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Sleep stage classification is an open challenge in the field of sleep research. Considering
the relatively small size of datasets used by previous studies, in this paper we used
the Sleep Heart Health Study dataset from the National Sleep Research Resource
database. A long short-term memory (LSTM) network using a time-frequency spectra
of several consecutive 30 s time points as an input was used to perform the
sleep stage classification. Four classical convolutional neural networks (CNNs) using
a time-frequency spectra of a single 30 s time point as an input were used for
comparison. Results showed that, when considering the temporal information within
the time-frequency spectrum of a single 30 s time point, the LSTM network had a
better classification performance than the CNNs. Moreover, when additional temporal
information was taken into consideration, the classification performance of the LSTM
network gradually increased. It reached its peak when temporal information from three
consecutive 30 s time points was considered, with a classification accuracy of 87.4%
and a Cohen’s Kappa coefficient of 0.8216. Compared with CNNs, our results indicate
that for sleep stage classification, the temporal information within the data or the features
extracted from the data should be considered. LSTM networks take this temporal
information into account, and thus, may be more suitable for sleep stage classification.

Keywords: sleep stage classification, deep learning, electroencephalogram, long short-term memory network,
time-frequency spectrum

INTRODUCTION

Sleep is an indispensable part of our life and occupies about one third of our total lifetime (Cirelli
and Tononi, 2008). Sleep not only reduces tiredness from daily life, but during sleep, our brain
and other organs are also repaired (Oswald, 1980). However, with the pace of life becoming faster
and faster, the stresses that people experience are gradually increasing, and sleep time and quality
are gradually decreasing (Geiker et al., 2018). These factors cause a series of sleep-related diseases,
including hypertension (Palagini et al., 2013), angiocardiopathy (Cowie, 2017), and depression
(Roberts and Duong, 2014). Thus, better sleep is necessary for a normal life.

Generally, besides asking people about their sleep, doctors also judge sleep quality by acquiring
and analyzing electroencephalography (EEG) data from an entire night. As this method requires
calculating the ratio between the time of each sleep stage and the total sleep duration, a crucial
aspect of this method is the precision of sleep stage classification. However, for EEG data from a
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typical night, the average total duration is about 6–8 h, meaning
a relatively large workload for a technician to manually classify
the data. Generally, an experienced technician can only complete
the EEG datasets for 3–4 entire nights in 1 day. Considering the
tiredness of the technician and other subjective factors, manual
classification is not an efficient approach and easily results in
mistakes being made. Thus, an automatic sleep stage classification
method is needed.

Deep learning is one popular kind of artificial intelligence
algorithm. It has been widely applied in many fields and has
achieved many remarkable results (Cai et al., 2016; Kim et al.,
2017; Liu et al., 2017, 2018; Sharma et al., 2017; Zhang and
Zhou, 2018). Recently, studies of deep learning-based automatic
sleep stage classification have also frequently been published
(Fiorillo et al., 2019). Zhang and Wu (2018) proposed a complex
value convolutional neural network (CCNN) based an automatic
sleep stage classification method. In this method, a single
channel of EEG data was firstly converted into a complex
value format. Then, a CCNN was constructed to perform the
classification work with the complex EEG data as the input
(Zhang and Wu, 2018). Zhang and Wu (2017) subsequently
improved the CCNN and proposed the Fast Discriminate
CCNN. Bresch et al. (2018) and Supratak et al. (2017) both
proposed a sleep stage classification method which combines
a convolutional neural network (CNN) and a long short-term
memory (LSTM) network. Bresch et al. (2018) used a CNN to
extract features every 30 s from a single-channel EEG signal
and used an LSTM network to perform the classification with
the extracted features as the input. Supratak et al. (2017)
directly calculated features from the EEG data. After selecting
features using the CNN, the remaining features were used as
inputs for the LSTM network. Michielli et al. (2019) proposed
a cascaded LSTM networks-based sleep classification method.
This method first combines rapid eye moment (REM) sleep
and non-REM stage 1 (N1) sleep into one class, and then
uses an LSTM 1 network to classify the additional four sleep
stages. Next, the N1–REM sleep class selected by the LSTM
1 network is used as the input into the LSTM 2 network
and is further classified as N1 sleep or REM sleep. The sleep
stage classification performance values reported by these studies
were all good; however, there are still two problems: (1) the
relatively small size of the datasets used; and (2) the fact that the
temporal information shared between 30 s EEG data time points
was not considered.

Chambon et al. (2018) proposed a CNN-based sleep stage
classification method that considers temporal relationships in
the EEG data. This method first extracts features from each
30 s epoch of the EEG data using a CNN. Next, features from
three consecutive 30 s EEG data epochs (the 30 s before, the
current 30 s, and the 30 s after) are combined to make the final
classification decision. Inspired by this study, in this paper, we
use an LSTM model to perform sleep stage classification using the
time-frequency spectra from several continuous 30 s EEG data
epochs as the input. To address the problem of dataset size, we
used the Sleep Heart Health Study dataset from the National Sleep
Research Resource database (Quan et al., 1997; Redline et al.,
1998; Dean et al., 2016; Zhang et al., 2018).

MATERIALS AND METHODS

Dataset
We used the Sleep Heart Health Study (SHHS) dataset from
the National Sleep Research Resource database1. This dataset
contains two sub-datasets, named SHHS1 and SHHS2. SHHS1
contains one night of sleep EEG data for 5,793 subjects, collected
between November 1st, 1995 and January 31st, 1998 (Visit 1).
SHHS2 contains one night of sleep EEG data for 2,651 subjects,
collected between January 2001 and June 2003 (Visit 2); these
are the second acquisition time points for a subset of the SHHS1
subjects. All the EEG datasets contain C3, C4, electrooculography
(EOG) L, EOG R, and electromyography (EMG) channels,
and nine other heart rate related channels. Considering the
large number of subjects in each of these two datasets, we
used the SHHS1 dataset for training and the SHHS2 dataset
for testing.

EEG Data Preprocessing
All the EEG data in these two datasets were first checked
for problems with electrode dropping (Figure 1B). Briefly, the
average absolute amplitude of the C3, C4, EOG L, EOG R, and
EMG channels across the entire night were calculated. If the
average amplitude of a channel was larger than a predetermined
threshold, the electrode of this channel was identified as
“dropped” and was excluded. In this study, we set the threshold
of each channel to half of the maximum physical acquisition
amplitude of each channel, which was obtained from the header
of each EEG data file.

Secondly, band-pass filtering was performed on each non-
dropped channel. For the C3 and C4, EOG L and EOG R,
and EMG channels, the filtering frequency ranges were set to
0.3–45 Hz, 0.3–12 Hz, and 0.3–20 Hz, respectively (Patanaik
et al., 2018). We used a 50th order Hamming window-based
finite impulse response (FIR) band-pass filter to zero-phase
filter the data. Briefly, the EEG data were firstly filtered by
the FIR filter. Next, the output was reversed and was filtered
again by the FIR filter. Finally, the output was reversed again
to yield the zero-phase filtering results. The zero-phase filtering
preserves the phase information of EEG data while performing
filtering on the data.

Finally, the filtered data was checked for problems with
temporary electrode dropping and for continued EEG
data acquisition after the electrodes were removed from
the participant in the morning (Figures 1C,D). Similar
to the protocol used to check for the electrode dropping
problem, in each 30 s data epoch, the average absolute
amplitudes of the C3, C4, EOG L, EOG R, and EMG
channels were calculated. If the average amplitudes of
both the C3 and C4 channels, or both the EOG L and
EOG R channels, or the EMG channel were larger than
the maximum physical acquisition amplitude of each
channel, the corresponding 30 s data epoch was excluded.
Figure 1A displayed the normal EEG data which were used for
further analysis.

1https://sleepdata.org/datasets/shhs
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FIGURE 1 | Three problems of EEG data. (A) Normal EEG data (green box). (B) Electrode dropped (red box). (C) Electrode dropped temporally (pink box).
(D) Removing electrode in the morning but forgetting turn-off the acquisition device (orange box).

Feature Extraction
In this study, the time-frequency spectra for each 30 s data epoch
was used as the input for sleep stage classification (Patanaik
et al., 2018). Time-frequency spectra for each 30 s data epoch
were calculated from four of the channels (EEG, EOG L,
EOG R, and EMG).

For the EEG channel, the averaged data of the C3 and C4
channels were used to compute the spectra. If one of these two
channels had a problem with electrode dropping, the data of the
non-dropped channel was used. For the two EOG channels, if one
channel was dropped, then both EOG L and EOG R channel used
the data from the non-dropped channel to compute the spectra.
These two protocols were used to maximize the number of
training and testing samples and to make the classification model
better adapted to the situation that occurs during real sleep.

To compute the spectra for each channel, each 30 s data
epoch was first resampled to 100 Hz, resulting in 3,000 data
points for each 30 s data epoch. Secondly, a short-time Fourier
transformation (STFT) was performed on each 30 s epoch of
the resampled data. A Hamming window of length 128 with an
overlap of 38 points (i.e., with a slide step of 90 points) was used
and the fast Fourier transformation (FFT) was applied to yield
the time-frequency spectra. This resulted in a time-frequency
spectra with 32 time points (with a resolution of 900 ms) by 65
frequency points (with a resolution of 0.7752 Hz). Only the first
32 frequency bins (0–24 Hz) were analyzed, which resulted in
a 32 × 32 time-frequency spectra for each 30 s resampled data
epoch. Next, for each time point in the spectra, the frequency
points were normalized to the range 0–1 (Figure 2). Finally, the
time-frequency spectra of the EEG, EOG L, EOG R, and EMG

FIGURE 2 | Four types of time-frequency spectrum stack for LSTM model.
(A) LSTM 1; (A,B) LSTM 2; (A–C) LSTM 3; (A–D) LSTM 4.

channels were stacked to yield a four-channel matrix of size
32 × 32 × 4 and this matrix was used as the input feature of a
classification model.

Classification Model
In this study, a LSTM network (Hochreiter and Schmidhuber,
1997) was used to build a classification model, with a spectral
stack of four channels as the input. We considered four types of
input mode to investigate the performance of the LSTM network
at classifying sleep stages: (1) a single 30 s spectral stack, for which
the network only considers the temporal information within
each current 30 s epoch (Figure 2A); (2) two consecutive 30 s
spectral stacks, for which the network considers the temporal
information in the previous 30 s epoch and the current 30 s epoch
(Figures 2A,B); (3) three consecutive 30 s spectral stacks, for
which the network considers the temporal information in the two
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previous 30 s epochs and the current 30 s epoch (Figures 2A–
C); and (4) four consecutive 30 s spectral stacks, for which the
network considers the temporal information in the three previous
30 s epochs and the current 30 s epoch (Figures 2A–D). For
convenience, the LSTM networks with input modes 1–4 are
hereafter termed the LSTM 1, LSTM 2, LSTM 3, and LSTM 4
networks, respectively. Because the input mode we used only
considers the time information from previous epochs and the
current epoch, our constructed network can be used for both
online and offline sleep stage classification.

For comparison, the CNN from Patanaik et al. (2018) (Normal
CNN), and the well-known CNNs AlexNet (Krizhevsky et al.,
2012), VGG16 (Simonyan and Zisserman, 2015) and GoogLeNet
(Szegedy et al., 2015) were used for classification model building.
The input of each of these models was a single 30 s spectral stack.
The detailed network structure of each of these four CNNs can be
found in Supplementary Tables S1–S3.

Experimental Setup
The problem of sleep stage classification was approached as a five-
class classification problem, with the following classes: 0 for the
waking state; 1 for the N1 sleep stage; 2 for the N2 sleep stage;
3 for the N3 and N4 sleep stages; and 4 for the REM sleep. For
each input spectral stack from one 30 s EEG data epoch, if the
classification model identified this input as being of class 0–4,
then the sleep stage of this 30 s EEG data epoch would be set to
0–4 (i.e., the sleep stage was detected every 30 s).

For the LSTM network, the number of cells was set to 512,
which would result in 512 outputs at the end of the network.
Thus, a fully connected layer was added to the end of the LSTM
network, which transformed the number of outputs to 5. For
each input mode, the spectra from the four EEG channels were
combined along the frequency axis, i.e., the (i × 32) × 32 × 4
spectral stack was reshaped to a (i × 32) × 128 spectrum, with
i = 1–4 corresponding to the four input modes. For the CNNs, the
32 × 32 × 4 spectral stack was input directly into the networks.
Figure 3 shows the detailed workflow of the LSTM network.

For each input mode, a mini-batch was first constructed.
The size of the mini-batch was set to 4,096, according to the
GPU memory size used. Considering the memory size of our
workstation, we used the random splitting method to create each
4,096 mini-batch. Briefly, each subject index in the training and
testing dataset was randomly permuted, independently of each
other. After that, the permuted training and testing datasets were
split into Ntrain and Ntest groups, with each group containing
Numtrain and Numtest numbers of subjects. Next, the entire time-
frequency spectral stacks from each subject in each splitting
group were randomly permuted, independently in each splitting
group, and used to create several 4,096 mini-batches. If the
number of time-frequency spectral stacks in one group could
not be exactly divided by 4,096, the size of the last mini-batch
in this group was set to the remainder. Finally, all of these
smaller mini-batches were combined to create several 4,096 mini-
batches, but this time, the remainder mini-batch was excluded. In
total, 1,324 training mini-batches and 684 testing mini-batches
were constructed, containing about 5,324,000 training samples
and 2,457,600 testing samples.

A ReLU function was used as the activation function for the
CNNs. Considering the unbalanced numbers of samples in each
of the five sleep classes, a weighted softmax cross entropy logit
function was used as the cost function for each network (Xie
and Tu, 2017). An Adam optimization algorithm (Kingma and
Ba, 2015) with 0.9 and 0.999 exponential decay rates for the
1st and the 2nd moments, respectively, was used for training
each network, and the maximum number of iterations was set
to 200 epochs. The initial learning rate was set to 0.001 and
was divided by 10 every 50 epochs. Training was stopped under
the following conditions: (1) if the number of epochs reached
the maximum; (2) if an absolute cost difference of less than
1e-5 occurred between two successive testing epochs on five
successive occasions; or (3) if the testing cost increased across five
successive epochs.

To investigate the effect of mini-batch size on the classification
results, for each network (CNN and LSTM), a series of mini-
batch sizes were used (4,096, 2,048, 1,024, 512, 256, and 128). For
each model, the mini-batch size was set to the specific value that
yielded the maximum accuracy index. As the mini-batch size of
each batch created using the method described above was 4,096,
the other mini-batch sizes were created by splitting the 4,096
mini-batch into several component mini-batches. For example,
a 4,096 mini-batch was split into two 2,048 mini-batches, or four
1,024 mini-batches, and so on. Detailed hyper-parameter settings
for each network can be found in Table 1.

Training and testing of the CNN and LSTM models were
implemented using TensorFlow 1.12 with GPU support on a
Python 3.5 platform.

Evaluation Index
In this study, the accuracy index, sensitivity index and Cohen’s
Kappa (CK) coefficient were used to evaluate our proposed
method. The accuracy index was used to evaluate the overall sleep
stage classification accuracy of the network, while the sensitivity
index focused on the classification accuracy of each sleep stage.
The CK coefficient was used to evaluate the overall sleep stage
classification performance of the network. Detailed definitions of
these three indices are as follows:

Accuracy =
number of accurately scored epochs

total number of epochs
(1)

Sensitivityi =
number of accurately scored epochs in stage i

number of epochs in stage i
(2)

Kappa =
Accuracy− Pe

1− Pe
(3)

Pe =
∑

i ai·bi
num2

i ∈ [wake, N1, N2, N3, REM]
(4)

Where, ai represents the real number of epochs in stage i; bi
represents the number of epochs predicted in stage i by the
networks; and num represents the total number of epochs.
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FIGURE 3 | The workflow of study procedure.

TABLE 1 | The hyper-parameters setting for each network.

Stage Name Normal CNN AlexNet VGG16 GoogLeNet LSTM

initialization Bias 0

Weight Gaussian

Active function ReLU ReLU ReLU ReLU –

cost function Softmax with logit entropy

Training Maximum epochs 200

initial learning rate 1e-3

final learning rate 1e-6

Mini-batch size 2048 1024 2048 1024 1024

Dropout rate 0.5 0.5 0.5 0.5 –

Optimization Adam

RESULTS

CNN Performance
Figure 4 shows the sleep stage classification performance for each
CNN. From the figure, it can be seen that the Normal CNN had
the simplest structure, but the best classification performance,
with an accuracy of 84.4% and a CK coefficient of 0.7786. Figure 5
shows the sleep stage classification performance for the Normal

CNN with input mode 3. From the figure, it can be seen that the
accuracy and CK coefficient of Normal CNN with input mode
3 were increased to 85.8% and 0.7980, respectively, when more
features were input into the network.

LSTM Network Performance
Figure 6 shows the sleep stage classification performance for the
LSTM network. Compared with Figure 4, the performance of
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FIGURE 4 | The sleep stage classification performance for each CNN network. Each row represents the percent of a sleep stage that was accurately predicted. The
diagonal elements represent the sensitivity index of the network for each sleep stage. ACC represents the accuracy index of the network. CK represents the Cohen’s
Kappa coefficient of the network. Orange color represents the maximum sensitivity index of each sleep stage among four networks in figure.

the LSTM 1 network was better than the Normal CNN network
on all stages, except for the N2 and N3 stages. Furthermore, the
LSTM 1 network had a better classification accuracy and a better
CK coefficient than any of the CNNs, with values of 85.3% and
0.7911, respectively. Compared with Figure 5, the classification
performance of LSTM 1 also approximated to the performance
of Normal CNN with input mode 3 (CK coefficient was only less
0.0069 than that of Normal CNN with input mode 3), which
further implied the potential advantage of time information.
Moreover, when two consecutive 30 s epochs (1 min) of temporal
information were considered at a time from the time-frequency
spectral stack, the sensitivity index of the LSTM 2 network was
almost better than Normal CNN with input mode 3, except for
the N2 and REM stage, and the classification accuracy and the
CK coefficient also increased to 86.4% and 0.8074, respectively.
When three consecutive 30 s epochs (1 min 30 s) of temporal
information were considered at a time from the time-frequency
spectral stack, the performance of the LSTM 3 network again
increased a little bit. However, when four consecutive 30 s epochs
(2 min) of temporal information were considered at a time from
the time-frequency spectral stack, the performance of the LSTM

4 network was lower. For the waking, N1 and REM stages,
LSTM 3 had the best sensitivity with values of 94.2, 43.7, and
89.3%, respectively. For the N2 stage, LSTM 3 had a sensitivity
of 89.6%, which was only 0.9% less than the best-performing
network among LSTM networks. Although for the N3 stage,
LSTM 3 had the worst sensitivity with a value of 72.6%, its
classification accuracy and CK coefficient were the highest at
87.4% and 0.8216, respectively. Thus, after this comprehensive
consideration, these results suggest that the LSTM 3 network has
the best performance among all the networks mentioned above.
Figure 7 shows real classification results from an entire night of
EEG data from one subject using the Normal CNN with input
mode 3 and LSTM 3 networks.

Combining the information from Figures 4–6, it can be
seen that LSTM 3 had the best classification accuracy and CK
coefficient of any of the networks mentioned above, but it also
had the worst sensitivity for the N3 stage. From all the networks,
LSTM 2 had the best sensitivity for the N3 stage. Thus, similar
to processing step in the study by Chambon et al. (2018), we
combined the predicted probability of each sleep stage from the
LSTM 2 and LSTM 3 networks to make the final decision. The
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FIGURE 5 | The sleep stage classification performance for Normal CNN with
input mode 3. Each row represents the percent of a sleep stage that was
accurately predicted. The diagonal elements represent the sensitivity index of
the network for each sleep stage. ACC represents the accuracy index of the
network. CK represents the Cohen’s Kappa coefficient of the network.

detailed decision criteria were as follows: (1) samples which were
identified as N2 or N3 by the LSTM 3 network were input into the
LSTM 2 network and (2) if the identified maximum probability
of LSTM 3 was larger than that of LSTM 2, the final decision
would be the one identified by LSTM 3, and vice versa. The results
showed that, compared with LSTM 3, although the sensitivity
of the combined network on the N2 stage decreased a little bit,
the sensitivity on the other stages increased, especially for the
N3 stage, and the classification accuracy and CK coefficient also
increased by 0.2% and 0.0036, respectively (Figure 8). Thus,
this method of combining networks would be one direction to
consider in a future study.

Calculation Efficiency
Using a NVIDIA GeForce GTX Titan X Pascal GPU on an Intel
Core i7-6900K PC, it took about 30–40 hours to train a CNN
or LSTM network due to the complexity of each model. In the
testing stage, a 4,096 mini-batch took 2 s to test; thus, sleep stage
classification for an entire night of data can be performed for 2
subjects every second.

DISCUSSION

In this study, we proposed an LSTM model for sleep stage
classification with different durations of time-frequency spectral
data as the input. For comparison, we also assessed the sleep stage
classification performance of classical CNNs. The corresponding
results are discussed in detail below.

For the CNNs, the Normal CNN had the best classification
accuracy and CK coefficient. However, when classification of
each of the five sleep stages was compared using the sensitivity
index, the performance of the Normal CNN was not ideal. For
the waking stage, the VGG16 network had the best sensitivity

with a value of 90.1%. For the N1 stage, VGG16 had the best
sensitivity with a value of 28.4%. For the N2 stage, the Normal
CNN had the best sensitivity with a value of 89.6%. For the N3
stage, VGG16 had the best sensitivity with a value of 80.9%.
For the REM stage, AlexNet had the best sensitivity with a
value of 85.7%. Additionally, the CK coefficient of VGG16 was
only 0.0059 less than that of the Normal CNN. Thus, after
this comprehensive consideration, these results suggest that the
VGG16 network shows better performance than the Normal
CNN. The Normal CNN had relatively high sensitivity only
for the N2 stage, which might be due to the N2 stage class
having the highest sample number. In the training phase, in
order to minimize the cost function, this simple Normal CNN
would tend to classify each sample into the class with the
maximum number of samples (i.e., it suffered from an overfitting
problem). Relying on its complex structure, the VGG16 network
overcame the overfitting problem to some extent, and thus had a
better classification performance for every sleep stage (quantified
using the sensitivity index). Although GoogLeNet had the most
complex structure, its sleep stage classification performance was
worse. This might be due to the gradient attenuation problem,
and also because of the performance saturation problem. In
summary, when network structure became more complex, sleep
stage classification performance of the CNNs increased and
tended toward saturation.

For the LSTM networks, which considered the temporal
information in each time-frequency spectral stack, LSTM 1
performed better than any of the CNNs. When more temporal
information was considered, the performance of LSTM 2 and
LSTM 3 increased, with the performance of LSTM 3 being
better than all the networks mentioned above. Thus, similar
to the CNNs, with more temporal information being taken
into consideration, the sleep stage classification performance
of the LSTM networks also increases and tended toward
saturation. Compared with the CNNs, the LSTM networks
not only had a simpler network structure, but also had the
best sleep stage classification performance. Additionally, we
also constructed a Normal CNN network with input mode 3
(i.e., the same as LSTM 3). Because the number of features
that could be extracted increased, the CK coefficient of the
Normal CNN network also increased. However, the classification
performance of this network was only approximately the same
as LSTM 1. This result further highlights the importance of
time information between epochs for the final sleep stage
classification performance.

Additionally, we also constructed LSTM networks with an
input mode that considered the time information from the
previous, current and future epochs (the initial input mode we
used only considered the time information from the previous
and current epochs). However, the performance of this input
mode was approximately the same as the input mode 3 we
used. Differences between these two input modes only occurred
during epochs in which the sleep stage changed. However,
for an entire night of sleep, this kind of epoch occurs very
infrequently. This led to the training samples from these two
input modes being almost the same, and thus, their performances
were almost the same.
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FIGURE 6 | The sleep stage classification performance for each LSTM network. Each row represents the percent of a sleep stage that was accurately predicted.
The diagonal elements represent the sensitivity index of the network for each sleep stage. ACC represents the accuracy index of the network. CK represents the
Cohen’s Kappa coefficient of the network. Orange color represents the maximum sensitivity index of each sleep stage among four networks in figure.

FIGURE 7 | The real sleep stage classification results from one subjects. Ground truth means the real sleep stage label.
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FIGURE 8 | The sleep stage classification performance for combined LSTM
network. Each row represents the percent of a sleep stage that was
accurately predicted. The diagonal elements represent the sensitivity index of
the network for each sleep stage. ACC represents the accuracy index of the
network. CK represents the Cohen’s Kappa coefficient of the network.

There might be two reasons that account for these results. The
first is that manual sleep stage classification is based on certain
specific wave, frequency or amplitude features. In contrast to
other image classification problems, in which every image would
be expected to have some features, single EEG data epochs may
not have any features at some time points. For example, if an N2
stage feature occurred at time point t1, the technician would label
the corresponding 30 s EEG data epoch as N2 sleep. Then, the
technician would check the next 30 s epoch. If the next 30 s EEG
data epoch did not have features from another sleep stage or did
not have any features at all, the technician would go on checking
the next 30 s EEG data epoch until other recognizable features of
the stage occurred. Assuming that an N3 stage feature occurred at
time point t2, then the technician would label the EEG data epoch
between t1 and t2 as N2. Thus, some EEG data epochs which did
not have any particular features would still be classified as being
from a specific sleep stage. The second reason accounting for the
results is that the CNNs only received the time-frequency spectral
stack as an image and did not consider the temporal information
within it. When temporal information was considered across
the time-frequency spectral stack, the LSTM networks overcame
this problem to some extent, and thus, had better performance
than the CNNs. Considering these two reasons, the first might
be said to be the more important. In addition, the rules for
scoring sleep stages that were designed for a human eye to make
sense of objectively measured analog signals may also account
for these results. These rules were thoughtfully but arbitrarily
defined, and are not always very specific, evidenced by the fact
that two humans rarely agree 100% on any one record. Thus, the
imperfect performance may also partially reflect this aspect of the
scoring system itself.

There are still some limitations to this study. The first is
that only a few datasets were used for testing; namely, only
the SHHS2 dataset. Thus, future work will test our model on

many more datasets. The second limitation is that we only
used the time-frequency spectra as a classification feature. Thus,
future work will use or combine other features to perform sleep
stage classification.

In this study, an LSTM network with a time-frequency spectra
as a feature was used to perform sleep stage classification. The
results showed that an LSTM network with three consecutive
spectral stacks as an input achieved the best performance.
Compared with CNNs, LSTM networks can take temporal
information into account, and thus, may be more suitable for
sleep stage classification.
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