for space. For the CFN, digits highlighted in dashed green are examples of successfully learned generalized representations. Digits highlighted in dotted orange

are examples of outlier representations. Digits highlighted in solid blue are examples of representations preserved from previous tasks. Also shown is (D) another

non-dopamine SNN with homeostasis, but with reduced learning on each digit, showing catastrophic interference between classes causing corruption.

machine or a fixed feed forward network sufficiently pre-
trained on low-level representations. We also plan to evaluate
this method on time-encoded signals to improve sparsity
and energy efficiency. Further, we hope to explore other
dopaminergic weight adjustment policies that have a higher
time-dependence or weight policies with habituation, such as
in Panda et al. (2018), in order to allow for operation in an
environment of changing priorities, and not just temporally
separated tasks.

4.5. Conclusion
We presented a biologically-inspired dopaminergic modulation
of synaptic plasticity to exploit STDP locality. Trained
stimulation during the presentation of novel inputs allows
the system to quickly perform isolated adaptation to new
information while preserving useful information from previous
tasks. This method of controlled forgetting successfully achieves
lifelong learning. Our Controlled Forgetting Networks show only
a slight reduction in accuracy when given the worst possible class
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ordering, i.e., completely sequential without revisiting previous
classes, while successfully avoiding catastrophic forgetting.
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