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Resting-state functional connectivity (RSFC) has been generally assessed with functional
magnetic resonance imaging (fMRI) thanks to its high spatial resolution. However, fMRI
has several disadvantages such as high cost and low portability. In addition, fMRI may
not be appropriate for people with metal or electronic implants in their bodies, with
claustrophobia and who are pregnant. Diffuse optical tomography (DOT), a method of
neuroimaging using functional near-infrared spectroscopy (fNIRS) to reconstruct three-
dimensional brain activity images, offers a non-invasive alternative, because fNIRS as
well as fMRI measures changes in deoxygenated hemoglobin concentrations and, in
addition, fNIRS is free of above disadvantages. We recently proposed a hierarchical
Bayesian (HB) DOT algorithm and verified its performance in terms of task-related
brain responses. In this study, we attempted to evaluate the HB DOT in terms of
estimating RSFC. In 20 healthy males (21–38 years old), 10 min of resting-state
data was acquired with 3T MRI scanner or high-density NIRS on different days. The
NIRS channels consisted of 96 long (29-mm) source-detector (SD) channels and
56 short (13-mm) SD channels, which covered bilateral frontal and parietal areas.
There were one and two resting-state runs in the fMRI and fNIRS experiments,
respectively. The reconstruction performances of our algorithm and the two currently
prevailing algorithms for DOT were evaluated using fMRI signals as a reference.
Compared with the currently prevailing algorithms, our HB algorithm showed better
performances in both the similarity to fMRI data and inter-run reproducibility, in terms
of estimating the RSFC.

Keywords: resting-state functional connectivity (RSFC), near-infrared spectroscopy (NIRS), diffuse optical
tomography (DOT), hierarchical Bayesian estimation algorithm, minimum norm algorithm
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INTRODUCTION

Brain consists of spatially distributed regions that have their
own function, but these regions are functionally connected,
that is, they continuously send information to each other.
Recent progress in the acquisition and analysis of functional
neuroimaging data has made it possible to explore functional
connectivity in the human brain. Functional connectivity is
defined as a temporal correlation of neuronal activation patterns
between anatomically distant brain regions and has been assessed
using various non-invasive functional neuroimaging modalities
including functional magnetic resonance imaging (fMRI),
magnetoencephalography (MEG) and electroencephalography
(EEG). In particular, functional connectivity under resting
conditions (resting-state functional connectivity, RSFC) has
attracted widespread attention in neuroscience (Biswal et al.,
1995; Greicius et al., 2003). One of the reasons for this might
be that a growing body of studies has reported altered levels
of functional connectivity in neurological and psychiatric brain
disorders, including Alzheimer’s disease, depression, dementia
and schizophrenia (van den Heuvel and Hulshoff Pol, 2010).

Most RSFC studies use fMRI because of its high spatial
resolution. For example, the first direct evidence for the default
mode network (DMN) was demonstrated using resting-state
fMRI data based on seed-based correlation analysis (Greicius
et al., 2003). The dorsal attention network (DAN), the resting-
state network antagonistically coupled with the DMN, were
also identified using resting-state fMRI data with the seed-
based approach (Fox et al., 2005). There is a more sophisticated
approach than the seed-based correlation analysis, the use of
spatial independent component analysis (ICA). Spatial ICA is
a widely used method for decomposing fMRI data into signal
and noise components and was implemented using the Group
ICA of fMRI Toolbox (GIFT)1. Multiple resting-state networks
including DMN can be easily identified by applying spatial ICA
to resting-state fMRI data (Jafri et al., 2008), and therefore the
use of this approach is increasing. Despite growing use of fMRI
in RSFC studies, fMRI has dis-advantages of high cost and low
portability. In addition, fMRI may not be safe or appropriate
for people (1) with metal or electronic implants in their bodies
(such as pacemakers, cochlear implants, metallic tattoos, etc.)
because MRI involves exposure to strong magnetic fields and
induced electric fields, (2) with claustrophobia because subjects
are required to enter narrow scanner tube and (3) who are or may
be pregnant because the risk of exposure to magnetic fields for the
fetus is still unknown.

Functional near-infrared spectroscopy (fNIRS) is a non-
invasive optical imaging technique that measures changes in
both oxygenated (oxy-) and deoxygenated (deoxy-) hemoglobin
(Hb) concentrations based on changes in light absorption at
multiple wavelengths, whereas fMRI mainly measures changes
in deoxy-Hb concentrations, referred to as the blood-oxygen-
level-dependent (BOLD) signals. Because fNIRS is free of above
disadvantages in fMRI, it can be used as an alternative human
brain mapping technique for situations in which fMRI is

1http://trendscenter.org/software/gift/

contraindicated. Rather than an alternative to fMRI, fNIRS would
provide even additional information, because fNIRS creates
images of both oxy- and deoxy-Hb simultaneously (as described
above, the BOLD signal is mostly sensitive to deoxy-Hb) and
has a higher sampling rate than fMRI does (>10 Hz with
fNIRS, whereas∼0.5 Hz with fMRI). Thanks to these advantages,
fNIRS has been used to investigate RSFC. Lu et al. (2010),
one of the earliest resting-state fNIRS studies, demonstrated
that, using seed-based correlation analysis, RSFC maps over the
sensorimotor and auditory cortexes were consistent with those
of previous fMRI findings. Furthermore, Duan et al. (2012)
and Sasai et al. (2012) examined relationship of RSFCs between
fNIRS and fMRI by simultaneously recording these signals and
demonstrated that fNIRS can be used to collect information
regarding RSFC defined in fMRI. As for the approach to estimate
RSFC, Zhang et al. (2010) compared a spatial ICA with the
conventional seed-based correlation approach with respect to
the estimation of RSFC from fNIRS data and demonstrated
the superior performance of spatial ICA with higher sensitivity
and specificity, especially in the case of higher noise level
(Zhang et al., 2010). Despite the success these resting-state
fNIRS studies achieved, current standard fNIRS imaging (i.e.,
optical topography that is two-dimensional image based on
the spatial interpolation method) has several disadvantages.
First, fNIRS imaging uses sparse arrangements of source and
detector optodes (and therefore measurement channels are
also sparsely arranged) and therefore the positions of the
measurement channels do not always overlap the real activation
foci. Therefore, the spatial resolution of fNIRS imaging is low
compared to fMRI. Second, the positions of the measurement
channels relative to brain anatomy vary among subjects, and
also among runs within the same subjects when the runs were
performed on different days, resulting in reduced reliability of
comparison among subjects and runs. Third, fNIRS signals are,
in most cases, degraded by the hemodynamic changes in the
scalp layer. Changes in scalp hemodynamics sometimes exceed
those in cortical hemodynamics (Takahashi et al., 2011). In
these three problems, the third one was dealt with by several
studies that succeeded to reduce scalp artifacts with the use
of principal component analysis (PCA) (Zhang et al., 2005),
independent component analysis (ICA) (Kohno et al., 2007),
short-distance channel regression (Zeff et al., 2007; Eggebrecht
et al., 2014) or combination of PCA and multi-distance probe
arrangement (Sato et al., 2016). However, there is a way to solve
all the three problems at once, a method called diffuse optical
tomography (DOT).

Diffuse optical tomography is an advanced technique to
reconstruct three-dimensional images showing changes in
cerebral hemodynamics. The technique follows the strategy to
use high-density DOT grids, which bring about overlapping
measurements at multiple source-detector separation distances.
The use of overlapping measurements improves spatial
resolution in the head surface direction. In addition, different
measurement distances provide information about different
depths. This is because the penetration depth of the light
increases with the source-detector separation distance.
Depending on the source-detector distance and the subject’s
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scalp/skull thickness, the light may or may not sufficiently
penetrate through the superficial layers (scalp) to the deeper
layers (brain tissue) (Rupawala et al., 2018). There are two stages
to obtain DOT images. The first stage is forward modeling where
the measurement process is simulated using a head model and
physical laws. The second stage is image reconstruction where
the hemodynamic changes inside the head medium are estimated
from fNIRS signals by inverting the forward model. The image
reconstruction problem is formulated as a linear inverse problem
(Boas et al., 2004), which is ill-posed and therefore requires
a priori information to constrain possible solutions. One
approach to solve the inverse problem is the regularization. In
the DOT algorithm based on the regularization (Zeff et al., 2007;
Eggebrecht et al., 2014), a DOT image is obtained by minimizing
a cost function consisting of the data fitting term and constraint
terms representing a priori information. Another is the Bayesian
approach, which uses a probabilistic model of observations and
constraints called the likelihood function and prior distribution,
respectively (Guven et al., 2005; Shimokawa et al., 2012).

Although there were a variety of image reconstruction
algorithms, no research had proposed a DOT algorithm to
accurately reconstruct both the scalp and cortical activities
simultaneously. Most studies took a two-process approach: (1)
hemodynamic changes in the superficial layers, including scalp
and skull, were removed from all measurements and (2) a DOT
image reconstruction method was applied to the denoised data
in order to estimate only the cortical activity. Most artifact-
removal methods used in the first process were based on an
assumption that the temporal patters in the hemodynamic
changes of the superficial layers are homogeneous over the
whole head (e.g., Kohno et al., 2007) or they are similar
to those of short-distance channels (Eggebrecht et al., 2014).
However, the artifact-removal methods based on the above
assumption would not work well if the systemic interference
occurring in the superficial layers of the human head is
inhomogeneous across the surface of the scalp as reported in
Gagnon et al. (2012, 2014) or if hemodynamic changes in
the superficial layers are highly correlated with those in the
cortex (though see Kirilina et al., 2012; Funane et al., 2014; for
methods to overcome this). To avoid these weak points in the
artifact-removal methods based on temporal information, we
recently proposed a method that uses the spatial information
of the optical paths of all observation channels, which are not
affected by temporal inhomogeneity or correlation, in order
to remove the scalp hemodynamics (Shimokawa et al., 2013).
The method is an expanded version of the previously proposed
hierarchical Bayesian (HB) DOT algorithm (Shimokawa et al.,
2012) and is able to reconstruct both the scalp and cortical
activities simultaneously.

In the first version of our Bayesian DOT algorithm
(Shimokawa et al., 2012), we introduced sparse regularization
to improve the depth accuracy and the spatial resolution
and verified its performance with phantom experiments.
Then, in the expanded version (Shimokawa et al., 2013), we
introduced different types of regularization for the cortex and
the scalp, sparse and smooth regularization to cortical and
scalp’s hemodynamic changes, respectively, and validated the

proposed method through both two-layer phantom experiments
and MRI-based head-model simulations. Furthermore, we have
conducted real human experiments with movement tasks and
confirmed the performance of the HB DOT on imaging task-
related functional responses (Yamashita et al., 2016). The present
study therefore aims to investigate whether the HB DOT is
used successfully to estimate spontaneous changes in cortical
hemodynamics instead of task-related changes. We conducted
real human experiments to record resting-state fNIRS signals
from bilateral frontal and parietal areas using high-density
probe array with multiple-distance channels, which required
a major improvement of measurement (i.e., development of a
custom-made holder that stably fits to the scalp). Then, we
calculated the RSFC from the estimates of cortical hemodynamic
changes with HB DOT. We also acquired resting-state fMRI
data and used it as a reference in order to validate the
performance of our algorithm. In addition, we compared the
performance of our method with that of the two-process
approach, which is the currently prevailing method for DOT.
As for the DOT algorithms used in the two-process approach,
we adopted the modified depth-compensation minimum-norm
algorithm (abbreviated as MN) and the current standard
method developed in Washington University (named in this
study as MN-WU) (Eggebrecht et al., 2014), in line with our
previous study on imaging task-related activities (Yamashita
et al., 2016). Because there are still few studies on RSFC
using DOT (White et al., 2009; Eggebrecht et al., 2014),
the present study will provide important information to the
relevant research areas.

MATERIALS AND METHODS

To obtain resting-state brain activity, fMRI and fNIRS data were
recorded during resting state on different days. fMRI data was
used as a reference. fNIRS signals were passed through DOT
analyses to reconstruct three-dimensional images of changes in
cerebral hemodynamics. Three different DOT algorithms, HB,
MN and MN-WU were compared in terms of resting-state
connectivity. Schematic of the processing stream for fNIRS and
fMRI data are shown in Figure 1.

Subjects
Twenty healthy male subjects aged between 21 and 38
participated in both fMRI and fNIRS experiments on different
days. All of the subjects, except for one subject who is one of
the authors, were paid for their participation. None reported
history of neurological or psychiatric disorders. All subjects gave
written informed consent to participate in the experimental
procedures, which were approved by the ATR Review Board
Ethics Committee.

Tasks
In the fMRI experiment, each subject undergone a 10 min resting
state condition in which he/she was instructed to stay still, to
stay awake, to fixate on the crosshair, and not to think about
specific things.
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FIGURE 1 | Schematic of the processing stream for fNIRS and fMRI data.

In the fNIRS experiment, each subject undergone a two-back
working memory task (took about 15 min) and two 10 min
resting state conditions similar to that in the fMRI experiment.
The resting state conditions were undergone before and after
the WM task condition. We did not use the WM data in
the present study.

MRI and fMRI Data Acquisition
Subjects lay down in an MRI scanner. Structural MR images
were acquired for construction of individual head models,
and functional images were acquired for evaluation of the
reconstructed DOT images. All MRI data were recorded using a
3T MRI scanners, MAGNETOM Trio Tim, MAGNETOM Verio,
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MAGNETOM Prisma (Siemens Medical Systems, Erlangen,
Germany). The acquisition parameters for T1-weighted images
were as follows: repetition time (TR) = 2,300 ms, time of echo
(TE) = 2.98 ms, flip angle = 9◦, slice thickness = 1 mm, field of
view (FOV) = 256 mm, imaging matrix = 256 × 256, inversion
time (TI) = 900 ms. The acquisition parameters for echo-planar
images (EPIs) were as follows: TR = 2,500 ms, TE = 30 ms, flip
angle = 80

◦

, slice thickness = 3.2 mm, FOV = 212 mm, imaging
matrix = 64× 64 mm.

NIRS Data Acquisition
Subjects were seated in a comfortable reclining armchair.
fNIRS data were acquired using commercial NIRS equipment
(SMARTNIRS, Shimadzu Corp., Japan) with probes whose
shapes were customized for high-density (HD) measurements.
Using a custom-made holder, 32 source and 32 detector probes
were placed on the scalp to cover bilateral frontal and parietal
areas. We adopted four 4 × 4 square arrays (Figures 2A,B),
where the first- and second-shortest distances between source
and detector probes were 13 and 29 mm, respectively. We used
all of the first- and second-nearest neighbor measurement pairs,
which provided 56 ‘first’ and 96 ‘second’ channels, respectively,
resulting in a total of 152 measurement channels.

Just after the fNIRS recording, the surface image of the
subject’s face, the positions of the three fiducial markers (nasion,
left and right preauricular points) and the probe positions were
acquired with a hand-held laser scanner and a stylus marker
(FastSCAN; Polhemus, United States), for the co-registration of
the fNIRS data to the T1-MRI.

Three near-infrared beams (wavelength 780, 805, and 830 nm)
were irradiated and detection beams sampled at 18.5 Hz were
used to calculate1[oxy-Hb] and1[deoxy-Hb].

fMRI Data Processing
fMRI signals were processed using SPM12 (the Wellcome
Centre for Human Neuroimaging). The first four volumes were
discarded to allow for T1 equilibration. The remaining data
were corrected for slice timing and realigned to the mean
image of that sequence to compensate for head motion. Next,
the structural image was co-registered to the mean functional
image and segmented into three tissue classes (gray matter,
white matter, and cerebrospinal fluid) in the standard Montreal
Neurological Institute (MNI) space. Using associated parameters,
the functional images were spatially normalized into the MNI
space and resampled in a 2 × 2 × 2 mm grid. Finally, they were
spatially smoothed using an isotropic Gaussian kernel of 8 mm
full-width at half maximum (FWHM).

fNIRS Data Preprocessing
Prior to DOT analysis, the following preprocessing was applied
to fNIRS signals.

(1) Convert voltage data into log-ratios using a base-
10 logarithm.

(2) Calculate the coefficient of variation (CV, in%) of each
channel for each wavelength, where CV = 100 × σ/µ,
σ is the signal standard deviation, and µ is the mean

signal level. Then, remove the bad channels which had CVs
exceeding 15% (Piper et al., 2014) at least one of three
wavelength or were saturated [the mean number of rejected
channels was 13.0± 12.2 (SD)].

(3) Apply a high-pass filter (Butterworth filter of order 3, cutoff
0.009 Hz) and a low-pass filter (Butterworth filter of order
7, cutoff 0.08 Hz).

(4) Remove scalp hemodynamics from the filtered data, only
in case of DOT image reconstruction with the MN and
MN-WU algorithms. In this process, the global average
of all the ‘first’ channels other than the bad channels is
regarded as the scalp dynamics and regressed out. This
process is omitted in case of DOT image construction with
the HB algorithm.

(5) Remove the bad time points when absolute signal
amplitudes exceeded more than three standard deviations
from the mean at least one of the “first” channels [the
mean number of removed time points was 590± 247 (SD)
(roughly equal to 32 s)].

DOT Forward Model Construction
The DOT forward model was constructed in the following way.
First, an individual head model was constructed by segmenting
their T1 structural image into five tissue layers [scalp, skull,
cerebrospinal fluid (CSF), gray matter, and white matter], using
FreeSurfer software2. Positions of the fNIRS probes were then co-
registered to the head model using an affine transformation. The
rotation and translation parameters of the affine transformation
were optimized so that a subject’s facial surface measured by
the laser scanner fitted that extracted from the T1 anatomical
image. Next, the photon migration process inside the head was
simulated with Monte Carlo simulation software MCX (Fang and
Boas, 2009) with 109 photons. We used tissue optical parameters
common to all three wavelengths (Table 1), as presented in
a previous study (Fang, 2010). Finally, the sensitivity matrix,
which relates the absorption changes in the head tissue voxels
to the light intensity changes at the source-detector pairs,
was computed with Rytov approximation to the MCX results
(Shimokawa et al., 2012). For computation of the sensitivity
matrix, the 1 × 1 × 1 mm voxel space was down-sampled to
4× 4× 4 mm voxel space in the reconstructed images. The image
reconstruction region included the scalp and cortical voxels
inside a 28-mm-deep cuboid, whose surface was a square along
the scalp surface. This was obtained by extending the diagonals
of the 5× 5 NIRS probe square by a factor of 1.5.

DOT Image Reconstruction With the HB
Algorithm
DOT image reconstruction with the HB algorithm has two
steps. In the first step, DOT image is reconstructed from
the preprocessed fNIRS signals, using the modified version of
the depth-compensation minimum norm image reconstruction
algorithm (MN). In the next step, the DOT image is refined using
the iterative algorithm with the MN DOT image obtained in the
first step as an initial value and a prior. Note that the preprocessed

2https://surfer.nmr.mgh.harvard.edu
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FIGURE 2 | Channel configuration (A,B) and available ROIs on the brain surface (C). (A) Configuration of the short-distance channels, (B) configuration of the
long-distance channels. Red and blue squares represent source and detector positions, respectively. Yellow circles represent measurement channel positions. Note
that, in long-distance channels, some channels (for example, ch1 and ch3) overlap each other in real situation, though not precisely described as such.
A custom-made holder was divided into two parts. One is used to cover frontal areas and its center positioned on Fz (according to the international 10–20 system).
The other is used to cover parietal areas and its center positioned on Pz. (C) available ROIs for Shen’s atlas (see section “Calculation of Resting-State
Connectivity” for the definition of available ROIs). The black lines indicate the central sulci.

fNIRS signals used in both steps are not passed through the scalp
hemodynamics removal (the 4th process in section “fNIRS data
preprocessing”).

For the HB DOT image reconstruction in the second step,
we used the HB model presented in Yamashita et al. (2016).
The hierarchical prior distribution has mean and confidence (or
reliability) parameters. The mean parameter λ0ı were the mean
square values of the solutions obtained from the MN DOT in the
first step. The confidence parameter γ0 controls the width of the

hierarchical prior distribution (the variance of the hierarchical
prior distribution is inversely proportional to the confidence
parameter); large γ0 narrows the hierarchical prior distribution
around the mean value λ0ı , and the estimation depends more
critically on the solutions obtained from MN DOT in the first
step. The confidence parameter γ0 was set to L × 0.1, where L is
data length, on the basis of our experience. But, we also tried the
following settings; γ0 = L × 0.01, L × 0.001, L × 0.0001. For the
detail of the HB algorithm, see Yamashita et al. (2016).
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TABLE 1 | Optical parameters in various head tissue types (common to all three
wavelengths of 780, 805, and 830 nm).

Tissue types Absorpt. Coeff.
µa (mm−1)

Scattering Coeff.
µs (mm−1)

Anisotropy
(g)

Refract.
Index (n)

Scalp and skull 0.019 7.8 0.89 1.37

CSF 0.004 0.009 0.89 1.37

Gray matter 0.02 9.0 0.89 1.37

White matter 0.08 40.9 0.84 1.37

DOT Image Reconstruction With the
MN/MN-WU Algorithms
The DOT image with the MN algorithm and that with the
MN-WU algorithm were also computed for comparison. As
mentioned in section “fNIRS data preprocessing,” in both MN
and MN-WU algorithms, DOT image is reconstructed from the
preprocessed fNIRS signals whose scalp hemodynamics were
removed by regressing out the averaged ‘first’ channel data.

As for the MN-WU algorithm, the spatially variant parameter
was set to β = 0.1 and the regularization parameter α was
automatically determined by maximizing the marginal likelihood
of each data set (see Culver et al., 2003).

As for the MN algorithms, the spatially variant parameter
was set to β = meanνε I20 mm(ρ2)ν where I20 mm is a voxel index
set whose depth from the scalp is around 20 mm. And the
regularization parameter α was automatically determined by
maximizing the marginal likelihood using all the measurements
included in the Itask. See the Appendix of Yamashita et al. (2016)
for the mathematical details.

Calculation of Resting-State
Connectivity
Irrespective of the DOT algorithm, the reconstructed DOT image
was passed through a spatial normalization into the standard
MNI space and spatial smoothing with a Gaussian kernel of
8 mm full width at half maximum (FWHM), before calculation
of resting-state functional connectivity (RSFC). These processes
were done with SPM12.

The RSFC for both fMRI and DOT was obtained in the
following way, using spatially normalized fMRI and DOT images,
respectively. First, all cortical voxels were categorized into 278
regions of interest (ROI), based on functional-connectivity-based
atlas (Shen et al., 2013). Then, voxels with sensitivity values of
more than 0.5 for all subjects were regarded as sensitive voxels,
and ROIs including more than or equal to 10 sensitive voxels were
regarded as available ROIs (Figure 2C for Shen’s atlas). Third,
for each available ROI, timeseries of all sensitive voxels within
the ROI were averaged. These mean timeseries were assumed to
represent temporal activity of the corresponding ROI. Finally,
partial correlations between all pairs of available ROIs were
computed to make a correlation matrix. Partial correlation was
used to reduce the influence of extra-neural components such
as physiological noise signals due to spontaneous low-frequency
oscillations, respiration and cardiac pulsation (Sakakibara et al.,
2016). Note that all the following analyses were done for sensitive
voxels and available ROIs.

The reason why we used Shen’s atlas rather than the widely
used Brodmann-based automatic anatomic labeling (AAL) atlas
is as follows. The AAL atlas uses Brodmann areas which are based
on cytoarchitecture. This atlas is not ideal because of its coarse-
grained nature (116 regions for the AAL atlas whereas 278 regions
for the Shen’s atlas in our data) and the risk of including different
functional areas within a single region, with the consequence that
the resultant mean timeseries may not accurately represent any of
the contributing timeseries. Shen’s atlas is developed to avoid this
pitfall and will provide meaningful nodes (Shen et al., 2013), and
therefore is suitable for our case.

For reference, we will present the corresponding results for the
AAL atlas in the Supplementary Material.

Comparison of Connectivity Matrices
Among DOT Algorithms
In order to establish the superiority of the HB DOT in
the estimation of RSFC, we compared correlation matrices
among the DOT algorithms (HB, MN, MN-WU) in the
following three ways.

Because it seems reasonable to use fMRI data as a reference,
we first compared similarity of RSFCs between fMRI and DOT
among three DOT algorithms, where correlation coefficient was
used as a similarity measure. The comparison was done in the
following way: (1) the lower triangular portion of correlation
matrix, Clow, was transformed to z(Clow) by using Fisher’s
z-transformation, (2) correlation coefficient of z(Clow) between
fMRI and DOT, RfMRI-DOT , was calculated, (3) the correlation
coefficient RfMRI-DOT was transformed to z(RfMRI-DOT) by using
Fisher’s z-transformation, (4) differences in mean z(RfMRI-DOT)
among three DOT algorithms were tested using one-way analysis
of variance (ANOVA) followed by multiple comparisons with the
Tukey–Kramer correction.

Second, we compared inter-run reproducibility of RSFC
estimation among three DOT algorithms. The comparison was
done in the following way: (1) the lower triangular portion
of correlation matrix, Clow, was transformed to z(Clow) by
using Fisher’s z-transformation, (2) correlation coefficient of
z(Clow) between run1 and run2, Rses1-ses2, was calculated,
(3) the correlation coefficient Rses1-ses2 was transformed to
z(Rses1-ses2) by using Fisher’s z-transformation, (4) differences
in mean z(Rses1-ses2) among three DOT algorithms were tested
using one-way analysis of variance (ANOVA) followed by
multiple comparisons.

As a complementary metric to Pearson’s correlation, intra-
class correlation (ICC; McGraw and Wong, 1996) was also used
for assessment of reproducibility across runs. Both single and
average measures, i.e., ICC(C,1) and ICC(C,k), were calculated
using MATLAB function ICC by Arash Salarian (available at
MATLAB Central File Exchange).

Third, we performed additional analysis on intra-run test–
retest reliability assessment. In this analysis, resting-state fNIRS
data recorded in each 10 min run was firstly divided into
two segments of equal length [i.e., first half (FH) and second
half (SH)]. Note that duration of each half is 5 min at most
(the mean is about 4 min and 44 s) because bad time points
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FIGURE 3 | Illustration of intra-run reproducibility and half-length inter-run
reproducibility calculations for fNIRS data. The number of subjects, N, was 20.

were removed in the fNIRS data preprocessing (see section
“fNIRS Data Preprocessing”). As shown in Figure 3, intra-
run reproducibility was assessed using two pairs of datasets;
run1-FH and run1-SH (intra_run1), as well as run2-FH and
run2-SH (intra_run2). In addition, inter-run reproducibility
(denoted by half-length inter-run reproducibility to distinguish
it from the previous one using full-length data) was assessed
with two pairs of datasets; run1-FH and run2-FH (inter_FH),
as well as run1-SH and run2-SH (inter_SH). As measures for
these reproducibilities, we used Pearson’s correlation, ICC(C,1)
and ICC(C,k) again.

We compared intra-run reliability among functional images
(i.e., fMRI vs. HB vs. MN vs. MN-WU). More specifically,
differences in mean measures for intra-run reliability were tested
using one-way ANOVA followed by multiple comparisons.

In addition, we compared intra-run reproducibility and half-
length inter-run reproducibility. Because resting-state fNIRS
was acquired before and after a WM task, this comparison
will serve to investigate whether the task affected the resting-
state connectivity.

RESULTS

Similarity Between fMRI and DOT
Mean and SD maps for RSFCs of fMRI and DOT with HB, MN
and MN-WU algorithms are shown in Figures 4, 5, respectively.
The mean map showed a common tendency between fMRI and
fNIRS (i.e., HB, MN, and MN-WU) that most pairs between
adjacent ROIs had positive correlations, though some of them
(e.g., R.BA7.5-R.BA7.6) had negative correlations. Additional
findings from the mean map is that some of frontal-parietal pairs
(e.g., R.BA7.8-R.BA9.4) and contralateral counterpart pairs (e.g.,
R.BA9.4-L.BA10.1) had positive correlations in fMRI, whereas
such a tendency was weak for the DOT cases. As for the SD
maps, variability across subjects was little in fMRI, whereas it was
relatively large especially for the pairs between adjacent ROIs in
fNIRS regardless of the DOT algorithms.

Similarity of RSFCs between fMRI and DOT for each run and
DOT algorithm is summarized in Table 2. One-way ANOVA
applied to data combined between runs revealed a significant
difference among three DOT algorithms for both oxy- and deoxy-
Hb [F(2,117) = 4.27, p = 0.0162 for oxy-Hb; F(2,117) = 7.69,
p = 0.0007 for deoxy-Hb]. The post hoc Tukey’s HSD test revealed,
for both oxy- and deoxy-Hb, that HB had significantly higher
correlation values than both MN and MN-WU did (p< 0.05), but

FIGURE 4 | Mean maps for RSFCs of fMRI and DOT with HB, MN and MN-WU algorithms. Correlation matrices were averaged across subjects and runs, for (A)
oxy-Hb and (B) deoxy-Hb in the case of DOT. F_L, left frontal area; F_R, right frontal area; P_L, left parietal area; P_R, right parietal area.
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FIGURE 5 | SD maps for RSFCs of fMRI and DOT with HB, MN and MN-WU algorithms. SDs of correlation matrices were computed across subjects and runs, for
(A) oxy-Hb and (B) deoxy-Hb in the case of DOT. F_L, left frontal area; F_R, right frontal area; P_L, left parietal area; P_R, right parietal area.

the difference of correlation values between MN and MN-WU
was not significant.

Inter-Run Reproducibility, Intra-Run
Reproducibility
Mean and SD maps for RSFCs are compared between
runs in Figures 6, 7, respectively. Mean ± SD of inter-
run reproducibility (i.e., Pearson’s correlation and inter-class
correlation of correlation matrices between run 1 and 2) is
summarized in Table 3.

As for Pearson’s correlation, one-way ANOVA revealed a
significant difference among three DOT algorithms for both oxy-
and deoxy-Hb [F(2,57) = 11.0, p = 9.06 × 10−5 for oxy-Hb;
F(2,57) = 10.9, p = 9.89 × 10−5 for deoxy-Hb]. The post hoc
Tukey’s HSD test revealed, for both oxy- and deoxy-Hb, that HB
had significantly higher correlation values than both MN and
MN-WU did (p < 0.05), but the difference of correlation values
between MN and MN-WU was not significant.

As for the ICC metrices, the following results were obtained.
First, for ICC(C,1), one-way ANOVA revealed a significant

TABLE 2 | Similarity of correlation matrices between fMRI and DOT.

HB MN MN-WU

oxy-Hb run 1 0.34 ± 0.09 0.29 ± 0.10 0.29 ± 0.10

run 2 0.35 ± 0.08 0.30 ± 0.08 0.30 ± 0.09

deoxy-Hb run 1 0.33 ± 0.08 0.25 ± 0.11 0.26 ± 0.12

run 2 0.34 ± 0.08 0.27 ± 0.11 0.25 ± 0.10

Values of correlation coefficients are presented as mean ± standard deviation (SD).

difference among three DOT algorithms for both oxy- and
deoxy-Hb [F(2,57) = 11.0, p = 9.30 × 10−5 for oxy-Hb;
F(2,57) = 9.81, p = 0.0002 for deoxy-Hb]. The post hoc Tukey’s
HSD test revealed, for both oxy- and deoxy-Hb, that HB had
significantly higher ICC(C,1) values than both MN and MN-WU
did (p< 0.05), but the difference of ICC(C,1) values between MN
and MN-WU was not significant.

Then, for ICC(C,k), one-way ANOVA revealed a significant
difference among three DOT algorithms for both oxy- and deoxy-
Hb [F(2,57) = 10.5, p = 0.0001 for oxy-Hb; F(2,57) = 8.61,
p = 0.0005 for deoxy-Hb]. The post hoc Tukey’s HSD test revealed,
for both oxy- and deoxy-Hb, that HB had significantly higher
ICC(C,k) values than both MN and MN-WU did (p < 0.05), but
the difference of ICC(C,k) values between MN and MN-WU was
not significant.

Intra-run reproducibility (i.e., similarity of RSFCs between FH
and SH) is summarized in Table 4.

One-way ANOVA revealed that Pearson’s correlation value is
significantly different among functional images [F(3,136) = 27.26,
p = 7.25 × 10−14 for oxy-Hb; F(3,136) = 23.84, p = 1.84 × 10−12

for deoxy-Hb]. The post hoc Tukey’s HSD test revealed, for both
oxy- and deoxy-Hb, that HB had significantly higher Pearson’s
correlation than both MN and MN-WU did (p < 0.05), but the
difference between HB and fMRI was not significant.

Similarly, according to one-way ANOVA, ICC(C,1) is
significantly different among functional images [F(3,136) = 27.41,
p = 6.28 × 10−14 for oxy-Hb; F(3,136) = 24.59, p = 8.94 × 10−13

for deoxy-Hb]. According to the Tukey’s HSD test, for both oxy-
and deoxy-Hb, HB had significantly higher ICC(C,1) than both
MN and MN-WU did (p < 0.05), but HB was not significantly
different from fMRI. In addition, one-way ANOVA and post hoc
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FIGURE 6 | Mean maps for RSFCs are compared between run 1 and run 2. Correlation matrices are averaged across subjects for (A) oxy-Hb and (B) deoxy-Hb.
The upper and lower rows correspond to run 1 and run 2, respectively. ROIs are displayed in the same order as those in Figures 4, 5.
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FIGURE 7 | SD maps of RSFCs for run 1 and run 2. SDs of correlation matrices are computed across subjects for (A) oxy-Hb and (B) deoxy-Hb. The upper and
lower rows correspond to run 1 and run 2, respectively. ROIs are displayed in the same order as those in Figure 6.
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TABLE 3 | Inter-run reproducibility.

HB MN MN-WU

oxy-Hb r 0.76 ± 0.06 0.61 ± 0.13 0.66 ± 0.12

ICC(C,1) 0.76 ± 0.06 0.61 ± 0.13 0.65 ± 0.12

ICC(C,k) 0.86 ± 0.04 0.75 ± 0.10 0.78 ± 0.09

deoxy-Hb r 0.76 ± 0.07 0.60 ± 0.13 0.63 ± 0.15

ICC(C,1) 0.75 ± 0.07 0.60 ± 0.13 0.62 ± 0.15

ICC(C,k) 0.86 ± 0.04 0.74 ± 0.10 0.76 ± 0.12

Values of Pearson’s correlation (r), ICC(C,1) and ICC(C,k) are presented as
mean ± standard deviation (SD).

TABLE 4 | Intra-run reproducibility.

fMRI HB MN MN-WU

oxy-Hb r 0.61 ± 0.08 0.57 ± 0.11 0.38 ± 0.16 0.41 ± 0.13

ICC(C,1) 0.61 ± 0.08 0.56 ± 0.11 0.37 ± 0.15 0.40 ± 0.13

ICC(C,k) 0.75 ± 0.06 0.71 ± 0.09 0.53 ± 0.16 0.56 ± 0.14

deoxy-Hb r 0.61 ± 0.08 0.53 ± 0.10 0.38 ± 0.15 0.38 ± 0.15

ICC(C,1) 0.61 ± 0.08 0.53 ± 0.10 0.37 ± 0.15 0.37 ± 0.15

ICC(C,k) 0.75 ± 0.06 0.68 ± 0.09 0.52 ± 0.16 0.53 ± 0.15

Values of correlation coefficients (r), ICC(C,1) and ICC(C,k) are presented
as mean ± standard deviation (across subjects for fMRI; across subjects
and runs for DOT).

analysis revealed that ICC(C,k) had similar tendency [one-way
ANOVA, F(3,136) = 25.00, p = 6.04 × 10−13 for oxy-Hb;
F(3,136) = 23.15, p = 3.61× 10−12 for deoxy-Hb].

For the HB case, intra-run reproducibility (i.e., similarity of
RSFCs between FH and SH) was compared with half-length
inter-run reproducibility (i.e., similarity of RSFCs between run
1 and run 2 for the corresponding half) in Table 5. Two-sample
t-test revealed that intra-run reproducibility was not significantly
different from half-length inter-run reproducibility for Pearson’s
correlation (p = 0.31 for oxy-Hb; p = 0.42 for deoxy-Hb),
ICC(C,1) (p = 0.36 for oxy-Hb; p = 0.47 for deoxy-Hb), and
ICC(C,k) (p = 0.33 for oxy-Hb; p = 0.48 for deoxy-Hb). Similar
tendency was observed for both MN and MN-WU cases (detailed
data not shown, but p> 0.30 in any case).

Effect of the Confidence Parameter γ0 on
Connectivity
As mentioned in the Materials and methods, in the HB algorithm,
the confidence parameter, γ0, represents the width of the
hierarchical prior distribution, controlling how strong the HB
method is affected by the prior information (the depth-weighted
minimum norm estimation). In this subsection, the effect of the
γ0 value on the connectivity estimation was examined for only
Pearson’s correlation.

Similarity of RSFCs between fMRI and DOT for each run and
γ0 value is summarized in Table 6. One-way ANOVA applied to
data combined between runs revealed no significant difference
among five γ0 values for both oxy- and deoxy-Hb [F(4,195) = 1.26,
p = 0.287 for oxy-Hb; F(4,195) = 1.40, p = 0.237 for deoxy-Hb].

Mean ± SD of inter-run reproducibility (i.e., correlation
values of correlation matrices between run 1 and 2) for each
γ0 value is summarized in Table 7. One-way ANOVA revealed
no significant difference among five γ0 values for both oxy- and

TABLE 5 | Comparison of reproducibility between intra-run and half-length
inter-run for HB.

Intra-run Half-length inter-run

oxy-Hb r 0.57 ± 0.11 0.55 ± 0.12

ICC(C,1) 0.56 ± 0.11 0.54 ± 0.12

ICC(C,k) 0.71 ± 0.09 0.69 ± 0.10

deoxy-Hb r 0.53 ± 0.10 0.51 ± 0.10

ICC(C,1) 0.53 ± 0.10 0.51 ± 0.10

ICC(C,k) 0.68 ± 0.09 0.67 ± 0.09

Values are presented as mean ± standard deviation.

deoxy-Hb [F(4,95) = 0.58, p = 0.679 for oxy-Hb; F(4,95) = 0.49,
p = 0.744 for deoxy-Hb].

DISCUSSION

The aim of this study was to evaluate our proposed HB DOT
algorithm in terms of its performance to estimate the resting-state
functional connectivity among brain regions, not task-related
brain responses. We used fMRI data as a reference. In addition,
we compared our method with other DOT algorithms (the MN
and MN-WU), which adopt the two-process approach. Similarity
(i.e., correlation coefficient) of the RSFCs between fMRI and
DOT showed higher for the HB than both the MN and MN-WU,
suggesting that DOT with the HB algorithm is more appropriate
to a substitute for fMRI than those with the MN and MN-WU
in estimating the resting-state functional connectivity as well
as the task-related cortical responses (Yamashita et al., 2016).
In addition, inter-run reproducibility (i.e., Pearson’s correlation
and intra-class correlation coefficients of RSFCs between runs)
showed higher for the HB than both the MN and MN-WU,
suggesting that DOT with the HB algorithm is more reliable.
In addition, mean values of both single- and average-measure
ICC are far higher than 0.4, a criterion of sufficient reliability
(Zhang et al., 2011), suggesting that DOT with the HB algorithm
is highly reliable and comparable to fMRI. These results were
true for not only deoxy-Hb but also oxy-Hb, which cannot be
measured by fMRI.

We conducted additional analyses relating to intra-run
reproducibility (i.e., similarity of RSFCs between FH and SH)
for fNIRS data. As for the intra-run test-retest reliability, the HB
had significantly higher intra-run reproducibility than both the
MN and MN-WU for any intra-run reproducibility measure. In
particular, both single- and average-measure ICC values for the
HB were far higher than 0.4 and comparable to those for the
fMRI. Thus, high reliability of DOT image with the HB algorithm
was demonstrated in intra-run as well as inter-run analyses.
Meanwhile, comparison of reproducibility between intra-run
and half-length inter-run showed no significant difference. This
result suggests that the WM task, conducted between the two
resting-state fNIRS runs, did not affect RSFCs. According to Birn
et al. (2013), the reliability of the resting-state fMRI connectivity
estimates was low for the scan length less than 5 min. However,
as described in section “Comparison of Connectivity Matrices
Among DOT Algorithms,” mean scan lengths of both first and
second halves of resting-state fNIRS recording were slightly less
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TABLE 6 | Effect of γ0 value on similarity of correlation matrices between fMRI and DOT.

L × 100 L × 10−1 L × 10−2 L × 10−3 L × 10−4

oxy-Hb run 1 0.34 ± 0.09 0.34 ± 0.09 0.33 ± 0.09 0.32 ± 0.10 0.30 ± 0.11

run 2 0.35 ± 0.09 0.35 ± 0.08 0.35 ± 0.08 0.34 ± 0.09 0.32 ± 0.09

deoxy-Hb run 1 0.33 ± 0.08 0.33 ± 0.08 0.32 ± 0.08 0.31 ± 0.09 0.29 ± 0.10

run 2 0.35 ± 0.08 0.34 ± 0.08 0.34 ± 0.08 0.33 ± 0.08 0.31 ± 0.08

Values of correlation coefficients are presented as mean ± standard deviation (SD). Each column corresponds to γ 0 = L × 10−N, where L is the data length (L = 7774–
8723, mean 8285). γ 0 = L × 10−1 is the default setting.

than 5 min in the present study. Thus, re-examination of results
on intra-run analyses is desirable using data with sufficiently
long scan lengths.

According to the SD maps for the RSFCs (i.e., Figure 5),
variability across subjects was little in fMRI, whereas it was
large in fNIRS regardless of the DOT algorithms. This difference
suggests that the variability of the estimated DOT images across
subjects is larger than that of the fMRI images. Such a large
variability in DOT images may be due to errors in forward
modeling such as probe coregistration error and head model
error, variability in measurement condition (e.g., individual
difference in a signal-to-noise ratio) and individual difference in
optical parameters which cannot be precisely dealt in forward
modeling. In addition, oxy-Hb or deoxy-Hb may not solely
correspond to BOLD signals. Further work is required to explore
the cause of this difference.

In the calculation of RSFCs, we used (1) Shen’s atlas rather
than the widely used AAL atlas and (2) timeseries averaged
across all sensitive voxels within each region. This is because
we considered that each region of the AAL includes different
functional areas because of its coarse-grained nature [116
regions for a whole brain, but 9 available regions in our
case (Supplementary Figure S1)], whereas that of the Shen’s
atlas includes a single functional area due to its fine-grained
nature [order of 300 regions in a whole brain, but 19 available
regions in our case (Figure 2C)] and therefore mean timeseries
represent temporal activity of the ROI. In fact, as described
in Supplementary Material (Section 3 Kendall’s W analysis)
the chi-squared test suggested that time courses of all voxels
in each region of the Shen’s atlas were concordant, supporting
that the Shen’s atlas provides functional subunits and therefore
mean timeseries represent temporal activity of the ROI. In
addition, the Kendall’s W for the Shen’s atlas is significantly
larger than that for the AAL atlas, supporting the validity of
using the Shen’s atlas in the calculation of functional connectivity.
These results are true, regardless of the DOT algorithms.
Furthermore, the additional analysis with PCA (Section 4
Principal component analysis in Supplementary Material) also

TABLE 7 | Effect of γ0 value on inter-run reproducibility.

L × 100 L × 10−1 L × 10−2 L × 10−3 L × 10−4

oxy-Hb 0.76 ± 0.06 0.76 ± 0.06 0.76 ± 0.06 0.75 ± 0.07 0.73 ± 0.09

deoxy-Hb 0.75 ± 0.07 0.76 ± 0.07 0.75 ± 0.08 0.74 ± 0.09 0.72 ± 0.10

Values of correlation coefficients are presented as mean ± standard deviation
(SD). Each column corresponds to γ 0 = L × 10−N, where L is the data length.
γ 0 = L × 10−1 is the default setting.

confirmed the validity of using both voxel-averaged timeseries
and Shen’s atlas.

As described in the previous paragraph, the AAL atlas is not
ideal. However, the chi-squared test also failed to reject the null
hypothesis that there is no concordance among all voxels in the
region of the AAL atlas (p < 0.05 for all available ROIs). We
therefore calculated the AAL counterpart on both (1) similarity
between fMRI and DOT and (2) inter-run reproducibility, for
your reference (see Supplementary Material for details). The
similarity measure revealed no significant difference among
three DOT algorithms (HB vs. MN vs. MN-WU), which is
inconsistent with the Shen’s case. On the contrary, the inter-run
reproducibility for the HB tended to be higher than that for the
MN and MN-WU, which is consistent with the Shen’s case. Thus,
the AAL counterpart was not always consistent with the Shen’s
results. Although we do not have evidence that each region of the
AAL atlas includes different functional areas, it is obvious that the
Shen’s atlas is more suitable. Thus, the results for the Shen’s atlas
case seem to be more reliable.

The confidence parameter γ0 in the HB DOT determines the
balance between the data and the prior information. As far as we
investigated in the present study, γ0 did not significantly affected
either similarity of RSFCs between fMRI and DOT or inter-
run reproducibility of RSFCs. However, both correlation values
slightly decreased by setting γ0 the lowest value (L × 10−4).
This may be consistent with the previous finding that a very low
γ0 results in incorrectly localized sparse DOT images in some
subjects in real experimental data which has a low signal-to-
noise ratio (Yamashita et al., 2016). At present, we do not have
a technique to determine the optimal γ0 value. Further work is
required to find it. In the present study, we did not adopt the
prevailing approach in the resting-state fMRI studies, spatial ICA.
One of the reasons for this is that spatial ICA is suited for whole
brain analysis whereas fNIRS data in the present study covered
only frontal and parietal areas. Applying spatial ICA to whole
brain DOT images will be a challenging future work.

CONCLUSION

The present study showed that our HB algorithm can be
used as an alternative to fMRI, in estimating resting-state
functional connectivity as well as task-related responses. We also
demonstrated its superiority over the current standard DOT
algorithms. Although fNIRS data in the present study covered
only frontal and parietal areas due to the experimental limitation
of the high-density measurement, it is desired to cover wider
areas of the cortex (ideally whole brain). Recently, we showed
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that multi-directional measurement has the ability to accomplish
DOT without requiring high-density measurement (Shimokawa
et al., 2016). It would be interesting to estimate RSFC for
more widespread cortical areas using multi-directional DOT in
future work.
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