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To investigate the potential applications and the molecular mechanisms of transcranial
direct current stimulation (tDCS) on cognitive impairment in a vascular dementia (VD)
animal model. Sprague-Dawley rats were used in this study. VD rat model was induced
by modified permanent bilateral common carotid artery occlusion (2-VO) approach.
Anodal tDCS was applied to the animals. Morris water maze was used to analyze
spatial memory and navigation ability. The pathological changes in the hippocampal
CA1 region and cerebral cortex were examined via Hematoxylin-Eosin staining. The
rats were sacrificed for the measurement of the level of superoxide (SOD), glutathione
(GSH), reactive oxidative species (ROS), malondialdehyd (MDA), Interleukin (IL)-18,
IL-6, and tumor necrosis factor (TNF)-a level in the hippocampus. Western blot was
carried out to measure the hippocampal expression of microtubule-associated protein
1 light chain 3 (LC-3) and p62. Rats with VD have decreased number of neurons in
the hippocampus and cerebral cortex, as well as worse cognitive impairment. The
proliferation of activated microglia and astroglia, accompanied with attenuation of
myelination were observed in the white matter about 1 month after 2-VO operation.
These abnormalities were significantly ameliorated by tDCS treatment. Further study
revealed that anodal tDCS could suppress the MDA and ROS level, while enhance
the SOD and GSH level to reduce the oxidative stress. Anodal tDCS could inhibit
hypoperfusion-induced IL-18, IL-6, and TNF-a expression to attenuate inflammatory
response in hippocampus. Moreover, anodal tDCS treatment could alleviate autophagy
level. The study has demonstrated a possible therapeutic role of tDCS in the treatment
of cognitive impairment in VD.
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INTRODUCTION

Vascular dementia (VD) is the second most common cause of
dementia after Alzheimer’s disease, accounting for around 15%
of cases (O’Brien and Thomas, 2015). Rates of VD rise with
age. There have been no effective approved pharmacological
treatments available for VD up till now. Chronic cerebral
hypoperfusion played a causative role in VD (Du et al.,, 2017).
Previous studies demonstrated that cerebral hypoperfusion could
lead to oxidative stress, neuroinflammation, neurotransmitter
system dysfunction, mitochondrial dysfunction, disturbance
of lipid metabolism, and alterations of growth factor (Du
et al, 2017). Oxidative stress plays an important role in
cognitive deficits induced by the chronic cerebral hypoperfusion
(Chunjiea et al., 2016). Neuroinflammation characterized by
Interleukin (IL)-1B, IL-6, and tumor necrosis factor (TNF)-
a plays an important role in VD (Belkhelfa et al, 2018).
Autophagy, a lysosome-mediated catabolic pathway, contributes
to the maintenance of cellular homeostasis (Moloudizargari
et al, 2017). Decreasing autophagic activity may contribute
to cognitive improvement in rats with VD (Liu et al, 2018;
Venkat et al., 2018).

Transcranial direct current stimulation (tDCS) is a non-
invasive neuromodulation technique that has been used to
modulate brain function (Paulus, 2011). Anodal tDCS could
induce long-lasting alterations of cortical excitability and
enhance cerebral plasticity, both in experimental animals
and humans (Datta et al., 2010). Anodal tDCS could affect
synaptic plasticity, modulate the level of oxidative stress,
neuroinflammation, and autophagy (Scelzo et al., 2011; Laste
et al, 2012; Lu et al., 2015; Lee et al., 2018). Indeed, anodal
tDCS is a promising approach for brain diseases associated with
impaired neuroplasticity, which is simple to be used and is
beneficial for brain function (Podda et al., 2016). It's speculated
that anodal tDCS might exert similar roles in alleviate cognitive
impairment in VD. Anodal tDCS has been proven to be beneficial
for cognitive function in patients with VD (André et al., 2016).
However, the studies of tDCS on VD animal model are limited.

In the current study, we have tried to investigate the
possible roles and mechanisms of tDCS on improvement of
cognitive impairment of VD rat model. The study could provide
some evidences for using anodal tDCS as a potential non-
pharmacological treatment for VD.

MATERIALS AND METHODS
Animal Model

Animal use protocols were approved by the Institutional Animal
Care and Use Committee of Central South University in
compliance with National Institutes of Health guidelines. Sixty
male Sprague-Dawley rats, weighting 250-280 g (6-8 weeks old),
were provided by department of laboratory animals in Central
South University. The rats were maintained under controlled
temperature and humidity (22 £ 3°C and 50%, respectively)
with a 12 h light-dark cycle. All efforts were made to limit the
number of rats used and to minimize animal suffering. All food

and water were provided ad libitum throughout the trial. To
generate a rat model of VD, permanent bilateral common carotid
artery occlusion (2-VO) approach was applied as previously
reported (Zhu et al., 2011). Briefly, rats were anesthetized with
chloral hydrate; a neck ventral midline incision was made. The
common carotid arteries were exposed and then gently separated
from the vagus nerve. Carotids were occluded with a 1-week
interval between interventions, the right common carotid being
the first to be processed and the left one being occluded 1 week
later (Cechetti et al., 2010; Mirzapour et al., 2015). The sham
operated rats underwent the same procedures without carotid
artery ligation. After surgery, rats were left to recover for a
period of 1 week. Sixty SD rats were randomly divided into three
groups: (1) Sham group: Sham operation group treated with sham
stimulation, (2) VD group: VD rat models treated with sham
stimulation, (3) tDCS group: VD rat models treated with anodal
tDCS. Figure 1 summarized the temporal evolution of the study
protocols. Rats that exhibited abnormal behavioral effects during
the study, such as seizures, were excluded to avoid any potential
impact on the final results.

tDCS Treatment

One week after surgery, rats were placed in a stereotactic frame
after anethetized with chloral hydrate (350 mg/kg). A sagittal
incision was made in the scalp. A scalp and the underlying
tissues were removed, then the skull was dried with cotton swabs.
A custom-made polycarbonate tubes with the inner diameter
of 1 mm and the contact area on the skull of 3.14 mm? were
stereotactically placed on the sagittal suture with the center of
the electrode resting on 2.5 mm posterior to bregma, then the
tubes were subsequently attached to the bone surface with a
thin layer of non-toxic dental cement (super-bond C&B, Sun
Medical, Japan) and a second layer of two-component luting
resin (Ketac Cem Plus, 3MESPE AG, Germany) (Pikhovych
et al, 2016; Yu et al, 2019). To ensure current flow during
stimulation, the hollow implant was kept free of cement. After
surgery, the rats were transferred back to their home cages and
were allowed to recover for 1 week before undergoing tDCS. After
at least 1 week of post-surgical recovery, rats were randomized
into two groups receiving anodal tDCS or sham stimulation,
respectively. All procedures of tDCS and sham stimulation had
identical duration of current fade-in (10 s), fade-out (10 s) and
current strength (200 pA), except the stimulation duration (tDCS
30 min, sham 10 s) (Yang et al., 2019; Yu et al., 2019). Anodal
tDCS was repeated daily for 5 consecutive days, followed by a 2-
day pause, then subjected to another set of 5 stimulation days,
resulting in a total of 10 days of tDCS stimulation (Rueger et al.,
2012; Pikhovych et al., 2016; Yang et al., 2019). The stimulation
was conducted by the same researcher at the same time every
day. The anodal electrode was inserted into the polycarbonate
tube, which was filled with saturated saline. To avoid debris
accumulating in the polycarbonate tube, a cotton ball was placed
to seal the tube when not in use (Pikhovych et al, 2016).
The cathode electrode was a conventional rubber-plate electrode
wrapped by a wet cotton sheath (11 cm?) applied over the ventral
thorax of the rat by an elastic bandage (Podda et al., 2016).
Both anodal and cathodal electrodes were connected to a direct
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FIGURE 1 | The time schedule of protocols in the present study.

current stimulator (Ruihaikanglian, Jiangsu, China) for electric
current stimulation.

Morris Water Maze Task

The cognitive function was analyzed by the Morris water maze
(MWM) test 24 h after the last tDCS stimulation according to
previously described protocols (Guo et al., 2017; Schoenfeld et al.,
2017). Briefly, a circular water tank with 150 cm diameter and
50 cm depth was filled with 25°C water to a depth of 21 cm.
A circular platform (diameter: 10 cm; height: 20 cm) was located
in the center of the target quadrant. The navigation trials were
conducted for 5 consecutive days. The time taken for the rats
to find the platform was recorded as the escape latency. When
the rats reached the platform within 90 s, they remained on the
platform for 20 s. If the rats failed to find the platform within 90's,
they were gently guided to the platform and left on it for 20 s.
The escape latency was recorded as 90 s in such cases. One day
after the navigation trial, the platform was removed for a probe
trial. The time spent in the target quandrant and the numbers of
swimming across the platform site for up to 90 s were recorded
using a computer-based image analyzer automatically.

Tissue Preparation

The brain tissues from rats were collected after completion of
the tDCS treatment. All rats were deeply anesthetized using 10%
chloral hydrate (400 mg/kg). A subset of rats were perfused
transcardially with 0.9% NaCl followed by 4% paraformaldehyde
in 0.1M phosphate-buffered saline (PBS). The brains of these
rats were removed and post-fixed in the same fixative at 4°C
overnight. Then they were immersed consecutively in 20 and 30%
sucrose at 4°C until they sank. The remaining post-fixed brains
from 2.15 to 5.76 mm behind bregma were embedded in paraffin
and then cut into 10 pm thick coronal sections. Hematoxylin
and eosin (HE) staining were used to observe any histological
changes. Fresh brain tissues were quickly taken and then was fixed
in 4% paraformaldehyde for immunocytochemistry or stored
at —80°C for enzyme-linked immunoabsorbent assay (ELISA)
and western blot.

HE Staining

Hematoxylin and eosin staining was used to evaluate the
morphological changes of the hippocampal region CAl and
cerebral cortex. Sections were then sequentially immersed in
hematoxylin for 10 min and in eosin for 1 min (Fan et al,
2018). Four random visual fields from each brain slice were

analyzed. Morphological changes of neurons in the hippocampus
and cerebral cortex were observed under a microscope at 100
and 400 x magnification respectively. The number of surviving
neurons in the hippocampal CA1l area and cerebral cortex
was quantified under a light microscope at 400x magnification
through Image-Pro Plus software.

Immunohistochemistry

The coronal sections were incubated overnight with anti-glial
fibrillary acidic protein (GFAP) antibody, anti-ionized calcium
binding adaptor molecule 1 (Ibal) antibody, and anti-myelin
basic protein (MBP) antibody. After they were washed, the
sections were treated with appropriate biotinylated secondary
antibodies. To stain cell nuclei, the sections were incubated
with 4’-6-diamidino-2-phenylindole (DAPI) in PBST for
30 min. These sections were visualized by the diaminobenzidine
tetrahydrochloride (DAB) and H,O;. The white matter lesions,
astroglia and microglia activations were analyzed in corpus
callosum and internal capsule. Quantitative analysis of GFAP,
Ibal or MBP-positive cells present in the sections was carried
out under 400 x microscopic magnification by Image-pro Plus
software respectively. At least three random microscopic fields
from each section (three sections per rat) were calculated. The
results were presented in the tiled images. All counts were
performed in a blinded fashion.

Measurement of ROS

The intracellular levels of reactive oxidative species (ROS) were
assessed by the probe of DCFH-DA. The hippocampus was
separated, rinsed twice with PBS, made into cell suspensions,
then incubated in trypsin at 37°C for 25 min. Add ice-cold PBS
to stop the reaction. Cells were collected and centrifugated. The
sediment was incubated with DCFH-DA containing PBS at 37°C
for 30 min. The fluorescene-oxidized deprivation of DCFH-DA
was minitored with fluorescene microplate and ROS levels were
measured (Jiang et al., 2017).

Enzyme-Linked Immunoabsorbent Assay

The hippocampus was taken out and put into the homogenate
tube after being washed by cold normal saline. Appropriate
amount of normal saline at 4°C was added into the tube.
Homogenized the tissue, centrifugated at 4000 x g for
15 min, then collected the supernatant. The oxidative stress
markers in hippocampus were measured: superoxide dismutase
(SOD), malonic dialdehyde (MDA), and glutathione (GSH)
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(Jiang et al., 2017; Al-Amin et al., 2018). The protein levels of
interleukin (IL)-1f, IL-6 and TNF-a were evaluated by specific
ELISA kits following manufacturer’s instructions (Akang et al.,
2019). The commercial kits for examining these parameters
were purchased from Nanjing Jiancheng Bioengineering Institute
(Nanjing, China).

Western Blot

The expression levels of autophagy markers in the hippocampus
were analyzed by Western blot. In brief, hippocampuses were
washed with ice-cold PBS and homogenized in ice-cold RIPA lysis
buffer. Total protein concentration was quantified by BCA kit.
About 20-40 pg protein samples were loaded onto SDS-PAGE
gel for electrophoresis separation and were transferred to PVDF

membrane. After blocking, the membranes were incubated
overnight at 4°C with primary antibodies. The membrane was
then developed by ECL substrate, and images were captured
by a computerized system. Quantification was performed using
Image ] software. The following primary antibodies were used:
microtubule-associated protein 1 light chain 3 (LC3) and p62.
Insoluble p62 cannot be extracted by conventional methods, so
soluble p62 was studied in the present study.

Statistical Analysis

All statistical analysis was performed using SPSS 22.0 software.
The graphs were prepared by GraphPad prism (version 6.0,
GraphPad Software, Inc.). Multiple comparisons were analyzed
by one-way ANOVA with post hoc Bonferroni test. All data were
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presented as mean =+ standard deviation (SD). P < 0.05 was
considered as statistically significant.

RESULTS

Effects of tDCS on
Hypoperfusion-Induced Cognitive

Impairment

In this study, 60 male SD rats were used. Two rats died during the
2-VO surgery. The remaining rats completed all the experiments
without any abnormal behavioral effects, such as seizures. All rats
successfully finished the task with decreasing latencies to reach
the platform. The latencies to find the hidden platform and the
swimming distances of the VD rats were significantly longer than
those of the rats in the sham group (P < 0.05). Furthermore, tDCS
induced a significant decrease in escape latencies and swimming
distances across 5 days MWM training compared with the rats
in the VD group (P < 0.05) (Figures 2A,B). In the spatial
probe trials, rats in the VD model group made significantly fewer

crossings of the platform area compared to those in the sham
group (P < 0.05), whereas rats in the tDCS group crossed the
platform area significantly more times than those in the VD
group (P < 0.05) (Figure 2C). Rats in the VD group spent
less time in the target quadrant compared with the rats in the
sham group, while tDCS improved the reduction (P < 0.05)
(Figure 2D). The typical swimming paths recorded in the spatial
probe trial of each group were displayed in Figure 2E.

Effects of tDCS on Neurons in

Hippocampus and Cerebral Cortex

The representative photomicrographs of neurons in hippocampal
CA1 region and cerebral cortex were shown in Figure 3. Neurons
exhibited regular and compact arrangement in the hippocampal
CAl region and cerebral cortex of sham group rats, with
the cytoplasm stained and well-distributed. In the VD group,
neuron loss, shrinkage and loose arrangement were observed
in the hippocampal CA1 region and cerebral cortex. While in
the tDCS group, the neurons demonstrated a nearly normal
appearance in the hippocampal CA1 region and cerebral cortex,
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FIGURE 4 | (A) Photomicrographs of immunohistochemistry staining for GFAP, Iba1, and MBP in the corpus callosum of rats in each group (x400), scale bar:
100 wm. Quantification analysis of the number of GFAP positive (B), Iba1 positive (C), and MBP (D) positive neurons in the corpus callosum of rats from each group
(n = 6 per group, three sections per rat) (*P < 0.05).
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FIGURE 5 | (A) Photomicrographs of immunohistochemistry staining for GFAR, Iba1, and MBP in the internal capsule of rats in each group (x400), scale bar:
100 wm. Quantification analysis of the number of GFAP positive (B), Ibal positive (C), and MBP positive (D) neurons in the internal capsule of rats from each group
(n = 6 per group, three sections per rat) (*P < 0.05).
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comparable to those in the sham group. The number of live
neurons significantly decreased in the hippocampal CA1 region
and cerebral cortex of the VD group than the sham group, while
a higher count of live neurons was found in the hippocampal CA1
region and cerebral cortex of tDCS group than the VD group
(P < 0.05) (Figure 3).

Effects of tDCS on Demyelination and

Glial Activation

In the corpus callosum and internal capsule, a significant increase
in microglia and astroglia was observed in rats in the VD group
compared with rats in the sham group, accompanied by a greater

loss of white matter myelin in rats in the VD group. Anodal tDCS
attenuated demyelination and glial activation in rats with VD
(Figures 4, 5).

Effects of tDCS on Oxidative Stress Level

By using commercial kits, we found that SOD (P < 0.05) and
GSH (P < 0.05) reduced significantly, while the levels of ROS
(P < 0.05) and MDA (P < 0.05) increased significantly in the
hippocampus of rats with VD. Treatment with tDCS significantly
increased the SOD and GSH content. After tDCS treatment,
the level of ROS and MDA were suppressed. Thus, tDCS could
effectively inhibit the oxidative stress in rats with VD (Figure 6).

Frontiers in Neuroscience | www.frontiersin.org

January 2020 | Volume 14 | Article 28


https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

Guo et al.

tDCS in Vascular Dementia

A Sham VD tDCS
LC3-1 i —— —
LC3-II W —
L,
o 157 — T—
T
<5
52 1,04
32
=2 |
& 2 <
G 2 05 N
£
o \
2 ool 1 & :

Sham VD tDCS

FIGURE 8 | Effects of tDCS on the levels of LC3-1I/LC3-I (A) and soluble p62 (B) in the hippocampus of rats from each group (*P < 0.05).

B Sham VD tDCS
Sol. p62 - e——
Pacin | o e— —

o

o
J
*

e
'S
1

e
()
1

i

o
o

p62/B -actin protein expression

Sham VD tDCS

Effects of tDCS on Inflammatory

Parameters

By ELISA quantification, we found that the VD rats had
remarkably increased levels of inflammatory factors such as IL-
18, IL-6, and TNF-a (P < 0.05). Anodal tDCS significantly
alleviated hippocampal protein levels of IL-1p, IL-6, and TNF-a
(P < 0.05) in the rat model of VD (Figure 7).

Effects of tDCS on Autophagy Level

To determine the effects of tDCS on autophagy, the ratio of
LC3-II/LC3-1 and the protein expression level of soluble p62 in
the hippocampus were analyzed. The ratio of LC3-II/LC3-1 was
significantly greater in the VD group than that in the sham group
(P < 0.05). In addition, the expression level of the soluble p62
protein was markedly decreased in the VD group compared with
that in the sham group (P < 0.05). Anodal tDCS attenuated these
changes (Figure 8).

DISCUSSION

Anodal tDCS has promising potential therapeutic effects for
symptoms associated with dementia (Elder and Taylor, 2014).
Anodal tDCS exerts positive effects on cognition and brain
functions in mild cognitive impairment and major dementias,
including Alzheimer’s disease, Pakinson’s disease, however,
available studies on VD were limited (Meinzer et al., 2015;
Adenzato et al., 2019; Gomes et al., 2019).

Chronic cerebral hypoperfusion is closely related to
progressive cognitive impairment in rats (Lin et al., 2011). The
most widely used experimental model of VD and chronic cerebral
hypoperfusion is 2-VO rats (Du et al., 2017). It’s reported that the
modified 2-VO protocol may be more applicable, with similar

cognitive impairment and lower mortality rates, compared to
the standard 2-VO procedure (Cechetti et al., 2010). The present
study established a rat model to reproduce chronic cerebral
hypoperfusion by modified 2-VO. Cerebrovascular white
matter lesions are caused by chronic cerebral hypoperfusion
in VD. The neuropathological changes in VD rat models
were characterized by diffuse demyelination and gliosis in the
white matter, accompanied with neurodegeneration in the
hippocampus and cerebral cortex, which were in accordance
with previous reports (Shibata et al., 2004). Hippocampus was
sensitive to ischemia, especially the hippocampal CA1 region
(Ohtaki et al., 2003).

Brain stimulation techniques can attenuate cognitive
impairment in many neuropsychiatric diseases (Chang et al,
2018). The anodal tDCS has been conducted in healthy subjects,
Parkinson’s disease, Alzheimers disease, multiple sclerosis,
depression, and attention disorders, etc. (Lefaucheur, 2016;
Chang et al.,, 2018; Charvet et al., 2018; Manenti et al., 2018).
However, studies investigating the effect of tDCS on VD were
limited. It's reported that anodal tDCS of the left dorsolateral
prefrontal cortex could improve visual short-term memory
in patients with VD (André et al,, 2016). The present study
demonstrated the beneficial effects of anodal tDCS on the
cognitive deficit in a VD rat model. Our study is new in the
field of tDCS treatment by demonstrating its anti-autophagy,
anti-inflammatory, and anti-oxidant effects in VD.

Autophagy is a self-degradative process that is important
for balancing sources of energy. It involves lysosomal-
dependent recycling, synthesis, and degradation of intracellular
components, thus maintaining the stability of the internal
environment. It’s reported that decreasing activity of autophagy
may contribute to cognitive improvement in rats with VD
(Venkat et al., 2018; Wang et al., 2018). Inhibition of autophagy
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was beneficial to the hippocampal synaptic plasticity of the VD
rat model (Bin et al., 2019). In the present study, the autophagy-
lysosomal pathway was activated in the hippocampus of rats
with VD. Anodal tDCS could restore the excessive activation
of autophagy and help to partly recover the lost learning and
memory in VD rats. It's reported that BDNF expression was
enhanced by anodal tDCS, and BDNF could modulate autophagy
through the PI3K/Akt/mTOR pathway (Chen et al., 2013). At
present, role of autophagy activation in ischemic stroke remain
controversial. Autophagy is a double-edged sword. Excessive
autophagy can induce autophagic cell death. On the other hand,
moderate activation may play a protective role in cell damage.

Increased production of ROS or decreased capacity to clear
them could result in oxidative stress. Our data revealed a decrease
in the activities of antioxidant enzyme (SOD and GSH) in VD
rats, which was attenuated by tDCS. The level of MDA and ROS
was reduced by tDCS. In this study, anodal tDCS suppressed
oxidative stress induced by chronic cerebral hypoperfusion
and protected the hippocampal neurons from further damage
induced by overload of ROS. It’s reported that tDCS could
reduce oxidative stress in a mouse model of Parkinson’s disease
as well (Chengbiao et al., 2015). However, how the altered
oxidative status caused by tDCS remained to be determined in
the future study.

Neuroinflammation plays an important role in VD.
Proinflammatory cytokines IL-1B, IL-6, and TNF-a indepen-
dently resulted in cognitive impairment (Dugan et al., 2009;
Kitazawa et al., 2011; Belarbi et al., 2012). Our data demonstrated
that anodal tDCS could significantly restore hippocampus-
dependent cognitive deficit induced by neuroinflammation.
Previous studies have revealed a decrease in IL-18 and TNF-
a after a treatment with tDCS (Leffa et al., 2018; Oliveira
et al., 2019). However, how tDCS modulate neuroinflammatory
pathways is still not completely understood.

There were some limitations in the present study. First, rats
were sacrificed immediately after the last tDCS stimulation.
Longer time interval and different time points should be adopted
to evaluate the persistence of the effects of tDCS. Second, VD is
reported clinically in both males and females. Only male rats were
used in the study, therefore a further study is needed to include
both male and female rats. Whats more, 2-VO rat model is a
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