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Study Objectives: Microsleep episodes (MSEs) are short fragments of sleep (1-
15 s) that can cause dangerous situations with potentially fatal outcomes. In the
diagnostic sleep-wake and fitness-to-drive assessment, accurate and early identification
of sleepiness is essential. However, in the absence of a standardised definition and
a time-efficient scoring method of MSEs, these short fragments are not assessed in
clinical routine. Based on data of moderately sleepy patients, we recently developed
the Bern continuous and high-resolution wake-sleep (BERN) criteria for visual scoring of
MSEs and corresponding machine learning algorithms for automatic MSE detection,
both mainly based on the electroencephalogram (EEG). The present study aimed
to investigate the relationship between automatically detected MSEs and driving
performance in a driving simulator, recorded in parallel with EEG, and to assess
algorithm performance for MSE detection in severely sleepy participants.

Methods: Maintenance of wakefulness test (MWT) and driving simulator recordings
of 18 healthy participants, before and after a full night of sleep deprivation, were
retrospectively analysed. Performance of automatic detection was compared with visual
MSE scoring, following the BERN criteria, in MWT recordings of 10 participants. Driving
performance was measured by the standard deviation of lateral position and the
occurrence of off-road events.

Results: In comparison to visual scoring, automatic detection of MSEs in participants
with severe sleepiness showed good performance (Cohen’s kappa = 0.66). The MSE
rate in the MWT correlated with the latency to the first MSE in the driving simulator
(rs = —0.54, p < 0.05) and with the cumulative MSE duration in the driving simulator
(rs = 0.62, p < 0.01). No correlations between MSE measures in the MWT and
driving performance measures were found. In the driving simulator, multiple correlations
between MSEs and driving performance variables were observed.

Conclusion: Automatic MSE detection worked well, independent of the degree of
sleepiness. The rate and the cumulative duration of MSEs could be promising sleepiness
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measures in both the MWT and the driving simulator. The correlations between MSEs
in the driving simulator and driving performance might reflect a close and time-
critical relationship between sleepiness and performance, potentially valuable for the

fitness-to-drive assessment.

Keywords: microsleep episodes, maintenance of wakefulness test, driving simulator, electroencephalography,
sleepiness, wake-sleep transition zone, machine learning, fitness to drive

INTRODUCTION

Excessive daytime sleepiness (EDS) is estimated to be prevalent
in around 20% of the general population (Pallesen et al., 2007;
Ohayon, 2008; Swanson et al., 2011), while the risk of motor
vehicle accidents or near-miss accidents is significantly higher
among drivers suffering from EDS (Connor et al., 2002; Nabi
et al.,, 2006; Ward et al., 2013; Garbarino et al., 2016; Bioulac
et al,, 2017; Gottlieb et al., 2018). Sleepiness can negatively affect
reaction time and performance, similar or even more severe than
driving with an illegal blood alcohol concentration (Dawson and
Reid, 1997; Williamson and Feyer, 2000; Arnedt et al., 2001;
Thomann et al., 2014). However, unlike the quantification of
breath or blood alcohol concentrations, there is no method
to accurately quantify sleepiness behind the wheel yet, and
therefore, no legal standard exists (Williamson and Feyer, 20005
Schreier et al., 2018). Sleepiness and its impact on fitness to
drive are currently assessed in a clinical setting by the use of
multiple vigilance tests. The ability to resist falling asleep is most
often assessed in the maintenance of wakefulness test (MWT)
(Mitler et al., 1982). Although evidence regarding the accuracy
of the MWT to predict real-world driving performance is scarce
(Philip et al., 2008), evidence for the use of a driving simulator to
assess fitness to drive in sleepy individuals is even more limited
(Schreier et al., 2018). Nevertheless, existing evidence suggests
that the MWT and the driving simulator are currently the best
tools at hand for the fitness-to-drive assessment in sleepy patients
(Banks et al., 2005; Sagaspe et al., 2007; Pizza et al., 2009).
Besides the discussions on which test(s) to use, a debate
on how to define wakefulness and sleep was reactivated a
few years ago by studies demonstrating the simultaneous co-
existence of wakefulness and sleep, i.e., local sleep (Huber
et al, 2004; Nobili et al., 2011; Vyazovskiy et al, 2011).
This phenomenon is of particular relevance for the wake-
sleep transition zone, which is not yet adequately addressed
in the current version of the clinical scoring guidelines of the
American Academy of Sleep Medicine (AASM) (Berry et al.,
2018), neither from a topographical nor a temporal point of
view. According to the AASM scoring criteria (Berry et al,
2018), wakefulness and the various sleep stages are scored
in 30-s epochs, even though falling asleep is a process with
rapid fluctuations between wakefulness and sleep (Ogilvie, 2001).
Doghramji et al. (1997) published normative data using 10-s
epochs for scoring MWT recordings. Our recently published
Bern continuous and high-resolution wake-sleep (BERN) scoring
criteria are even more sensitive, defining continuously scored
microsleep episodes (MSEs) with a minimum duration as short
as 1 s (Hertig-Godeschalk et al., 2019). Even though the BERN

scoring criteria enable a more standardised scoring of MSEs,
the very time-consuming process of visual MSE scoring might
discourage sleep medicine physicians to consider MSEs in
clinical practice. Consequently, we developed BERN-criteria-
based algorithms for the automatic detection of MSEs using
machine learning (Skorucak et al., 2019). Features derived from
electroencephalogram (EEG) and electrooculogram (EOG) data
of moderately sleepy patients with suspected disorders of various
origin assessed in the MWT were used for training and testing.
Since the feature-based algorithm was only tested in moderately
sleepy patients, its applicability in individuals with more severe
sleepiness remains unknown and needs to be investigated.
Independent hereof, the implication of MSEs in the MWT and/or
driving simulator on the judgement of fitness to drive needs
to be clarified in order to determine the currently unknown
clinical relevance.

The primary aim of this study was to evaluate the associations
between MSEs in both the MWT and the driving simulator,
and driving performance as measured by the standard deviation
of lateral position and off-road events. The secondary aim was
to test if our previously developed algorithm could also be
applied to individuals with more severe sleepiness. For practical
reasons, we first tested our algorithm in healthy participants
before and after a full night of sleep deprivation. In a second
step, assuming the algorithm to be applicable, we investigated
the characteristics of automatically detected MSEs with respect
to the two different test conditions (MWT and driving simulator)
after sleep deprivation and analysed associations between MSEs
and driving performance. A close association between MSEs and
driving performance would highlight the relevance of MSEs in
the fitness-to-drive assessment.

MATERIALS AND METHODS

Study Population

Data of 24 healthy participants of a previous study (Schreier
et al., 2015) were analysed. Four participants were excluded due
to technical problems with the recording (one participant) or
corrupted driving simulator data (three participants). In two
out of the 20 participants, a disproportionately high number
of automatically MSEs occurred in the driving simulator. The
reason for this high number of (false positively) detected
MSEs remained unclear. We decided to exclude these two
recordings for further analyses, resulting in a final study
sample of 18 participants (mean age 23.3 £ 1.3 years, eight
females). The study was conducted in accordance with the
principles of the Declaration of Helsinki and Swiss Law. The
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protocol was approved by the local ethics committee (KEK-
number 185/06). Written informed consent was obtained from
each participant.

Procedure

Participants were obliged to follow a regular sleep-wake pattern
during the 5 days preceding the measurements. Adherence to
the protocol was assessed using actigraphy and a sleep diary.
Measurements consisted of both a 40-min MWT and a 60-min
driving simulator trial between 6 pm and 11 pm, followed by a
full night of sleep deprivation and, again, a 40-min MWT and 60-
min driving simulator trial between 7 am and 12 pm. Participants
were allocated randomly for the test sequence (MWT-driving
simulator or driving simulator-MWT) which remained the same
before and after sleep deprivation.

Assessments

Standardised recordings including the EEG (O1-M2, O2-M1,
C3-M2, C4-M1, CZ-M1, F3-M2 and F4-Ml1), EOG (two
eye channels), submental electromyogram, electrocardiogram,
respiratory flow, and face videography with audio were
performed both in the MWT and the driving simulator. Data
were recorded with RemLogic™ (Embla Systems LLC). The
sampling rate was 200 Hz, and filters for EEG and EOG were
set to 0.3 Hz high-pass, 70 Hz low-pass, and 50 Hz power
line notch. Impedances were below 5 kQ at the beginning
of the recording.

The MWT was conducted following a standard protocol
(Mitler et al., 1982). Participants were sitting on a chair in a semi-
darkened room and were instructed to stay awake for as long as
possible while keeping their eyes open. Each trial was terminated
after either (a) 40 min or (b) the online identification of three
consecutive epochs of N1 or one epoch of any other sleep stage
according to the AASM scoring criteria (Berry et al., 2018).

The Divided Attention Steering Simulator (DASS, 3D Road
Test; Stowood Scientific Instruments Ltd.) was used as a driving
simulator. Performance data were recorded with a sampling
rate of 20 Hz. The selected driving simulator scenario consisted
of a virtual road, depicted by white lines on a black screen,
with the position of the car on the road being displayed
by its bonnet. To drive in the middle of the road was
the only task for participants in this scenario. The driving
simulator data were not recorded with the same device as
the EEG, leading to a potential desynchronisation between
EEG and driving simulator recordings of up to 1-2 s. The
trial was terminated after either (a) 60 min, (b) the online
identification of three consecutive epochs of N1 or one epoch
of any other sleep stage according to AASM scoring criteria
(Berry et al, 2018) or (c) in case of an off-road event
lasting >15's.

Analyses

The previously developed feature-based deep learning algorithm
for automatic MSE detection (long short-term memory neural
network) (Skorucak et al., 2019) is based on the BERN scoring
criteria, which define MSEs as occipital EEG fragments similar
to N1 but lasting 1-15 s while eyelids are >80% closed in the

face videography (Hertig-Godeschalk et al., 2019). Further, MSEs
are characterised by a slowing in the EEG with dominant theta
activity. Features were derived from occipital EEG derivations
and the EOG: power in delta, theta, alpha and beta frequency
range, ratio theta/(alpha + beta), eye movements and median
EEG frequency. The algorithm was trained on MSEs occurring
bilaterally and validated against MSEs occurring both unilaterally
and bilaterally (pooled) in patients with suspected EDS (Skorucak
et al., 2019). Since the algorithm was trained on moderately
sleepy patients only, its performance on severely sleepy healthy
participants had to be determined before further application.
For this MWT data were used, as algorithm performance was
previously assessed based on visual scoring of MWT data and
more MSEs were expected to occur in the MWT than in the
driving simulator. Due to the rather time-consuming process
of visual MSE scoring, only MWT recordings of a randomly
selected subgroup of 10 participants were visually scored by
an expert (AHG) following the BERN criteria. Both MWT
trials, before and after sleep deprivation, were analysed from the
start (“lights off”) until the end (“lights on”). Overall (pooled
across participants) and average performance measures were
calculated: sensitivity, specificity, precision, accuracy and Cohen’s
kappa coefficient. Sensitivity represents the proportion of MSEs
that are correctly identified (true positives, algorithm MSEs
corresponding to human scorer’s MSEs, divided by the sum of
the true positives and false negatives), and specificity stands
for the proportion of wakefulness that was correctly identified
(true negatives divided by the sum of the true negatives and
false positives). Accuracy is a measure combining sensitivity and
specificity (correctly identified MSEs and wakefulness divided
by the sum of the correctly and incorrectly identified ones).
Precision represents proportion of correctly identified MSEs
(algorithm corresponding to human scoring) out of the sum of
true positives and false positives. Since our data consisted of
a rather large number of negatives (wakefulness) compared to
positives (MSEs), specificity and accuracy are biased measures
since they rely on negatives. Sensitivity and precision provide
information about true positives, and they are more informative
about how well MSEs were detected. Furthermore, Cohen’s
kappa coeflicient is more robust than accuracy since it takes
into account the possibility of agreement occurring by chance.
The definitions of the different measures are described in more
detail in Skorucak et al. (2019).

In the driving simulator, the lateral position of the vehicle was
defined as the deviation of the vehicle’s centre to the centre of the
road. Deviations larger than 4 1000 (arbitrary unit defined by the
manufacturer) from the centre of the road were considered off-
road events. For driving performance, the rate and the duration of
off-road events as well as the standard deviation of lateral position
(10-s moving window and overall) were calculated.

Except for the evaluation of algorithm performance, where
the entire recordings were analysed, MWT and driving simulator
trials were analysed from “lights oft” until the first epoch of
AASM-defined sleep (Berry et al, 2018). For all trials, the
latencies from “lights oft” to the onset of the first MSE, the first
epoch of AASM-defined sleep (sleep latency), and the first off-
road event were determined. In the absence of a MSE, sleep, or an
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off-road event, the corresponding latency was set to the end of the
trial (i.e., to 40 min or 60 min). The rate (#/min) and cumulative
duration (% of time) of MSEs and off-road events were calculated
relative to the duration from “lights oft” until sleep occurred,
as well as in 1- and 10-min bins. Standard deviation of lateral
position was calculated from “lights off” until sleep occurred, as
well as in 1-min bins.

Analyses were performed using MATLAB (R2018a,
MathWorks Inc., Natick, MA, United States) and Stata
(StataCorp. 2017, Stata Statistical Software: Release 15.1. College
Station, TX: StataCorp LLC). Spearman’s rank coeflicients are
reported for correlations. The Kruskal-Wallis and the Wilcoxon
signed-rank test were used for comparisons. A significance level
of p < 0.05 (two-tailed) was applied in all tests.

RESULTS

Visual Scoring and Automatic Detection
of MSEs

To evaluate the performance of the algorithm, both in the
near absence as well as in the abundant presence of MSEs,
MWT trials before and after sleep deprivation were included
for overall performance calculations (Table 1). As expected,
the number of MSEs in the MWT before sleep deprivation
was low. In fact, MSEs were only observed in one participant.
Further, hardly any false positives (MSEs) were automatically
detected. In the MWT after sleep deprivation, many MSEs were
present in all participants, which allowed for an assessment of
performance on an individual level (Figure 1 and Table 1). Visual
inspection of the recordings illustrated in Figure 1 revealed
that false-positive MSEs in participant 8 at the beginning of the
recording were mostly due to the eye closure criteria (MSEs
that were detected by the algorithm but could not be scored
following BERN criteria due to open eyes), and false negatives
in participant 12 were probably related to a noisy EEG. The
algorithm identified MSEs with good sensitivity (70.9 £ 5.0%)
and precision (82.7 & 4.5%), and high specificity (90.7 £ 3.0%)
and accuracy (84.7 & 2.9%). Specificity and accuracy were high
as they rely on the predominant state (wakefulness). Cohen’s
kappa revealed substantial identification (0.63 & 0.06). Based on
these results, the algorithm was applied to MWT but also driving
simulator recordings of all 18 participants after sleep deprivation,
without performing additional visual scoring (Figure 2A and
Supplementary Figures S1, S2).

MSEs in the MWT and the Driving

Simulator

After sleep deprivation, the latency to the first MSE was
significantly shorter compared to the sleep latency, in both the
MWT and the driving simulator (p < 0.01, Table 2). While the
latencies to the first MSE in the MWT and the driving simulator
were comparable (p = 0.81), the sleep latency in the MWT was
much shorter than the sleep latency in the driving simulator
(p < 0.01). Sleep in the MWT usually appeared within 10 min
after the first MSE (12 participants), whereas mostly no sleep but
many MSEs occurred in the driving simulator (11 participants,
Figure 3). A 34.4% share of the MSEs were shorter than 3 s in
the MWT and 38.5% in the driving simulator. The MSE rate was
higher and the cumulative MSE duration longer in the MWT
than in the driving simulator (p < 0.05, Table 2). Analysing trials
in 10-min intervals (Figure 4), the cumulative MSE duration
increased when comparing the 0-10 min to the 10-20 min bin in
the MWT (median [IQR]: 32.8 [20.4-48.8]% versus 81.9 [31.2-
121.6]%, p < 0.05) while no such increase could be observed in
the driving simulator (49.0 [6.0-83.0]% versus 49.9 [6.2-68.5]%,
p=0.75).

In both tests, the latency to the first MSE correlated with the
MSE rate, and the MSE rate with the cumulative MSE duration
(Tables 3A,B). In the MWT, the sleep latency correlated with the
latency to the first MSE, the MSE rate and the cumulative MSE
duration (Table 3A). In the driving simulator, associations were
found between the sleep latency and the difference between the
latency to the first MSE and sleep latency (Table 3B). Comparing
across tests (MWT versus driving simulator), correlations
between MSE rates and between cumulative MSE durations were
observed (Table 3C). Scatterplots of relevant associations are
illustrated in Supplementary Figure S3.

In both the MWT and driving simulator, the MSE rate and the
cumulative MSE duration widely varied (Table 2 and Figure 3).
In the MWT, the relationship between the occurrence of MSEs
and the sleep latency revealed two distinct groups. In case of
a sleep latency <15 min, multiple MSEs occurred already from
the very beginning of the trial and most MSEs occurred within
the first 10 min of the trial; thus, participants were labelled to
be “very sleepy” (Figure 3A and Supplementary Figures S1, $4,
participants 1-12). In case of a sleep latency >15 min, MSEs
did not occur from the very start of the trial but rather between
10 and 20 min; thus, participants were labelled as “less sleepy”
(Figure 3A, Supplementary Figures S1, $4, participants 13-18).
When comparing these two groups, significant differences were

TABLE 1 | Performance of automatic microsleep episode (MSE) detection compared to visual scoring in the maintenance of wakefulness test (MWT) trials of 10

participants before and after sleep deprivation.

Sensitivity (%) Specificity (%) Precision (%) Accuracy (%) Cohen’s Kappa
Before and after sleep deprivation (overall) 70.0 95.7 66.2 93.0 0.64
After sleep deprivation (overall) 70.0 93.3 81.1 86.6 0.66
After sleep deprivation (mean + standard error of the mean) 709+ 5.0 90.7 +£ 3.0 82.7 +4.5 84.7+£29 0.63 + 0.06

Overall performance (pooled for all 10 participants, either across both trials or across the trial after sleep deprivation) and mean performance (across each participant in
the trial after sleep deprivation) was calculated based on a 200-ms resolution. Assessing the performance of the first trial (before sleep deprivation) separately was not

meaningful, as MSEs were only present in one participant.
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FIGURE 1 | Visual expert scoring (red) and automatic detection with long short-term memory neural network (LSTM; blue) of microsleep episodes (MSEs) for each of
the 10 participants assessed in the maintenance of wakefulness test (MWT) after sleep deprivation. Sleep onset is indicated (black). Participants are numbered

found for the difference between the latency to the first MSE and
the sleep latency (3.01 [1.77-6.44] min versus 19.74 [17.51-22.47]
min, p < 0.01), the median MSE duration (5.45 [4.30-7.50] s
versus 4.20 [2.80-4.20] s, p < 0.05), the cumulative MSE duration

(15.5 [11.2-26.7]% versus 6.4 [2.8-15.1]%, p < 0.05), and (by
definition) the sleep latency (6.00 [3.50-7.75] min versus 22.00
[20.50-32.00] min, p < 0.01). In the driving simulator, no such
differences between the two groups occurred.
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FIGURE 2 | Automatic detection of microsleep episodes (MSEs) and driving performance in the driving simulator after sleep deprivation. Data were analysed until
sleep onset. (A) Displayed for one representative participant: automatically detected MSEs (light blue) with sleep onset (black bar), off-road events (OFF, orange),
lateral car position (LP, dark blue; O = centre of the road, off-road > £ 1000) and standard deviation of lateral position (SDLP, black) calculated in a 10-s moving
window. Driving performance and EEG derived MSEs might be 1-2 s out of synchronisation. Data of all participants are provided in Supplementary Figure S2.
Driving performance of all participants as measured by (B) number and (C) duration of off-road events (OFF), and (D) SDLP (10-s moving window), were calculated
for the subsequent minute after each MSE onset (“‘MSE”), and the rest of the recording (“non-MSE”). *Significant difference (p < 0.05).

Sleepiness and Driving Performance
The test sequence, MWT-driving simulator or driving
simulator-MWT, had no significant impact on MSEs or

TABLE 2 | Overview of sleepiness and driving performance measures in the
maintenance of wakefulness test (MWT) and the driving simulator (DSim) after
sleep deprivation.

MWT DSim
MSE-L (min) 2.43[0.97-3.36] 1.20 [0.94-6.16]
AASM-L (min) 7.75[5.00-20.50]  60.00 [41.50-60.00]

Difference between MSE-L and

AASM-L (min)
Median MSE duration (s)
MSE rate (#/min)

6.44 [2.17-17.51]

4.50 [4.20-6.40]
1.29 [0.73-1.83]

52.77 [38.80-58.92]

3.40 [2.90-4.00]
0.74 [0.48-1.59]

Cumulative MSE duration (%) 13.80 [9.35-22.53] 5.58 [3.09-12.62]

OFF-L (min) 9.57 [5.19-17.82]
Median OFF duration (s) 1.54 [1.15-2.52]
OFF rate (#/min) 1.63 [0.10-2.85]
Cumulative OFF duration (%) 4.78[0.21-14.19]
SDLP 1463.90 [493.04-3034.65]

Data were analysed until sleep onset. Median and interquartile range are reported:
latency to the first microsleep episode (MSE-L), latency to AASM-defined sleep
(AASM-L), latency to the first off-road event (OFF-L), rate and duration of MSES
and off-road events (OFF), and the standard deviation of lateral position (SDLP).
The cumulative duration of MSEs and OFF were calculated relative to the duration
from “lights off” until AASM-L of each trial (%). Median values were first determined
for each MSE or OFF per participant, and then across participants.

driving performance. In the driving simulator, the median MSE
duration, the MSE rate, and the cumulative MSE duration all
moderately correlated with the cumulative duration of off-road
events (Table 3B). Furthermore, the median MSE duration
moderately correlated with the median off-road duration
(Table 3B). All driving performance measures correlated with
the sleep latency but not with the latency to the first MSE
(Table 3B). No correlations between MSEs or the sleep latency in
the MWT and driving performance were observed.

Comparing “less sleepy” and “very sleepy” participants,
driving performance did not differ significantly. However, in
“very sleepy” participants the latency to the first off-road event
was somewhat shorter (5.31 [1.38-15.21] min versus 13.45 [9.33—
28.05] min, p = 0.13) and longer off-road events tended to occur
toward the end of the trial (cumulative off-road duration in the
50-60 min bin: 58.10 [24.30-91.05]% versus 25.33 [5.03-79.30] %,
p = 0.20; Supplementary Figure S4).

Driving performance, as measured by the rate (p = 0.19) and
cumulative duration (p = 0.11) of off-road events and standard
deviation of the lateral position (p < 0.05), tended to be slightly
worse during the 1-min segments after a MSE was detected,
compared to all segments without MSEs (Figures 2B-D). For
the relationship between MSEs and driving performance, mainly
three different patterns were observed. In a first pattern, the MSE
rate increased over time while driving performance, measured
by an increased rate of off-road events and increased standard
deviation of the lateral position, gradually deteriorated in parallel
(Supplementary Figure S2, e.g., participants 11 and 13, and
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in the MWT. This participant numbering was also applied to the other figures.
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FIGURE 3 | Occurrence of microsleep episodes (MSEs, o) and latencies to the first off-road event (OFF, I) until sleep onset (M), or if no sleep occurred the end of trial
(A), in (A) the maintenance of wakefulness test (MWT) and (B) the driving simulator after sleep deprivation. In case no MSE, sleep or OFF occurred, latencies were
set to either sleep onset or the end of the test, whichever came first. Each horizontal line represents one of the 18 participants, ordered by the latency to sleep onset
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Supplementary Figure S5A). In a second pattern, participants
were able to successfully compensate for their sleepiness,
resulting in only a few MSEs and the maintenance of good driving
performance (Supplementary Figure S2, e.g., participants 6 and
18, and Supplementary Figure S5B). In the last pattern, no
obvious association between MSEs and driving performance
could be observed (Supplementary Figure S2, e.g., participants
8 and 15, and Supplementary Figure S5C).

DISCUSSION

Independent of the test, automatically detected MSEs provide
a valuable measure for sleepiness with potential relevance for
the fitness-to-drive assessment. Even though the latency to the
first MSE was comparable between the MWT and the driving

simulator, sleep latency differed substantially. Both the rate and
cumulative duration of automatically detected MSEs correlated
between MWT and driving simulator. Driving performance
correlated with MSEs in the driving simulator, but not with
MSEs in the MWT.

The feature-based neural network algorithm for the automatic
MSE detection showed good performance when applied to
MWT data of participants with a broad range of sleepiness
levels as performance in this study was assessed in conditions
with high level of alertness (before sleep deprivation) and
a high level of sleepiness (after sleep deprivation), and
previously in moderately sleepy patients (Skorucak et al,
2019). Performance was better than the one reported for
the automatic detection of NI sleep (Sriraam et al, 2016;
Malafeev et al., 2018; Stephansen et al., 2018). The algorithm
showed substantial identification, similar to the performance
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TABLE 3 | Correlation coefficients (Spearman’s rank) for sleepiness and driving performance measures after sleep deprivation are reported: (A) maintenance of
wakefulness test (MWT), (B) driving simulator (DSim), and (C) between the MWT and the DSim.

(A) MWT
MSE-L AASM-L Difference between MSE-L Median MSE MSE rate Cumulative MSE
(min) (min) and AASM-L (min) duration (s) (#/min) duration (%)
MSE-L (min)
AASM-L (min) 0.60**
Difference between MSE-L and AASM-L (min) 0.45 0.97**
Median MSE duration (s) 0.11 —0.45 -0.57*
MSE rate (#/min) —0.53* —0.52* —-0.41 0.11
Cumulative MSE duration (%) -0.27 —0.50* —0.48* 0.55* 0.77**
(B) DSim
MSE-L AASM-L Difference Median MSE rate Cumulative OFF-L Median OFF rate Cumulative SDLP
(min) (min) between MSE-L MSE (#/min) MSE (min) OFF (#/min) OFF
and AASM-L (min) duration (s) duration (%) duration (s) duration (%)
MSE-L (min)
AASM-L (min) 0.09
Difference between ~ —0.52* 0.73**
MSE-L and
AASM-L (min)
Median MSE —0.08 —0.47 -0.27
duration (s)
MSE rate (#/min) —0.62** —0.42 0.02 0.72**
Cumulative MSE —-0.57* -0.39 —0.00 0.76** 0.99**
duration (%)
OFF-L (min) 0.03 0.58** 0.45 —0.38 —0.35 -0.32
Median OFF -0.03 -0.59* —0.44 0.49* 0.44 0.42 —0.67**
duration (s)
OFF rate (#/min) -0.15  —-0.66** -0.39 0.47* 0.46 0.43 —0.83** 0.81**
Cumulative OFF -0.14  -0.73** -0.46 0.53* 0.51* 0.49* —0.81** 0.91** 0.97**
duration (%)
SDLP -0.11 —0.72** —0.53* 0.43 0.45 0.42 —0.84** 0.83** 0.83** 0.90**
(C) DSim and MWT
MWT MSE-L AASM-L Difference between MSE-L Median MSE MSE rate Cumulative MSE
(min) (min) and AASM-L (min) duration (s) (#/min) duration (%)

DSim
MSE-L (min) 0.16 0.07 0.09 —0.06 —0.54* —0.44
AASM-L (min) 0.19 0.25 017 0.14 —0.21 —0.04
Difference between MSE-L and AASM-L (min) 0.05 0.04 —0.03 0.19 0.28 0.28
Median MSE duration (s) —0.36 —0.46 —0.45 0.33 0.36 0.29
MSE rate (#/min) —0.44 -0.28 -0.23 0.14 0.63** 0.52*
Cumulative MSE duration (%) —0.44 —-0.30 —0.26 0.22 0.62** 0.58*
OFF-L (min) 0.38 0.41 0.36 -0.12 —0.10 —0.05
Median OFF duration (s) -0.35 -0.26 -0.17 0.10 0.35 0.21
OFF rate (#/min) -0.38 —-0.43 -0.38 0.28 0.32 0.30
Cumulative OFF duration (%) —-0.38 —-0.39 -0.32 0.19 0.36 0.27
SDLP —0.44 —0.36 -0.26 —0.03 0.31 0.12

Significant correlations are indicated in bold (p < 0.05, **p < 0.01). Our correlational analyses were of exploratory character and thus no corrections to p-values were
performed. The latency to the first microsleep episode (MSE-L), latency to AASM-defined sleep (AASM-L), latency to the first off-road event (OFF-L), rate and duration of
MSEs and off-road events (OFF), and standard deviation of lateral position (SDLP) were analysed until AASM-defined sleep onset.

on data from moderately sleepy patients which were used negatives or wakefulness) and accuracy had large values
for training of the algorithm, with a slightly lower Cohen’s due to the rather large amount of wakefulness in the data
kappa coeflicient (0.64 versus 0.75) (Skorucaketal.,2019). irrespective of the actual MSE detection performance. More
As expected, specificity (i.e., the ability to correctly detect importantly, sensitivity and precision showed good performance,
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providing a fairer indication of the ability of the algorithm
to correctly detect positives or MSEs. The current approach
for automatic MSE detection is based on deep learning
with engineered features. The advantage of having engineered
features as inputs for the neural network is having more
control over the input data. However, working with raw
data brings faster preprocessing as no features need to be
calculated. Another MSE detection algorithm using deep learning
based on raw data is currently under development [Malafeev
et al., Automatic detection of microsleep episodes with deep
learning (unpublished)].

Similar to moderately sleepy patients in the MWT (Hertig-
Godeschalk et al., 2019), the latency to the first MSE among
severely sleepy participants (after sleep deprivation) was shorter
than the sleep latency in both the MWT and the driving
simulator. Both the latency to the first MSE and the sleep latency
were approximately 14 min shorter in sleep-deprived participants
compared to moderately sleepy patients (Hertig-Godeschalk
etal., 2019), reflecting the extreme sleep pressure after a full night
of sleep deprivation. Most participants did not fall asleep in the
driving simulator (sleep latency was set to 60 min) which could
have confounded the results but also shows the possible limitation
of this measure. Corresponding to previous research showing
the value of EEG-based MSEs to objectively assess sleepiness
(Harrison and Horne, 1996; Tirunahari et al., 2003; Bougard
et al,, 2018), we argue that MSEs could provide a more accurate
and stable measure for sleepiness, compared to the sleep latency.
Applying a minimum MSE duration of 3 s, the latency to the
first MSE has been reported to facilitate differentiation among
sleep apnoea patients with a sleep latency between 12.8 and
32.6 min in the MWT, into those who are likely to be either
more susceptible or more resistant to sleepiness (Morrone et al.,
2019). The latency to consolidated sleep is known to be affected
by motivation (Bonnet and Arand, 2005). We speculate that the
latency to the first MSE is less affected by motivation and thereby
represents a more objective marker of sleepiness severity. Hence,
the difference between the latency to the first MSE and that to
sleep might be a measure for the compensational capacity while
resisting the onset of consolidated sleep. Maintaining wakefulness
without any interaction in the rather passive MWT condition
is much more difficult compared to the active condition in the
driving simulator.

In the current study, the latency to the first MSE correlated
with the MSE rate in both test conditions, which emphasizes the
importance of the first MSE as a first objective sign for sleepiness.
Both MSE rate and the cumulative MSE duration might reflect
sleepiness severity, as correlations between the two measures
were observed not only within the MWT and driving simulator
but also between the two tests. In addition, both the MSE rate
and the cumulative MSE duration negatively correlated with the
sleep latency in the MWT. This is contradictory to the results
of another study among sleep-restricted healthy individuals in
the MWT, defining EEG-based MSEs with a minimum duration
of 3 s, where no such correlations were observed (Bougard
et al, 2018). In our study, a substantial number of MSEs
were shorter than 3 s in both the MWT and the driving
simulator. This might explain why our findings differ from

those of Bougard et al. (2018), while simultaneously underlining
the need of broadly accepted MSE scoring criteria with a
shorter minimum duration (Hertig-Godeschalk et al., 2019) than
previously used (Harrison and Horne, 1996; Tirunahari et al.,
2003; Bougard et al., 2018).

The MSE rate and cumulative MSE duration were higher in
the MWT compared to the driving simulator. In the MWT, a
series of MSEs occurred rather shortly after the first MSE and
was soon followed by sleep, a finding that was also observed
in moderately sleepy patients (Hertig-Godeschalk et al., 2019).
In the driving simulator, MSEs occurred less frequently than in
the MWT and in most participants no sleep appeared until the
end of the trial. These differences between the test conditions
are most probably explained by the different unmasking effects
of sleepiness: the MWT is a monotonous test in a non-
stimulating and almost entirely dark environment, whereas the
driving simulator represents a more active situation taking
place with increased ambient light due to the simulator screen,
requiring continuous cognitive attention and steering reactions.
Compared to the MWT, the condition of the driving simulator
enables participants to fight their sleepiness more successfully
and therefore no sleep appeared until the end of the test in
most driving simulator trials, explaining the different MSE rates
between the two test conditions.

Reliable clinical and on-road tools to precisely assess
sleepiness and its impact on performance are urgently sought.
Combining neurophysiological measures with performance data
might be a valid methodological approach (Moller et al., 2005).
The positive correlations between (rate and duration of) MSEs
in the driving simulator and driving performance (off-road
events and standard deviation of lateral position) in our study
support the assumption that appearance of MSEs and their
distribution over time are relevant measures of sleepiness in
simulated driving.

Among participants with high rates of both MSEs and off-
road events, we observed an increasing MSE rate in parallel
with both an increasing rate of off-road events and increasing
standard deviation of lateral position values over the course of the
driving test. These results corroborate previous studies, where the
standard deviation of lateral position, speed variability, and rate
of oft-road events correlated with (increasing) sleepiness (Arnedt
et al., 2001; Philip et al., 2005; Baulk et al., 2008; Sandberg et al.,
2011; Akerstedt et al., 2013; Forsman et al., 2013; Hallvig et al,,
2014). Moreover, driving performance, including for example
the standard deviation of lateral position, tended to be worse
in 1-min segments following a MSE compared to the rest of
the recording. This might point to a causal relationship between
MSEs and driving performance.

No correlations between MSE measures or sleep latency in
the MWT and driving performance were found, also not in
“very sleepy” participants. In contrast, other studies found an
association between the sleep latency in the MWT (0-19 min)
and the rate of off-road events as well as standard deviation
of lateral position in a driving simulator (Sagaspe et al., 2007;
Philip et al., 2013). The different findings might be explained by
the less severe sleepiness, but potentially affected compensational
capacities among the patients in these studies, compared to the
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more severe sleepiness but intact compensational capacity of our
healthy sleep-deprived participants. Another reason could be that
MSEs as short as 1 s might be less often accompanied by a similar
severity in driving impairment that is associated with longer sleep
fragments of at least half a 30-s epoch. Further studies are needed
to clarify whether high MSE rates and/or shorter MSE durations
will impose a relevant real-road driving risk.

In the MWT, we could differentiate between two groups of
“very” or “less” sleepy participants based on the sleep latency
and the occurrence of MSEs. In the driving simulator, three
different patterns could be differentiated based on the relation
between sleepiness, as measured by cumulative MSE duration,
and driving performance: (A) increasing sleepiness combined
with impairment of driving performance, (B) hardly sleepy
and good driving performance, and (C) no obvious association
between sleepiness and driving performance. Interestingly, not
all participants belonging to one group in the MWT could be
categorised into the same pattern in the driving simulator, and
vice versa. This confirms the notion that sleepiness should not be
assessed by a single test (Mathis and Hess, 2009). The differences
between participants regarding MSEs and driving performance
could be explained by various intra-individual compensation
mechanisms and susceptibility to sleep deprivation (Leproult
et al., 2003; Van Dongen et al., 2004; Ingre et al., 2006), and
both could influence the (strength) of the relations investigated
in this study. Even though we found correlations between MSEs
in the driving simulator and driving performance when analysing
data on an overall level, correlations on an individual level
were not present in some participants. This is contradictory to
other studies where intra-individual analyses, as compared to
inter-individual analysis, provided more consistent correlations
between changes in the EEG and performance (Torsvall and
Akerstedt, 1987; Makeig and Inlow, 1993). Again, we cannot
exclude the possibility that isolated or even series of short-lasting
MSEs have a different impact on driving performance compared
to longer-lasting sleep fragments. At the same time, the rather
monotonous driving scenario that was chosen in our study in
order to unmask sleepiness efficiently, including rare and only
wide curves, might lead to less frequent steering corrections and
off-road events.

Limitations and Outlook

The extreme sleepiness of participants in this study made
visual classification of MSEs even more challenging and time-
consuming compared to the scoring in moderately sleepy patients
(Hertig-Godeschalk et al., 2019). The higher level of sleepiness
and the application to the driving simulator data, compared
to training on data of moderately sleepy patients in the MWT
only, might have affected the performance of the algorithm. We
hypothesise that among sleep-deprived participants MSEs with
open eyes might occur in the MWT and maybe even more
frequently in the driving simulator, since sleep and performance
lapses with open eyes are possible (Johns, 2003; Jifina et al.,
2010). During higher levels of sleepiness, eye-opening could affect
EEG activity differently than in a condition of full alertness,
as alpha activity during drowsiness varies when the eyes are
opened (decreased alpha) compared to when the eyes are closed

(increased alpha) (Oken et al, 2006; Gorgoni et al., 2014).
Without considering eye closure, automatically detected MSEs
based on EEG and EOG might correspond to “real MSEs” since
the automatic MSE detection is likely to identify EEG patterns
that are not always visible to a human scorer (Schulz, 2008).
Even though these events are defined as “microsleep episode
candidates” in the BERN criteria (Hertig-Godeschalk et al., 2019),
they do not fulfil the criteria to be visually scored as MSEs
(>80% eye closure criterion) and are consequently detected as
false positives by the algorithm. As discussed earlier, the driving
simulator differs from the MWT not only regarding the testing
environment (e.g., light conditions) but also the performed task
(e.g., merely sitting in a chair or driving a simulator). It is known
that alpha activity can be blocked by light influx due to eye-
opening, other afferent stimuli, and mental activities (Berger,
1929; Niedermeyer, 1993). The limitation of this paper is the
lacking validation of the algorithm in an active rather than the
passive setting in which it was developed. The BERN criteria
would need to be re-evaluated for the different test condition,
particularly the eye closure criterion, and the MSE detection
algorithm might need to be retrained on driving simulator data
in future. Unfortunately, in the scope of this study it was not
possible to perform these steps for the active wake validation.
Further, much more data than currently available would be
needed for the training and testing of the algorithm in the driving
simulator condition.

Although the assessment of MSEs leads to a more detailed
characterisation of the borderland between wakefulness and
sleep, ambiguous EEG-fragments not attributable to clear
wakefulness or sleep (for example reflecting drowsiness) remain
(Hertig-Godeschalk et al., 2019). Further studies are needed to
determine the potential relevance of such EEG-fragments in
relation to the level of sleepiness and driving performance.

It has been postulated that frontal regions are more susceptible
to sleep deprivation than other brain regions (Horne, 1993;
Cajochen et al,, 1999). Therefore, investigating the topographical
distribution of MSEs across the scalp might reveal new insights
into the phenomenon of local sleep (Huber et al, 2004;
Vyazovskiy et al., 2011; D’Ambrosio et al., 2019) and its influence
on driving performance (Ahlstrom et al., 2017). The inclusion
of other brain regions in the automatic detection of MSEs as
well as their relationship with driving performance is planned
for future studies.

As there is hardly any knowledge about possible relationships
between MSEs and driving performance, our correlational
analyses were of exploratory character and thus no corrections
of the p-values were performed. In view of the multiplicity of risk
factors, aside from the sleepiness level itself, such as sleepiness
perception and risk-taking behaviour, future work has to reveal
which relations are most relevant for safe real road driving in
combination with which additional risk factors.

CONCLUSION

Automatically detected MSEs as short as 1 s in the driving
simulator, which would be missed by classical sleep
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scoring, revealed a significant relationship with driving
performance. As MSEs are currently not routinely scored
in clinical practice, future integration of a more refined
MSE detection into the clinical assessment of sleepiness
might improve both the diagnostic value of EEG-
based vigilance tests as well as the judgment of fitness
to drive.
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