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Background: Although many electroencephalographic (EEG) indicators have been

proposed in the literature, it is unclear which of the power bands and various indices

are best as indicators of mental workload. Spectral powers (Theta, Alpha, and Beta) and

ratios (Beta/(Alpha + Theta), Theta/Alpha, Theta/Beta) were identified in the literature as

prominent indicators of cognitive workload.

Objective: The aim of the present study is to identify a set of EEG indicators that can

be used for the objective assessment of cognitive workload in a multitasking setting and

as a foundational step toward a human-autonomy augmented cognition system.

Methods: The participants’ perceived workload was modulated during a teleoperation

task involving an unmanned aerial vehicle (UAV) shepherding a swarm of unmanned

ground vehicles (UGVs). Three sources of data were recorded from sixteen participants

(n = 16): heart rate (HR), EEG, and subjective indicators of the perceived workload using

the Air Traffic Workload Input Technique (ATWIT).

Results: The HR data predicted the scores fromATWIT. Nineteen common EEG features

offered a discriminatory power of the four workload setups with high classification

accuracy (82.23%), exhibiting a higher sensitivity than ATWIT and HR.

Conclusion: The identified set of features represents EEG indicators for the objective

assessment of cognitive workload across subjects. These common indicators could

be used for augmented intelligence in human-autonomy teaming scenarios, and form

the basis for our work on designing a closed-loop augmented cognition system for

human-swarm teaming.

Keywords: augmented intelligence, cognitive load, human-autonomy teaming, human-swarm teaming,

shepherding, mental load, cognitive indicators, EEG
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1. INTRODUCTION

Mental workload refers to the depletion of mental resources
due to mental demands imposed by a task on an individual.
When task difficulty increases, mental workload increases due
to the reduction in available cognitive resources. Research
has shown that when an individual is under high cognitive
workload and the cognitive workload approaches the individual’s
cognitive capacity, suboptimal decisions and human errors are
expected. In the absence of any increase of task demand,
prolonged mental activities also leads to depletion of cognitive
resources (Kamzanova et al., 2014). Low workload can also
lead to errors, due to boredom and the possibility for
human distraction from the main task due to environmental
influencing factors.

Humans have a limited amount of resources (both physically
and mentally); therefore, optimizing these resources toward
specific sets of tasks is likely to produce better results. However,
it is challenging to understand these human limitations within
a work environment due to many factors, such as demographic
factors (gender, age, ethnicity), intrinsic motivation, mood states
(happy, sad, anxious, etc.), previous experience, and different
problem-solving strategies due to mental abilities, education, and
skills. For example, the level of difficulty to accomplish a task
might be seen differently by two operators; operator A could
see the task difficult at first, but then find a good strategy to
solve the task, while operator B could find the task extremely
difficult, get discouraged, and fail to complete the task. As human
resources are limited, there is a problem when a task demands
more resources (Maior et al., 2014).

In many domains, the ability to process information, to react
to different environments, and tomake accurate decisions is vital.
For instance, air traffic controllers (ATCs) generally perform in
a highly cognitively-demanding environment, working for long
periods of time, and under stress (Dasari et al., 2017). This
scenario can lead to depletion of cognitive resources and thus
degradation of performance. Another clear example is doctors
and nurses in critical care units, they face large volumes of work,
need to act quickly, and stay alert after many hours of intense
work. In this case, errors and compromised standards signify that
quality and safety of patient care might be endangered (MacPhee
et al., 2017). It is, therefore, evident that there is a need tomeasure
mental workload to identify the changes of cognitive demands
on an individual while completing a task, which can potentially
help reduce errors, task failure, accidents, and thus improve and
maintain performance longer.

A number of metrics have been proposed for measuring
mental workload. In the literature, these metrics can be divided
into two main groups: subjective and objective measures.
Subjective metrics are based on an operator’s opinions, answers
to questionnaires, and interviews. A popular technique for the
subjective assessment of an operator’s mental workload is the
NASATask Load indeX (NASA-TLX) (Hart and Staveland, 1988).
This method uses six dimensions: mental demand, physical
demand, temporal demand, performance, frustration level, and
effort, each with 10- or 20-point scale. An overall rating is then
calculated as the weighted mean of all six ratings. One of the

limitations of NASA-TLX is the lack of continuous measurement
while the task is performed, since participants typically answer
the survey questions after a task is completed and they may
be unable to recall the workload experienced during a trial.
The Air Traffic Workload Input Technique (ATWIT) (Stein,
1985) is less pruned to this problem. Although, it is a workload
rating scale designed for use in air traffic control studies, it has
been successfully applied in other domains (Loft et al., 2015).
This technique uses a scale from 1 (low workload) to 7 (high
workload), which is administered by freezing the simulation.
At each freeze, participants are asked to report their level of
workload. An advantage of using this technique is that it enables
a more accurate evaluation, since the participant can report the
workload as it changes, instead of waiting until the end of the
task/scenario to report workload.

Objective measures are generally based on experimental
methods used to collect physiological and/or behavioral
information by a single sensor or a combination of different
types of sensors, simultaneously (Debie et al., 2019). In
contrast with subjective measures, objective techniques offer
a continuous measure of workload in real time, and also their
implementations do not interfere with the performance of
the task at hand (Wang et al., 2015). In general, objective
measures can be classified either as neurophysiological,
physiological, or behavioral. Neurophysiological measures
include electroencephalography (EEG) and functional
near-infrared spectroscopy (fNIRS) (Hirshfield et al.,
2009). Physiological measures include electrocardiography
(ECG) (Veltman and Gaillard, 1996), heart rate and heart
rate variability (HRV) (Elkin-Frankston et al., 2017), pupil
dilation (Pomplun and Sunkara, 2003), blink frequency and
blink duration (Tsai et al., 2007), and saccades (Ahlstrom and
Friedman-Berg, 2006). Behavioral measures include keystroke
dynamics, mouse tracking, and body positioning (Mota and
Picard, 2003). Most objective measures (physiological and
neurophysiological) rely on the assumption that changes in
cognitive demands are reflected in the autonomic nervous
system (ANS) (Mulder, 1989; Veltman and Gaillard, 1996).
Although, physiological measures can be used as indicators of
mental workload, neurophysiological techniques are considered
the most direct indicators of different cognitive states (Debie
et al., 2019).

There are two main techniques with appropriate temporal
resolution to measure cognitive workload using brain signals:
fNIRS and EEG. fNIRS measures cognitive workload by
examining the levels of oxygenated (HbO) and deoxygenated
(HbR) hemoglobin concentration in the cerebral cortex (Rojas
et al., 2017b), and alertness, and indicative of loss of cortical
arousal (Kamzanova et al., 2014). In this regard, fNIRS is
commonly used to measure the amount of effort exerted in a
given brain region in response to a given task. Different studies
have reported that increased levels of HbO in the pre-frontal
cortex correlates with increased task engagement which is used
to indicate increased cognitive workload (Ayaz et al., 2012; Herff
et al., 2014). On the other hand, EEG measures the brain’s
electrical activity and pattern analysis of this activity is used to
indicate different levels of cognitive workload. Spectral analysis is

Frontiers in Neuroscience | www.frontiersin.org 2 February 2020 | Volume 14 | Article 40

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Fernandez Rojas et al. EEG Workload During Swarm Teleoperation

used to decompose EEG signals into their constituent frequency
components. Typically, EEG data are partitioned into five bands
(from slowest to fastest: delta, theta, alpha, beta, and gamma).
The power spectral density (PSD) in each band is computed and
used to compare the conditions being studied (i.e., low vs. high
workload). EEG is considered the most popular approach in the
literature to objectively assess cognitive states (Gevins et al., 1997;
Abbass et al., 2014; Dong et al., 2016; Rojas et al., 2019a).

Although many indicators have been proposed in the
literature, it is unclear which of the power bands and various
indices is the most optimal for mental workload. In the following
section, we present the most prominent indicators in the
literature and their relationship with cognitive workload. The
intent is not to provide an exhaustive literature review, but
identify EEG metrics that could be potentially used as indicators
of mental workload in our experiment.

1.1. EEG Indicators of Mental Workload
In the literature, EEG correlates of spectral powers at different
cortical locations have been proposed for the assessment of
cognitive workload. For example, theta band (4–8 Hz) has been
linked to mental fatigue and mental workload (Gevins et al.,
1995). Theta spectral power is thought to increase with increase
demands on cognitive resources (Vidulich and Tsang, 2012;
Xie et al., 2016), with higher task difficulty (Antonenko et al.,
2010), and with increase of working memory (Borghini et al.,
2012); particularly, theta power increases in tasks requiring a
sustained concentration (Gevins and Smith, 2003). In addition,
increase in theta power is related to lower mental vigilance and
alertness, and indicative of loss of cortical arousal (Kamzanova
et al., 2014). An increase in theta power monitored over
the frontal cortex has been linked to an increase in task
difficulty and use of higher memory resources (Parasuraman
and Caggiano, 2002), frontal theta also increases during
vigilance (Paus et al., 1997).

Alpha band (8–12 Hz) power has shown sensitivity to
experiments in mental workload (Sterman and Mann, 1995; Xie
et al., 2016; Puma et al., 2018), cognitive fatigue (Borghini
et al., 2012), and also with reduction in attention or
alertness (Kamzanova et al., 2014). In general, alpha band
increases in relaxed states with eyes closed and decreases when
the eyes are open (Antonenko et al., 2010). An increase in alpha
power is related to lowermental vigilance and alertness (MacLean
et al., 2012; Kamzanova et al., 2014) and therefore a decrease
in the attention resources allocated to the task (Vidulich and
Tsang, 2012). On the other hand, a progressive suppression
of alpha waves has been linked to increasing levels of task
difficulty (Mazher et al., 2017). Cortical areas that have been
associated with alpha band changes are parietal and occipital
areas (Dasari et al., 2017; Puma et al., 2018).

Beta band (12–30 Hz) has been linked to visual
attention (Wróbel, 2000), short-term memory (Tallon-Baudry
et al., 1999; Palva et al., 2011), and hypothesized to react to
an increase in working memory (Spitzer and Haegens, 2017).
An increase in beta power is associated with elevated mental
workload levels during mental tasks (Coelli et al., 2015) and
concentration (Kakkos et al., 2019). In addition, beta band

activity reflects an arousal of the visual system during increased
visual attention (Wróbel, 2000). An increase in beta activity has
been observed in the parieto-occipital channels during visual
working memory tasks (Mapelli and Özkurt, 2019).

In addition, the use of multiple EEG frequency bands
(ratios or indices) has been proposed as an indicator of
mental workload. This is based on the assumption that by
combining information from multiple bands, the assessment of
workload can be enhanced. For example, beta/(alpha + theta)
(or Engagement Index, EI) has been used to study alertness
and task engagement (Pope et al., 1995; Freeman et al., 1999;
Mikulka et al., 2002), mental attention investment (MacLean
et al., 2012), and mental effort (Smit et al., 2005). When alpha
reduction was observed to correlate with increases in activity
in frontal-parietal cortical areas, beta power increased while
theta decreased, indicating a state of high vigilance (MacLean
et al., 2012). When alpha reduction was seen to correlate with
increases in activity in occipital and parietal areas, beta decreased
and theta increased, indicating a state of drowsiness, or low
vigilance (MacLean et al., 2012).

Another index used to explore the assessment of workload
is the theta/alpha ratio (or Task Load Index, TLI). This index
is based on the assumption that an increase of mental load is
associated with a decrease in alpha power and an increase in
theta power (Stipacek et al., 2003; Käthner et al., 2014). While an
increased level of fatigue is related to increase of alpha and theta
powers (Käthner et al., 2014; Xie et al., 2016). Research has shown
that workload manipulations increased theta power at anterior
frontal and frontal midline regions and decreased alpha power at
parietal regions (Gevins and Smith, 2003). In general, an increase
of cognitive workload has been associated with an increase of
theta power together with a decrease of alpha power (Fairclough
and Venables, 2004).

Theta/beta ratio has been used to study attention-
deficit/hyperactitivty disorder (ADHD) and working memory
problems in children (Lansbergen et al., 2011). This ratio shows
increased theta power and decreased beta power during resting
state in individuals with ADHD (Barry et al., 2003). Theta/beta
ratio has been negatively correlated with mean reaction time
in adults, indicating an increased theta/beta ratio linked to
shorter, faster reaction time (Loo and Makeig, 2012). Theta/beta
ratio has been used for monitoring sleepiness and wakefulness
in car drivers (Sun et al., 2015). This ratio has been used to
discriminate distraction from attentive driving as measured in
the parietal lobe (Zhao et al., 2013). This index is based on the
assumption that an increase in alertness and task engagement
results in an increase in beta power and a decrease in theta
power (Gale and Edwards, 1983). Table 1 presents a summary
of EEG indicators for the assessment of cognitive workload
identified in the literature.

The present study was conducted to directly address
the challenge to identify a set of indicators that can be
used for the objective assessment of cognitive workload in
a multitasking setting. Consequently, we have designed a
simulation environment which affords manipulation of task
complexity by varying the quality of information in the
simulation. It has been shown that information quality affects
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TABLE 1 | Summary of EEG correlates of spectral powers for the assessment of

cognitive workload in the literature.

Indicator
Type of cognitive

Description
behavior

Theta

Workload,

vigilance, and

concentration.

Theta spectral power is thought to

increase with increase cognitive

resources demand.

Theta increases in tasks requiring a

sustained focus of concentration and

vigilance.

Alpha

Workload,

cognitive fatigue,

and attention.

Alpha band increases in relaxed

states with eyes closed and

decreases when the eyes are open.

An increase in alpha power is related

to lower mental vigilance and

alertness.

Beta

Workload,

visual attention,

and concentration.

An increase in beta power is

associated with elevated mental

workload levels during mental tasks

and concentration.

Beta band activity reflects an arousal

of the visual system during increased

visual attention.

Beta

Alpha+ Theta

Mental Effort,

vigilance, and

attention.

It has been used to study alertness

and task engagement, mental

attentional investment, and mental

effort.

Theta

Alpha

Workload,

mental effort.

This index is based in the assumption

that an increase of mental load is

associated with a decrease in alpha

power and an increase in theta power.

Theta

Beta

Working memory,

attention, and

sleepiness.

This index is based in the assumption

that an increases in alertness and

task engagement result in an increase

in beta power and a decrease in theta

power.

cognitive workload (Young et al., 2016). Finally, we aim to
identify EEG indices that may be used to trigger technological
support to maintain performance.

2. METHODS

2.1. Participants
Sixteen participants (four females) were recruited. Their age
ranged from 22 to 50 years old (mean age 33 ± 8.1 std). The
experiment was approved by the University of New South Wales
(UNSW) Research Ethics Committee (protocol ID: HC180554).
All participants provided written informed consent prior to
participating in the study. A demographics questionnaire was
given to the participants before the start of the experiments.
Participants did not receive monetary compensation for their
participation in this study.

2.2. Description of the Experiment
Participants were seated on a fixed chair in front of a
computer screen placed on a desk. An introduction to the
experimental procedure and a practice session were provided to

the participants before the start of the study. After that, the EEG
head cap was mounted on the participants’ head. To minimize
any muscle movement artifacts, the participants were instructed
to remain as still as possible while holding the mouse at all times
during the experiment. Next, a 1 min baseline recording was
obtained, in the first 30 s, the participants were told to close their
eyes; then in the remaining 30 s, the participants were told to keep
their eyes open and fixed on a point in the center of the screen.
Finally, the participants were instructed to start the experiment
after a 2-min break; the complete session lasted∼50 min.

The experimental task was to teleoperate an unmanned aerial
vehicle (UAV) to guide a swarm formation of autonomous
unmanned ground vehicles (UGVs). Only the UAV remote-
operator knows the destination defined by the mission profile.
The UGVs consist of a group of four vehicles with capabilities
to self-organize to autonomously maintain a formation during
the mission. The operator’s graphical user interface (presented in
Figure 1) displays sufficient information to successfully guide the
UAV with information display on the UAV (e.g., speed, altitude),
mission state information, navigation map, and localization of
the UGVs. This experiment is designed to run the simulation
that combines four scenarios of different levels of information
quality. Each scenario lasts 4 min and is repeated two times
per participant. Simultaneously, EEG data and heart beat were
recorded continuously during the experimental task. During each
experimental condition, participants rated their mental effort
using a computer version of the ATWIT questionnaire.

2.3. Simulation Environment
The experimental task is undertaken using the Virtual Battlespace
Simulation 3 (VBS3) (Bohemia Interactive Simulations, Orlando
Florida, USA) environment. The VBS3 software was used
under the Australian Defence Force (ADF) Enterprise Licence
Agreement with BISSimulation Australia. Information latency
and loss were modeled to impact the operator’s control station
(as illustrated in Figure 1). This interface was programmed in C#
(Microsoft Corporation, Washington, USA) since VBS3 does not
have the capability for simulating information latency and loss as
required. The interface has twomain graphic displays located side
by side on the top. On the left side, there is a lateral view of the
UAV and UGVs’ positions on a map. The UAV is presented by a
green rectangle and the UGVs are visualized as blue rectangles.
A blue star marks the UGVs’ destination on the map. On the
right side, real-time video streamed from the UAV camera is
provided to the operator. At the bottom of the interface, detailed
textual information on the UAV and UGVs’ status including their
positions, headings and speeds are provided. In the middle of
the interface, a panel lists all possible UGV formation options;
however, for this study we limit the formation to a boxing
formation alone.

2.4. Experimental Design
A within-subject design with four different experimental
conditions determined by the levels of quality of information was
used in this study. The four experimental conditions (scenarios)
are: (1) low latency/delay and low dropout; (2) low delay and
high dropout; (3) high delay and low dropout; and (4) high

Frontiers in Neuroscience | www.frontiersin.org 4 February 2020 | Volume 14 | Article 40

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Fernandez Rojas et al. EEG Workload During Swarm Teleoperation

FIGURE 1 | UAV pilot interface.

delay and high dropout. The experiment is counterbalanced
by using the composite 3 × 3 Latin Square design to avoid
confounding due to order effects. In our experiment, information
latency is the amount of time a video frame from the UAV
camera and the status of all vehicles to traverse in the camera’
s field of view are delayed to the interface; while, information
loss is the rate in which video frames and data about the
status of vehicles are not transmitted during data transmission.
Ideally, information latency should be unnoticeable to the
UAV operator and the delivery of information should be
operationally assured.

However, to modulate the participants’ perceived workload,
information latency and information loss are injected into the
simulation. Thus, it has been hypothesized that the latency
and loss of information affect the subjects’ perceived cognitive
workload. Information latency and information loss are modeled
using two parameters, d for the delay time (Low d = 1 s,
High d = 9 s) of information transmission, and lf for the
number of video frames lost per second (Low lf = 1 s, High
lf = 9 s) in transmission. Table 2 lists the parameter values
corresponding to the corresponding levels of information latency
and loss, respectively.

2.5. Heart Rate Measurement
A mouse (Mionix Naos QG) equipped with heart rate (HR)
and galvanic skin response (GSR) sensors is used as the main
input method during the simulation. The biometric sensors
are designed to measure the physiological data on the palm
of the user; thus, the user must maintain the mouse in their
hand at all times while the simulation is running. The mouse
uses a sample rate of eight samples per second. In addition,

TABLE 2 | Variables used in information latency and loss.

Variable Level Parameter value

Information latency
Low d = 1 s

High d = 9 s

Information loss
Low lf = 1 s

High lf = 9 s

the mouse can also record different mouse metrics, such as:
number of scrolls, clicks, and movements. In this study, the heart
rate information is only used to corroborate the design of the
experimental conditions due to its high sensitivity to mental load
measure (Cinaz et al., 2010).

2.6. Electroencephalographic (EEG)
Measurement
A wireless EEG acquisition system (Emotiv EPOC) was used
to record neural activity. This device has a resolution of 14
channels (plus 2 reference channels) with a sampling frequency
of 128 samples per second. Some advantages of using the
Emotiv EPOC is its low cost, good signal-to-noise ratio, and
ease of use (Duvinage et al., 2013). In addition, the EPOC
has shown satisfactory results in diverse research studies in
emotion recognition (Ramirez and Vamvakousis, 2012), brain
computer interface (Holewa and Nawrocka, 2014), and cognitive
workload (Lim et al., 2015). Figure 2 presents the headset
and the channel positions based on the international 10–
20 EEG system of electrode placement. Channel locations
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FIGURE 2 | Cortical areas covered by the electrodes of the EEG

EMOTIV Epoc.

correspond to: AF3, F7, F3, FC5, T7, P7, O1, O2, P8,
T8, FC6, F4, F8, AF4, M1, and M2. M1 is used as the
ground reference channel for measuring the voltage of the
other channels, while M2 is used as a feed-forward reference
point to reduce external electrical interference (Badcock et al.,
2015). A saline solution was employed to reduce the electrode
impedance and facilitate sensitivity between each electrode and
the scalp (Duvinage et al., 2013).

2.6.1. EEG Pre-processing
EEG pre-processing was performed in Matlab (version 2018b,
The MathWorks Inc.) by using custom software and the EEGLab
toolbox (Delorme and Makeig, 2004). Baseline correction was
performed by subtracting the correspondingmean from a pretrial
(200ms) period from each channel. Then, EEG signals were band-
pass filtered between 2 and 43 Hz using a FIR filter, which
helps remove high-frequency artifacts and low-frequency drifts.
Electrode movement artifacts were manually removed from the
data; these artifacts produce large spikes that are several orders
of magnitude bigger than the neural response produced by EEG.
Artifacts from eye blinks and movements were corrected using
themultiple artifact rejection algorithm (MARA)which evaluates
ICA-derived components (Winkler et al., 2014).

2.6.2. Feature Extraction
Feature extraction was carried out using spectral analysis. First,
the power distribution from each channel was studied by
transforming the EEG into power spectral density (PSD) using
a fast-Fourier transform (FFT) and using 10-s windows with 50%
overlapping windows multiplied by the Hamming function to

reduce spectral leakage (Chaouachi et al., 2011). Second, from
each window, the EEG channels were decomposed into sub-
bands: delta (2–4 Hz), theta (4–8 Hz), alpha (8–12 Hz), beta
(12–30 Hz), and gamma (30–40 Hz). Third, the PSD results
of each frequency band were normalized (1/f) to obtain the
relative PSD of each band to the baseline time period. This
normalization helps to make quantitative comparisons of power
across frequency bands (Cohen, 2014). Finally, the resulting PSD
values in each band were averaged to obtain the power spectral
features used for classification.

2.6.3. Feature Selection
Feature selectionwas carried out to reduce the number of features
and build a more accurate learning model. The selection criteria
was based on the joint mutual information algorithm (JMI), this
method ranks the features with the largest mutual information
(MI) that produces most of theMI between the feature vector and
the class label (Yang andMoody, 1999). The reason to choose JMI
is that it presents better tradeoff in terms of accuracy, stability,
and flexibility than other ranking methods (Brown et al., 2012;
Rojas et al., 2019b). A disadvantage of this method is the fact that
there is no stopping criteria to reach the best subset of features,
and the user needs to select the number of features from the
ranking list to form the optimal subset.

2.6.4. Classification
The classification task is to determine the level of mental effort
based on the recorded EEG signals from each participant. To
identify the four levels of mental effort, we used the linear
discriminant analysis (LDA) algorithm for offline analysis. The
reason to choose LDA is because it is the most popular classifier
in brain computer interface (BCI) research due to its good
performance and low computational cost, attributes needed for
the development of an on-line assessment of mental effort in our
future work. Tomeasure the classifier’s performance, the data was
divided into two parts with 70% for training and the remaining
30% used for testing and to report generalization performance. k-
fold cross validation (k = 10) was performed on the training set;
the training set was randomly divided into k partitions. Then, k-1
partitions are used to fit the learning model and the remaining
partition used to validate the model, this process is repeated
k times, and each time using a different partition to validate
the model. The final generalization results are presented as the
average and standard deviation on the 30% untouched test set.

2.7. Validation of Experimental Design
In order to validate the experimental conditions, the response
to the ATWIT questionnaire and the heart rate information
were analyzed. The research hypothesis of this study is that
different levels in the quality of information (delay and dropout)
significantly affect the perceived mental effort of the participants
during the experimental task. In order to corroborate the
research hypothesis and the design of this experiment, a repeated
measures model was used to appraise statistical difference for the
four different experimental conditions. Therefore, it was expected
that the level of mental effort in each condition is significantly
different and this difference can be observed by the subjective
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FIGURE 3 | Analysis workflow used in the present study.

and objective metrics. A p value that is >0.05 was not considered
statistically significant.

ATWIT scores and heart rate data were tested for normality
using the Shapiro-Wilk test. Both tests showed that the data
significantly deviated from a normal distribution, p = 0.01 for
ATWIT scores and p = 0.033 for heart rate. Then, a logarithmic
transformation was applied to reinforce the linearity of both
data, which resulted in meeting the normality assumption (p >

0.05) after a subsequent normality test for both data. However,
after checking normality visually using Q–Q plots (quantile–
quantile plots), the distribution of both data was non-normal.
Therefore, the non-parametric Friedman test was applied to both
data for testing the difference between experimental conditions
and Wilcoxon signed ranks test as post-hoc test.

Figure 3 illustrates a summary of the analysis workflow
used to obtain the results presented in this study. First,
acquired EEG signals are cleaned through a series of signal
processing techniques, then decomposition (feature extraction)
of EEG signals into sub-bands (beta, alpha, theta) is carried
out. The obtained features from each participant are then
ranked using a feature selection technique. Each rank is then
evaluated using an LDA classifier. Finally, the list of most
prominent features contributing to the accuracy of the classifier
are identified.

3. RESULTS

3.1. Validation of Experimental Conditions
Two methods were used to evaluate the experimental design.
First, the subjective workload assessment using ATWIT scores
was evaluated for each experimental condition. Second, heart
rate (HR) is used to corroborate the cognitive modulation with
respect to each condition. The experimental assumption of this
study is that in conditions with low quality communication
(e.g., high delay and high dropout condition), the participants’
perceived workload will be significantly different than in
conditions with high quality communication (e.g., low delay and
low dropout).

FIGURE 4 | The bar graph represents the mean and standard deviation of

ATWIT scores. The Wilcoxon test showed a significant increase of workload

(p = 0.002). ∗p < 0.0083.

3.1.1. ATWIT Scores
Figure 4 shows the results of the subjective workload evaluation
using ATWIT test. The recorded ATWIT response for each
condition was averaged among the participants. The overall trend
of subjects’ perceived workload showed the lowest workload in
the Low-Low condition (mean = 4.4, std = 2.2), medium
workload in the Low-High (mean = 5.0, std = 2.3) and
High-Low (mean = 4.7, std = 2.7) conditions, and the
highest workload in the High-High (mean = 5.9, std =

2, 4) condition. Overall, ATWIT scores showed an increase of
perceived workload in experimental conditions with low quality
communication compared to experimental conditions with high
quality of communication.

A Friedman test of differences among repeated measures was
carried out to examine changes in ATWIT scores under the
four conditions. This test was used with the following research
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FIGURE 5 | Subjects’ heart rate (HR) in beats per minute (bpm). The bar graph

represents the mean and the standard deviation of participants’ HR during the

four experimental conditions. The Wilcoxon test showed a significant increase

between High-High and Low-Low (p = 0.003) conditions. ∗p < 0.0083.

hypothesis Ho: There are no significant differences between the
mean ATWIT scores among the experimental conditions. In
other words, the distribution of the answer to the ATWIT
questionnaire is independent of the experimental condition
(no difference in perceived workload). A statistically significant
difference in perceived workload depending on the experimental
conditions [χ2(n = 16) = 10.471, p = 0.015] was obtained. Post-
hoc tests using multiple two-sided Wilcoxon signed-rank tests
were performed with Bonferroni correction applied, resulting in
a significance level set at p < 0.0083. There were no significant
differences between the Low-Low and Low-High (p = 0.178), the
Low-Low and High-Low (p = 0.502), the High-Low and Low-
High (p = 0.303), the High-High and Low-High (p = 0.025), or
the High-High and High-Low (p = 0.011) conditions. However,
this statistical test showed a significant increase (p = 0.002)
in perceived workload as declared in the ATWIT scores by the
participants in the Low-Low and High-High scenarios.

3.1.2. Heart Rate Information
Another metric used to validate the experimental design was
the participants’ heart rate (HR). Figure 5 presents the results
of the heart rate value between the four different conditions in
the experiment. Heart rate has been shown to be a physiological
indicator directly related to mental workload (Luque-Casado
et al., 2016). In this case, the experimental assumption (refer
to section methods) was that delay and dropout of information
affect the cognitive workload of the participants and this can
be observed by measuring the participants’ heart rate. Overall,
the results showed that during the Low-Low condition the
participants exhibited the lowest HR (mean = 72.47, std = 8.9),
medium HR during the Low-High (mean = 78.94, std = 15.83)
and High-Low (mean = 73.76, std = 9.9), and the highest HR
(mean = 83.73, std = 16.8) during the High-High condition.

TABLE 3 | Reference values for classification accuracy and standard deviation

(std) using LDA.

Power bands Ratios

Theta Alpha Beta Theta/

Beta

Beta/

(Alpha + Theta)

Theta/

Alpha

Accuracy 60.28 53.13 69.89 55.50 56.44 49.10

Std (±) 8.16 10.12 6.48 8.51 8.36 5.92

Results are presented in percentage.

A Friedman test was carried out to examine changes in
heart rate under the four conditions. The Friedman test on the
heart rate information revealed a significant difference among
the scenarios [χ2(n = 16) = 15.60, p = 0.001]. Post-hoc
tests using multiple two-sided Wilcoxon signed-rank test with
Bonferroni correction applied showed that the participants’ heart
rate in High-High conditions increased statistically significant
(p < 0.0083) compared to the heart rate in Low-Low (p =

0.003), while in the other conditions there were no significant
differences between the Low-Low and Low-High (p = 0.039),
the Low-Low and High-Low (p = 0.408), the High-Low and
Low-High (p = 0.079), the High-High and Low-High (p =

0.023), or the High-High and High-Low (p = 0.01) conditions.
These results showed that in experimental conditions with low
quality communication (e.g., High-High) the participants’ heart
rate increased significantly, which also suggest an increase in
cognitive workload as a result.

These two results (ATWIT and HR) validate the assumption
that the different cognitive demands are affected due to the
experimental conditions. In addition, high delay and high
dropout exhibited the most significant increase in ATWIT score
and heart rate, which suggests that this experimental condition
induced the highest cognitive demand in the experiment. On
the other hand, experimental conditions with low delay and low
dropout exhibited the lowest ATWIT scores and lowest heart
rate, which suggest that it produced the least cognitive demand
in the experiment.

3.2. Evaluation of EEG Indicators
Based on the indicators identified in the literature, this
study explores the classification performance using only three
frequency bands: Theta (4–7.5 Hz), Alpha (8–12 Hz), and
Beta (13–35 Hz).

3.2.1. Reference Values
First, the indicators are investigated separately to obtain a
reference performance value. Table 3 presents the grand average
results from the classification task using each indicator. The
results represent the classification accuracy (in percentage %)
and standard deviation using each indicator separately. Each
indicator was obtained from each channel. The highest overall
accuracy (75.99 ± 6.48%) was achieved using the Beta band,
while the lowest accuracy (49.10±5.92) was obtained with Alpha
band only.
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3.2.2. Feature Selection Evaluation
Second, using a feature selection method based on mutual
information, to identify any kind of statistical dependency
between variables, a subset of indicators was obtained. In this
step, only the power bands (Theta, Alpha, Beta) were used in the
feature selection process to avoid introducing correlated variables
into the subset of indicators. Figure 6 presents the correlation
analysis of all the indicators. In this figure, it is possible to
observe that all the ratios (e.g., theta/beta) are highly correlated
with the power bands (e.g., beta, alpha). Therefore, removing
these variables from the analysis will make the feature selection
more efficient.

The objective of feature selection is to find a good
representation of the data, improve estimators’ performance
by reducing the dimensionality of the data and eliminating
redundant and irrelevant data from each participant’s data (Rojas
et al., 2019b). After applying joint mutual information (JMI), the
features were ranked according to the their relevance to the class
label. This process returned 16 ranks (one rank per participant),
each rank contains the ranking of 42 features (e.g., 3 indicators *
14 channels = 42 features). These ranks represent the importance
of each indicator and channel with respect to the class label from
each participant. However, a limitation of this process is that
each rank is different from one another, which complicates direct
comparisons between participants.

In order to obtain a subset of common features that potentially
describe most of the data for all the participants, the frequency

FIGURE 6 | Strength and direction of correlations among the EEG features.

of appearances and ranking position were considered for each
feature and for each participant. To achieve that, a new list
containing the top 10 features from each rank were chosen (160
features in total). Then, the number of appearances of each
feature in the list was counted and a weight [from 1 (most
important) to 0.1 (least important)] for its position in each rank
was given. For example, a feature (Theta in T8) appeared two
times in the list (i.e., this feature was in the top 10 features
only in two participants), in the first rank it appeared in the
first position (weight = 1.0) and in the second rank in the
seventh position (weight = 0.4); thus, its total value is 1.4 (please
refer to Figure 7).

The complete results obtained during the weight process
mentioned above is presented in Figure 7. Beta band in channel
T7 (BetaT7) exhibited the highest value from this list, it suggests
that this feature is the most important feature in our sample
population. On the other hand, features from channels O1, FC6,
and AF4 in the Theta and Alpha bands showed the lowest
value from this list, which suggest that these features are less
important among the 16 ranks. Based on this frequency of
appearance, a common set of features can be obtained across
the participants, which represents the most relevant features in
the data set.

3.2.3. Classification Results
Using both ranks, after feature selection (FS) and after application
of weights (FS + weights), classification was carried out to
obtain performance results and compare these with the obtained
reference values (refer to section 3.2.1). Figure 8 presents the
classification results of both methods. FS presented the highest
accuracy (89.84 ± 5.60%) using the top 40 features (in total, 42
features), while the FS + weights method presented slightly lower
accuracy (89.43 ± 5.47%) using the same number of features.
It is to note, that using the top 10 features from both methods
produced a higher accuracy (77.57 ± 8.39% for FS, and 70.60
± 8.98% for FS + weights) than the highest reference accuracy
value (69.89 ± 6.48) using any of the frequency bands and ratios
separately, which was achieved using the 14 channels in the
Beta band. Overall, both methods showed comparable results,
which suggests that the group of common features across our
sample population can be used as indicators of cognitive load in
our experiment.

FIGURE 7 | Frequency of appearance of each indicator. Each indicator was weighted according to its ranking (e.g., rank = 1 weight = 1, rank = 2 weight = 0.9) and

number of occurrences in the list.
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FIGURE 8 | Classification results using the features ranked after the feature

selection (using JMI) process (in orange) and after the feature selection +

weights process (in blue).

However, in order to identify the appropriate number of
features to be used as indicators of workload in our experiment,
a stopping criterion was introduced. This criterion is based on
comparing consecutive classification results using two-sample
t-tests. Using this method, the searching process is stopped
when three consecutive non-statistically significant results were
obtained. The final number of features is the one that produced
the first non-statistically significant result. After this step, the
appropriate number of features is 18 for FS (85.44 ± 6.70%) and
19 for FS + weights (82.83 ± 8.01%). These top 19 features are
presented in Table 4.

3.2.4. Activated Cortical Areas
The majority of features from the identified subset (top 19
features) are from the Beta band and the frontal area. Figure 9
presents the cortical location of each feature with respect to
their frequency band (Theta, Alpha, Beta). Three channels (F4,
F7, FC5) from the frontal area, one channel from the temporal
area (T7) and one channel (P7) from the parietal area were
obtained in the Theta band. In the Alpha band seven channels
were identified, the same three channels in the frontal area (F4,
F7, FC5), bilateral activation in the temporal area (T7, T8), and
one channel (P7) from the parietal area. The Beta band exhibited
the largest number of channel within the top 19 features in
four cortical locations, in the frontal (F7, FC5, F8), bilateral
activation in both the temporal (P7, P8) and parietal (P7, P8)
cortex, and in the occipital area (O1). Another interesting finding
is that most of the features in the top 19 corresponded to the
left hemisphere.

3.2.5. Evaluation of the Weight Process
Two more filter feature selection methods were used to evaluate
the weight process to capture the most common features across
the sample population. These two techniques are Information
Gain (InfoGain) and student’s t-test, their criteria to rank

TABLE 4 | Top 19 features after feature selection and weight procedure

(FS + weights).

Ranking Channel Band Ranking Channel Band

1 T7 Beta 11 FC5 Theta

2 P7 Alpha 12 F4 Theta

3 P7 Theta 13 F7 Beta

4 T8 Beta 14 FC5 Beta

5 F8 Beta 15 P7 Beta

6 O1 Beta 16 F7 Theta

7 P8 Beta 17 T8 Alpha

8 F4 Alpha 18 T7 Alpha

9 FC5 Alpha 19 T7 Theta

10 F7 Alpha

each feature are entropy and statistical based (Novaković,
2016), respectively. These two feature selection techniques were
implemented and a group of 16 different ranks (i.e., one rank
per subject) was obtained from each technique. Then, the weight
process was applied to each technique separately using the top 10
features from each participant. Please refer to section 3.2.2 for a
more detailed description.

Figure 10 presents the classification results of both techniques
using LDA. It was expected that each technique will produce
different rankings and different classification results. This is
mainly due to the different ranking strategies followed by
different techniques. In addition, similar to the JMI technique,
InfoGain and t-test lack a stopping criterion to obtain the
best feature subset; therefore, three consecutive non-statistically
significant results were used to stop the searching process for
each method. For the InfoGain method, the stopping criterion
led to 16 features (85.06 ± 6.04%) and 19 for InfoGain +
weights (83.36 ± 6.63%). For the t-test method the stopping
criterion led to 17 features (84.40 ± 6.74%) and 27 for t-test +
weights (85.77± 5.38%).

These results highlight that the weight process captures
the most common features among the sample population.
Introducing the weight process after feature selection allows the
classifier tomaintain a comparable performance than the reliance
on individual rankings for each participant. Therefore, the use
of common features not only facilitates making comparisons
across subjects but also reduces the complexity of the analysis by
focusing on a smaller set of features.

3.3. Sensitivity of EEG Indicators
In order to examine the sensitivity of the proposed set of
EEG indicators to differentiate between the four experimental
conditions (i.e., four levels of workload), a test for differences
was conducted using the Friedman Test. This test was used with
the following research hypothesis Ho: There are no significant
differences between the mean EEG values among the experimental
conditions. In other words, the distribution of EEG values is
independent of the experimental conditions (the EEG indicators
do not capture a difference in workload). Figure 11 presents the
results of this test.
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FIGURE 9 | Cortical locations of the top 19 features in the three bands explored in this study.

FIGURE 10 | Classification results using Information Gain (left panel) and t-test (right panel).

The results exhibited a statistically significant difference in
EEG values depending on the experimental conditions [χ2(n =

16) = 31.27, p = 0.000]. Post-hoc tests using multiple two-sided
Wilcoxon signed-rank tests were performed with Bonferroni
correction applied (p < 0.0083). There were no significant
differences between the Low-Low and Low-High (p = 0.030), the
Low-Low and High-Low (p = 0.01), or the High-Low and Low-
High (p = 0.026) conditions. However, this statistical test showed
a significant difference in the Low-Low and High-High (p =

0.000), the High-High and Low-High (p = 0.005), and the High-
High and High-Low (p = 0.000) conditions. This result suggests
that using the proposed set of EEG features presents higher
sensitivity to measure cognitive load during our experiment, than
the ATWIT questionnaire and the heart rate.

4. DISCUSSIONS

The primary goal of the current investigation was to examine
different EEG indicators for the objective assessment of cognitive
workload. An experiment was designed to modulate the
participants’ perceived workload. EEG indicators of spectral
powers at different cortical locations (based on theta, alpha, and
beta bands) were compared and investigated. Using a feature

selection technique, the most important features were obtained
for each subject, then a weight procedure was applied to identify
a set of common features across our sample population. The
identified set of features represents a group of possible EEG
indicators for the objective assessment of cognitive workload.

The experimental conditions and overall assumption of the
experiment were validated. The research hypothesis about the
use of delay and dropout to modulate the participant’s perceived
workload was confirmed by using statistical analysis performed
on both the averaged ATWIT response and heart rate (HR)
data. The overall trend exhibited that the participants faced a
significantly higher (p < 0.0083) cognitive workload during the
high delay and high dropout (High-High), a similar trend was
also observed using the EEG indicators. This finding suggests
that the increase of participants’ cognitive workload in scenarios
with high delay and high dropout reflects the difficulty in
understanding and identifying new information after the loss
of an already-familiar scenario. This is in line with previous
studies on the relationship between information quality and
workload. For instance, in an experiment to study the effect of
audio communication latency on cognitive workload (Krausman,
2013), it was found that increased audio communication latency
led to increased cognitive workload and lower task accuracy.
Similarly, increased workload has been reported in participants
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FIGURE 11 | The bar graph represents the mean and standard deviation of

the proposed set of EEG features. The Wilcoxon test showed a significant

increase of workload the Low-Low and High-High (p = 0.000), the High-High

and Low-High (p = 0.005), and the High-High and High-Low (p = 0.000)

conditions. ∗p < 0.0083.

after the use of automation in teleoperated systems, where
participants face new information after the use of automation to
complete a task (Chen et al., 2017).

The weighting process after feature selection (FS + weight)
helped obtain a common set of features across our sample
population. In the machine learning and the data mining
literature, feature selection is an important preprocessing step
in regression and classification problems (Vergara and Estévez,
2014). An advantage of using feature selection in comparison
with other dimensionality reduction methods (e.g., PCA) is that
feature selection does not alter or transform the data; thus,
attempting to understand the underlying process that produced
a given classification result can be achieved (Bennasar et al.,
2015). In our experiment, although feature selection was used to
determine the most important features for each subject and also
to identify the irrelevant features to be discarded, it produced
sixteen different rankings that made it difficult to deduce a
common set of features. Thus, the weighting process helped
determine a common set of features by using the individual
rankings of each feature from each participant. The resulting set
(Table 4) represents the most frequent features in the complete
feature set. It is worth mentioning that by using the ranked
features according to their relevance to the class label, the weight
process retains useful intrinsic groups of interdependent features,
which helped avoid redundant and irrelevant features in the FS
process. This common set of features (top 19) represents less than
half (∼ 45%) of the total number of features.

The common set of features showed objective confirmation of
the different levels of perceived workload during the classification
task. The classification task exhibited a much better performance
(82.23%) using the top-19 features than any of the reference
values (Table 3) using each indicator separately. In addition, the
obtained feature set represents a combination of well-known

EEG power bands that have been linked to cognitive workload as
identified in our literature review. These frequency bands (theta,
alpha, beta) are generally associated with a different dimension
of workload (e.g., attention, vigilance, or mental fatigue). For
instance, theta band has been successfully used to study mental
fatigue and alertness (Gevins et al., 1995; Kamzanova et al.,
2014), alpha band has been employed to assess mental vigilance,
attention and alertness (Antonenko et al., 2010; Borghini et al.,
2012; MacLean et al., 2012), while beta band has been used
to study visual attention or short-term memory (Tallon-Baudry
et al., 1999; Wróbel, 2000; Palva et al., 2011). Therefore, using a
combination multiple frequency bands will make the assessment
of workload more robust to other intrinsic cognitive processes
that are carried out simultaneously. This is particular important,
since our experiment reflects a multitasking environment where
different dimensions are present at the same time, e.g., navigation
while maintaining orientation, or planning while maintaining
communication distance with the alpha vehicle.

The identified feature set also helped identify the most
relevant cortical areas associated with the assessment of cognitive
workload in our experimental task. The majority of identified
channels are from the frontal, temporal, and parietal regions,
cortical areas that have been associated to cognitive workload
in previous studies. For instance, increase in theta band
power over the frontal cortex has been associated with an
increase in task difficulty and use of more working memory
resources (Parasuraman and Caggiano, 2002). Suppression of
Alpha power has been observed in the parietal and occipital
areas during increase of mental workload (Mazher et al., 2017;
Puma et al., 2018). Increase in Beta power over the parietal
and occipital cortical regions has been observed during visual
working memory tasks (Mapelli and Özkurt, 2019). In addition,
bilateral activation was identified in the beta band. These
activations were found in the frontal (F7 and F8), temporal (T7
and T8), and parietal (P7 and P8) areas. While in the alpha band,
a bilateral activation was only found in temporal areas (T7 and
T8). The observed bilateral activation in different cortical areas
suggests that there is is no single brain region or hemisphere
that solely responds to mental workload. In addition, as many
other cognitive tasks, the brain functions as a system rather than
separated brain areas working independently (Rojas et al., 2016).

We acknowledge that this study presents some limitations that
should be addressed in our future research. The use of a small
number of electrodes to monitor the cortical activity restricts
our ability to make generalizations to other cerebral regions
from the proposed set of EEG features. Advantages of using the
Emotive EPOC is that it is less uncomfortable to be worn for
longer periods of time and less unpleasant for participants since it
uses dry electrodes. However, in future research a larger number
of electrodes to record activity in more areas of the cerebral
cortex should be considered. Another limitation of this study
is that each sensor modality was analyzed separately to study
workload. Debie et al. (2019) highlighted the disadvantages of
using a single sensor modality to capture changes in cognitive
workload. For instance, a given measure may respond to a
particular task (e.g., attention or engagement) but may fail to
capture workload change in other tasks (e.g., working memory or
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mental fatigue). Thus, combining multiple sensors can measure
different aspects of workload and can potentially complement
one another to provide a better assessment of cognitive workload
in multitasking situations.

Finally, the results of this study expand earlier findings
from previous research of cognitive workload assessment
using EEG. However, direct comparisons with other studies
are difficult because of the use of different experimental
conditions, EEG acquisition system, sampled population
and with different demographics, validation methods, and
classification models (Rojas et al., 2017a). Therefore, the
contributions of this study can be summarized as follows: (1) it
offers an exploratory study that aims to compare different EEG
indicators identified in the literature for the objective assessment
of cognitive workload; (2) it introduces a framework to extend
the feature selection process to identify the most important
features among the sample population; and (3) it presents a
group of features (EEG power bands and cortical regions) as
possible indicators for the objective assessment of cognitive
workload in multitasking environments.

5. CONCLUSIONS

This study investigated different EEG power bands to identify a
set of indicators that can be used for the objective assessment of
cognitive workload. Results showed that our experimental study
was valid at increasing mental workload in the participants as
measured by three metrics (ATWIT, HR, and EEG). The use of
a weighting process after feature selection (FS + weights) helped
identify common features across all participants. In addition, a set
of indicators (including EEG power bands and cortical regions)
was identified as objective metric of workload in our multitasking
environment. The proposed set of indicators exhibited higher
sensitivity to various levels of cognitive workload than the

subjective metric (ATWIT) and the physiological measure
(heart rate). Finally, future research will adopt the proposed
EEG indicators to trigger adaptive automation to maintain
performance in human-swarm teaming.
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