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This paper examines the problem of diffeomorphic image registration in the presence

of differing image intensity profiles and sparsely sampled, missing, or damaged tissue.

Our motivation comes from the problem of aligning 3D brain MRI with 100-micron

isotropic resolution to histology sections at 1× 1× 1,000-micron resolution with multiple

varying stains. We pose registration as a penalized Bayesian estimation, exploiting

statistical models of image formation where the target images are modeled as sparse

and noisy observations of the atlas. In this injective setting, there is no assumption

of symmetry between atlas and target. Cross-modality image matching is achieved

by jointly estimating polynomial transformations of the atlas intensity. Missing data is

accommodated via a multiple atlas selection procedure where several atlas images

may be of homogeneous intensity and correspond to “background” or “artifact.” The

two concepts are combined within an Expectation-Maximization algorithm, where atlas

selection posteriors and deformation parameters are updated iteratively and polynomial

coefficients are computed in closed form.We validate our method with simulated images,

examples from neuropathology, and a standard benchmarking dataset. Finally, we apply

it to reconstructing digital pathology and MRI in standard atlas coordinates. By using

a standard convolutional neural network to detect tau tangles in histology slices, this

registration method enabled us to quantify the 3D density distribution of tauopathy

throughout the medial temporal lobe of an Alzheimer’s disease postmortem specimen.

Keywords: neuroimaging, digital pathology, histology, brain mapping, image registration, missing data

1. INTRODUCTION

High-throughput neuroinformatics and image analysis are emerging in neuroscience (Miller et al.,
2013a; Mori et al., 2013). Atlas-based image analysis plays a key role, as it enables information
encoded by millions of independent voxel measurements to be reconstructed in ontologies of
the roughly 100 evolutionarily stable structures. At the 1-millimeter scale, there are many atlases,
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including Tailarach coordinates (Talairach and Szikla, 1980)
and the Montreal Neurological Institute (MNI) (Evans et al.,
1993) and Mori’s diffusion tensor imaging (DTI) white matter
(Mori et al., 2005) atlases, which define the locations of
neuroanatomical structures as well as important structural and
functional properties such as volume, shape, blood oxygen level-
dependent (BOLD) signals, etc. At the millimeter scale, there
have been several approaches for mapping onto atlases (Miller
et al., 1993; Grenander and Miller, 1998; Toga and Thompson,
2001; Thompson and Toga, 2002; Ashburner and Friston, 2007;
Ashburner, 2009), atlas estimation (Durrleman et al., 2008;
Vialard et al., 2011), and applications in white matter (Zhang
et al., 2010b) or even cardiac imaging (Zhang et al., 2010a;
Ardekani et al., 2012). At micron and meso-scales, there are
several atlases includingMori’s and the Allen brain atlas (Chuang
et al., 2011; Sunkin et al., 2013) with their associated region
and cell-types. Many of the brain mapping algorithms have been
extended to micron scales, such as for CLARITY (Chung et al.,
2013; Epp et al., 2015; Kutten et al., 2017).

However, many of the dense brain mapping methods have
been based on high-quality datasets, in which image collection
is highly controlled and similar image modalities are being
registered. In the work described here, we focus on an application
that is ubiquitous in digital pathology, where micron-thick
tissue slices are prone to damage and are sparse, implying
large numbers of missing sections. As well, many stains are
often used, which results in a multitude of contrast variations
between imaged sections. In the work proposed here, we
develop a generative probabilistic model that accounts for
differences in shape, contrast, and sparsity associated with
censoring of data samples using the random orbit model of
Computational Anatomy (Grenander and Miller, 1998, 2007),
in which the space of histological images is an injection
into the orbit of exemplar templates under both smooth
diffeomorphic coordinate transformation and image contrast
transformation. The models for coordinate transformations are
taken from diffeomorphometry (Miller et al., 2014, 2018). We
pose registration as a penalized Bayesian estimation, exploiting
statistical models of image formation where the target images
are modeled as sparse and noisy observations of the atlas. The
correspondence between histology images and 3D atlases is an
injection, not an invertible diffeomorphism. The penalized Bayes
estimator we derive applies transformations only to the atlas,
removing the assumption of symmetry between atlas and target.
We accommodate the space of differing contrasts associated with
different histological stainings (such as tau, amyloid, myelin,
Nissl, and fluorescence) by modeling the space of contrasts via
polynomial functions of the atlas. Application of higher-order
polynomials describes non-monotone transformations that swap
the order of intensities, with first-order monotone polynomials
reducing to affine transformations given by the normalized cross-
correlation cost function. To accommodate effects such as folding
and distortion, we include additional homogeneous atlases and
model each pixel in an observed image as a realization of one
transformed atlas from this family. The atlas label at each pixel is
interpreted as missing data, with the conditional mean computed

to estimate them using the Expectation-Maximization algorithm
(Dempster et al., 1977).

Alternatives to the approach presented here for missing data
have included masking of the image similarity objective function
(Brett et al., 2001; Stefanescu et al., 2004) or filling with a specific
image intensity or texture (Sdika and Pelletier, 2009), as well as
explicit joint estimation for missing data, such as that associated
with excised tissue (Nithiananthan et al., 2012) or occlusion by
lesions (Yoo et al., 2002; Avants et al., 2014), tuberculosis (Vidal
et al., 2009), or tumor (Zacharaki et al., 2008).

Registration between different modalities in the presence of
missing data is more challenging because image abnormalities
are difficult to detect when their expected contrast is unknown.
Our approach of attempting to solve the Bayes problem,
removing the nuisance variables as much as possible via
the Expectation-Maximization algorithm, is more similar to
(Periaswamy and Farid, 2006; Chitphakdithai and Duncan,
2010a). Objective functions for multimodality image similarity,
such as normalized cross-correlation (Avants et al., 2006; Wu
and Tang, 2018), mutual information (Mattes et al., 2003;
Pluim et al., 2003), or local structural information (Heinrich
et al., 2012; Wachinger and Navab, 2012; Bashiri et al., 2019)
do not easily extend to an expectation maximization setting
because they do not correspond to a data log-likelihood.
Our framework applies to general image registration problems
and differs from the methods surveyed above in several
important respects. The method proposed here supports large
deformations within the computational anatomy random orbit
model, unlike (Periaswamy and Farid, 2006; Bashiri et al.,
2019), which considers low-dimensional scale rotation and
translation dimensions. Secondly, we introduce the many
dimensions of polynomials to overcome the nonmonotonicity
of the transformation for crossing modalities for histology
jointly with deformation, unlike example (Periaswamy and Farid,
2006), which considers multimodality registration and missing
tissue separately. Finally, by introducing the EM algorithm, we
approximate the full Bayes problem of removing the nuisance
dimensions of missing and/or distorted tissue, thereby in part
benefiting from the reduced dimensional setting of EM as
a solution. The potential impact of these methods has been
recognized by the community, and a recent review by Pichat
et al. (2018) summarizes work in this area over the past several
decades. Artifacts addressed by our method (folds, tears, cracks,
and holes) are specifically described as challenges but are not
modeled by the registration approaches surveyed. In the survey,
these factors are handled by techniques such as manual labeling
of artifact regions or modified image similarity metrics such as
sum of absolute deviation that avoid strongly penalizing outliers.

We apply these techniques to an important application in
Alzheimer’s disease (AD), computing the 3D density of tau
neurofibrillary tangles, a key pathologic feature of AD (Mirra
et al., 1997). Since Braak and Braak’s original 1991 staging of
Alzheimer’s (Braak et al., 2006), it has become clear that one of the
earliest locations of degeneration associated with tauopathy is the
lateral boundary of the entorhinal cortex, subsequently spreading
throughout the medial temporal lobe. In our previous works
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(Miller et al., 2013b, 2015; Younes et al., 2014, 2019; Tward et al.,
2017; Kulason et al., 2019) based on 1.5 T Magnetic Resonance
Imaging (MRI), we demonstrated that there is evidence of
consistent atrophy, as manifested by thickness and volume
measures. This appears earliest in the entorhinal cortex, with
subsequent statistically significant changes seen in the amygdala
and hippocampus. Aligning histological sections (stained for tau,
amyloid, andmyelin) with the dense 3D coordinates of individual
brains offers the opportunity to associate the histological changes
to pathological tau observed post mortemwith structural changes
observed clinically. We detect tau tangles using a standard deep
convolutional neural network, where 56 × 56 pixel patches are
used to classify the center of the patch. The network is applied
to the whole image through overlapping patches in a scanning
window approach, shifting by 1 pixel at a time. As this is a large-
scale task but not a particularly challenging one, this architecture
was taken from an official TensorFlow tutorial, and our work
here is not intended to advance the state of the art in neural
network design.

At the time of manuscript preparation, code to perform 3D
registration with this algorithm is available on GitHub (https://
github.com/dtward/image_lddmm_tensorflow), implemented in
Python1 with high-performance computing handled using
TensorFlow2 and available on any operating system that runs
Python and TensorFlow. This repository includes example usage
in the form of Jupyter notebooks, with figures and explanations
of each step, for several datasets covering human, mouse, and
rat. The implementation of our algorithm lddmm.py includes
descriptions of each step in the form of comments. Our most
up-to-date registration code will be described at3.

Our central contribution is to build a registration algorithm
by extending the computational anatomy random orbit model in
two ways: first, by including nonmonotonic contrast variation in
addition to geometric variation, and second, by simultaneously
accommodating artifacts or missing tissue through an EM
algorithm. Our paper is structured as follows. In section 2, we
describe our registration algorithm in three steps: (i) reviewing
a traditional approach, (ii) adding contrast variation, and (iii)
adding missing data. In section 3, we describe five experiments
used to illustrate and validate our method: (i) with a simulated
image, (ii) examining our first and second contribution in
isolation and together using histology data, (iii) quantitatively
demonstrating that our accuracy performance is similar to state-
of-the-art alternatives using the CIMA benchmarking dataset
described in Borovec et al. (2018), which includes contrast
variation but not missing tissue, (iv) quantifying our accuracy
via Dice overlap in a missing data setting, and (v) applying our
method to Alzheimer’s disease research, detecting tau tangles in
2D histology and registering them to the standard 3D coordinate
system of the Mai Paxinos Voss atlas (Mai and Paxinos, 2011). In
section 4, we present the results of these five experiments. Finally,
in section 5, we discuss the implications of this work.

1https://www.python.org
2https://www.tensorflow.org
3https://neurodata.io/reg

2. METHODS

In this section, we first review the optimality conditions for the
original LDDMM image registration algorithm. We then show
our first contribution, how they are modified to include contrast
variation, and our second contribution, how they are modified
to simultaneously include missing data. In each case, we present
three sets of equations: (i) a generative model, (ii) an objective
function to be minimized, and (iii) optimality conditions. We
conclude this section by summarizing our registration algorithm.

2.1. Background: LDDMM and the
Geometric Transformation Problem
Our generative model for the space of observed images builds
upon the deformable templates of (Grenander, 1994; Grenander
and Miller, 2007). In the original setting, observed images are
spatial transformations of grayscale atlases I :X ⊂ R

3 → R.
Geometric differences are modeled as diffeomorphisms, ϕ ∈

Diff :X → X, which are generated from flows of smooth velocity
fields vt , t ∈ [0, 1] as in (Grenander and Miller, 1998).

φ̇t = vt(φt), φ0 = id, ϕ = φ1, (1)

Observed images J are modeled as conditionally Gaussian
random fields, with the mean given by the deformed template,
and the addition of white noise:

J(·) = I(ϕ−1(·))+ noise(·)

With noise variance σ 2
M , this gives a log-likelihood function only

of the parameters

−ℓ(J;ϕ) =
1

2σ 2
M

‖J − I ◦ ϕ−1‖2L2 .

Because velocity fields are not finite-dimensional, they are
regularized by introducing a Sobolev norm as a running penalty,
weighted by the parameter σ 2

R , giving an objective function

E(ϕ) =
1

2σ 2

∫ 1

0

∫

X
Avt · vtdxdt +

1

2σ 2
M

‖J − I ◦ ϕ−1‖2L2

Here, A is a differential operator of the form (id − a21)4, where
a is a smoothness length scale.

This problem was solved in Beg et al. (2005) with
necessary conditions

∇E =
1

σ 2
R

Avt −
1

σ 2
M

∇(I(ϕ−1
t ))(I(ϕ−1

t )− J(ϕ−1
1t ))|Dϕ−1

1t | = 0

(2)

where ϕ1t = ϕt ◦ ϕ−1
1 and |Dϕ| is determinant of the

Jacobian matrix.
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2.2. Polynomial, Non-monotonic Mappings,
and the Contrast Transformation Problem
Our first contribution is to expand the generative model to
allow observed images to have a different non-monotonically
transformed contrast profile from the atlas. We consider atlases
I :X → R

N and observed images J :X → R
M . These may be

single-valued (N = 1), such as a T1MRI, or multi-valued, such as
red-green-blue (RGB, N = 3). We model this change in contrast
by a polynomial function of specified degree with coefficients θ ,
denoted Fθ .

The generative model describes J as a conditionally
Gaussian M vector field with each component of
noise independent,

J(·) = Fθ [I(ϕ
−1(·))]+ noise(·).

Our objective function is

E(ϕ, θ) =
1

2σ 2
R

∫ 1

0

∫

X
Avt · vtdxdt +

1

2σ 2
M

‖J − Fθ (I ◦ ϕ−1)‖2L2

(3)

where the L2 norm sums over each component of vectors in R
M .

Our two necessary conditions are

∇vE =
1

σ 2
R

Avt −
1

σ 2
M

∇[Fθ (I(ϕ
−1
t ))](Fθ (I(ϕ

−1
t ))

−J(ϕ−1
1t ))|Dϕ−1

1t | = 0 (4a)

∇θE =

∫

X
Fθ (I ◦ ϕ−1

1 (x)) ·
d

dθ
Fθ (I ◦ ϕ−1

1 (x))dx

−

∫

X
J(x) ·

d

dθ
Fθ (I ◦ ϕ−1

1 (x))dx = 0 (4b)

The first equation (Equation 4a) is a minor modification
to Beg’s algorithm (2), and the second (Equation 4b) solves
for θ as the solution to a least-squares problem. Generally,
Fθ is nonmonotic polynomial, but when it is an affine
transformation, this algorithm is equivalent to minimizing a
normalized cross-correlation loss function (see Appendix 1 in
Supplementary Material).

2.3. EM Algorithm and the Missing Data
Problem
Our second contribution is to expand the generative model to
allow observed images to have a different identity at each pixel.
For example, pixels showing torn or folded tissue may be labeled
as “background” or “artifact” (respectively) and not correspond
to any location in the atlas through the transformation ϕ. In
this setting, missing data takes the form of per-pixel labels that
indicate which member of a family of atlases the intensity at
that pixel comes from. Thus, the missing tissue (due to a tear
or a fold) would be modeled by a “background” atlas, and
corrupted pixels due to a streak or a smudge would be modeled
by a “artifact” atlas. We approach the problem of missing or
censored data using the Expectation-Maximization algorithm
(Dempster et al., 1977).

Our new generative model describes J with multiple possible
means and variances at each pixel i

Ji =







Fθ [I(ϕ
−1)]i + noiseMi if voxel i is tissue

µA + noiseAi if voxel i is artifact

µB + noiseBi if voxel i is background

(5)

the noise components have variance σ 2
M , σ 2

A, and σ 2
B .

Our EM algorithm for jointly estimating the deformation,
contrast transformation, and class of each voxel is derived
in Appendix 2 in Supplementary Material. At each M step,
we update our transformation parameters by minimizing the
objective function

E(ϕ, θ) =
1

2σ 2
R

∫ 1

0

∫

X
Avt · vtdxdt

+
1

2σ 2
M

∑

i

|Ji − Fθ [I ◦ ϕ−1]i)|
2πM

i (6)

where πM
i is the posterior probability that voxel i corresponds

to our atlas image (rather than background or artifact). Our
necessary conditions are

∇vE =
1

σ 2
R

Avt −
1

σ 2
M

∇[Fθ (I(ϕ
−1
t ))](Fθ (I(ϕ

−1
t ))

−J(ϕ−1
1t ))|Dϕ−1

1t |π
A ◦ ϕ−1

1t = 0 (7a)

∇θE =
∑

i

Fθ [I ◦ ϕ−1
1 (x)]i ·

d

dθ
Fθ [I ◦ ϕ−1

1 (x)]iπ
M
i

−
∑

i

Ji ·
d

dθ
Fθ [I ◦ ϕ−1

1 (x)]iπ
M
i = 0 (7b)

µA =
∑

i Jiπ
A
i /

∑

i π
A
i , µB =

∑

Jiπ
B
i /

∑

i π
B
i (7c)

Here, πM is interpreted as a continuous function using linear
interpolation, and πA

i ,π
B
i are the posterior probability that

voxel i corresponds to an artifact or background (respectively).
The first equation (Equation 7a) differs from Equation (4a)
only by the factor πM , and the second equation (Equation
7b) differs from Equation (4b) by the factor πM . For
technical reasons, we use discrete notation in Equations
(7a) and (7b).

2.4. Optimization Algorithm
Our resulting EM-LDDMM optimization algorithm is
summarized in Algorithm 1. See the Appendix 2 in
Supplementary Material for a proof that this is an EM algorithm
and thus monotonically increasing in likelihood.
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Algorithm 1: EM-LDDMM for image registration with intensity
transformations andmissing data. Below, we use two possibilities
for missing data, artifact, or background.

Input data:
Atlas image I and target image J.
Input parameters:
σM , σA, σB (weights in cost function),
a (length scale for transformation smoothness),
O (order of polynomial for contrast mapping).
Initialization:
vt = 0 (zero velocity field for identity transform),
θ = (0, 1, . . .) polynomial coefficients for identity transform,
µA,µB artifact and background intensities.
Optimization: Repeat until convergence.

1. E step:

Compute πa for matching, artifact, and background using
Equation (9).

2. M step: Repeat until convergence.

(a) Forward pass: Compute ϕ−1
t from vt for t ∈ [0, 1] using

Equation (1), and compute Fθ [I(ϕ
−1
1 )].

(b) Objective: Evaluate the objective function for vt ,
Fθ [I(ϕ

−1
1 )] and J using Equation (6).

(c) Backward pass: Compute θ ,µA,µB by weighted least-
squares using Equation (7b) and Equation (7c). Compute
ϕt from vt using Equation (1) and update vt by gradient
descent using Equation (7a).

Output: Forward and inverse transforms ϕ1,ϕ
−1
1 (optionally

output other parameters of interest).

3. EXPERIMENTAL SETTING AND
MATERIAL

In this section, we describe the imaging data acquired
as part of our Alzheimer’s disease study and the five
registration experiments used to illustrate and validate
our method.

3.1. Post-mortem Imaging
Preparation and scanning of brain tissue were performed
by the neuropathological team at the Johns Hopkins Brain
Resource Center (BRC) and the laboratory of Dr. Susumu Mori.
The specimen was a 1,290 g brain from a 93-year-old male,
with a clinical diagnosis of Alzheimer’s disease dementia. The
autopsy diagnoses included: Alzheimer’s disease neuropathologic
change, high level (A3,B3, C2) (Hyman et al., 2012); CERAD
neuritic plaque score B (Mirra et al., 1991); neurofibrillary
Braak stage VI/VI (Braak et al., 2006); subacute infarcts frontal,
temporal, and basal ganglia; old infarct of pons; with clinical-
pathological comment: “Mixed dementia, AD, and vascular.
The AD component appears to predominate.” The fixed brain
tissue was divided into six coronal blocks of the temporal
lobe that contain the entorhinal cortex, the hippocampus, and
the amygdala. The orientations of the blocks correspond as
closely as possible to the coordinate system of the Mai Atlas.

Each block of brain tissue was scanned with a high-field 11.7T
MRI scanner.

The nuclear magnetic resonance (NMR) sequence was based
on a 3D multiple echo sequence (Mori and Van Zijl, 1998; Xue
et al., 2001), with four echoes acquired for each excitation. The
diffusion-weighted images were acquired with a field of view of
typically 40×30×16mm and an imagingmatrix of 160×120×64,
which was zero-filled to 320 × 240 × 128 after the spectral data
were apodized by a 10% trapezoidal function. The pixel size was
native 250-micron isotropic. Eight diffusion-weighted images
were acquired with different diffusion gradient directions, with
b-values in the 1,200–1,700 s/mm2 range. For diffusion-weighted
images, a repetition time of 0.9 s, an echo time of 37 ms, and two
signal averages were used, for a total imaging time of 24 h.

The MRI scanning procedure resulted in several distinct
images that must themselves be aligned after imaging. For this,
we developed an interactive tool for visualizing and transforming
each imaged block to match with the others and for rigidly
positioning the aligned blocks in theMai Atlas coordinate system.
The blocks were aligned by manually adjusting rotations and
translations by small amounts until they could not be improved.
The alignment was calculated by a biomedical engineer with
feedback provided by a neuroanatomist. An example of our
images and their alignment is shown on the left in Figure 1.
The aligned blocks were labeled by a neuroanatomist for relevant
medial temporal lobe structures [entorhinal cortex, subiculum,
Cornu Ammonis (CA) fields, compartments of dentate gyrus,
alveus]. These labels are shown as a surface reconstruction on
the right in Figure 1. The superimposed lines correspond to
the rostral-caudal pages of the Mai-Paxinos-Voss atlas (z-axis),
with their 1 cm grid lines along the x-y axes of each page. Our
definition of the entorhinal cortex (magenta) includes the medial
bank of the collateral sulcus. This sulcal region (Krimer et al.,
1997), also referred to as the trans entorhinal cortex, corresponds
to the earliest location of AD pathology accumulation visible at
autopsy (Braak and Braak, 1991). Atrophy in this region has been
detected at the population level in subjects with mild cognitive
impairment (Albert et al., 2011) before other changes are visible
(Tward et al., 2017).

After the tissue blocks underwent high-field imaging, they
were sectioned for histological examination. The tissue was
sectioned at 200 µm intervals: 20 slices of 10 µm thickness and 5
slices of 40 µm thickness. The thin-sliced sections are prepared
with stains focused on AD pathology: Nissl, silver (Hirano
method), Luxol fast blue (LFB) for myelin, and immunostained
for Aβ (mab 6E10) and tau (PHF1). Several examples of our
tau, amyloid, and myelin stained sections are shown in the
results section (Figures 3–11). For future analysis, these stains
are complemented by additional stains to examine the tissue
for related comorbidities and other neurodegenerative disorders,
such as Lewy body disease and frontotemporal dementia,
including immunostains for α-synuclein, ubiquitin, TDP-43,
GFAP (astrocytes), Iba1 and CD68 (microglia), collagen IV
(blood vessels), and reelin (entorhinal cortex layer II neuronal
protein) 13. The thick-sliced sections were used for quantitative
cell and neuron counts and density studies of dendritic and
synaptic markers.
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FIGURE 1 | High-field MTL volume from MR. (Left) MR images of tissue blocks aligned in 3D. (Right) Surface rendering of manual segmentations with Mai Atlas

coordinate system superimposed.

3.2. Image Mapping Experiments
Below, we present several 2D experiments to demonstrate
the applicability and verify the validity of our method. In
each case, linear and deformable registration is performed
simultaneously using gradient descent, and deformable
registration is implemented using LDDMM (Equation 4a)
or weighted LDDMM in an EM algorithm (Equation 7a). In
our first experiment, we provide an illustrative example using a
pair of simulated images that contain contrast variation, missing
tissue, and artifacts.

In our second experiment, we use example histology images
for a qualitative evaluation of the different components of
our algorithm: contrast changes only, missing tissue only, and
both together. These are approximately 1-micron resolution,
with typical images about 20,000 × 10,000 pixels. For
registration purposes, they are downsampled by averaging over
a 32× 32 neighborhood.

In our third experiment, we demonstrate the accuracy of our
algorithm using the benchmarking dataset described in (Borovec
et al., 2018). We use all seven lung tissue slides corresponding
to 140 registrations between pairs of stains. While this dataset
does not correspond exactly to our desired application in
neuroimaging, it provides a great opportunity to calculate
accuracy through landmark target registration error, which was
defined in the above paper as mean landmark distance error
divided by the diagonal of the image, and to compare to state-
of-the-art methods. In particular, this dataset allows us to study
the contrast variation component of our algorithm but not the
missing data component. Using the software package described
in the paper4, we were able to compare our registration results to
alternative state-of-the-art methods, using configuration settings
chosen by their authors specifically for this dataset. We sought
to compare to ANTs because it scored first or second place in
terms of robustness and accuracy and has been used in several
neuropathology applications, including Adler et al. (2014) and

4https://github.com/Borda/BIRL

TABLE 1 | Neural network architecture.

Layer Input shape Parameters

5× 5 convolution 1 56× 56× 3 5× 5× 3× 16+ 16 = 1, 216

ReLu 1 56× 56× 16 0

Max Pool 1 56× 56× 16 0

5× 5 convolution 2 28× 28× 16 5× 5× 16× 32+ 32 = 12, 832

ReLu 2 28× 28× 32 0

Max Pool 2 28× 28× 32 0

5× 5 convolution 3 14× 14× 64 5× 5× 32× 64+ 64 = 51, 264

ReLu 3 14× 14× 64 0

Max Pool 3 14× 14× 64 0

Flatten 7× 7× 64 0

Fully connected 3, 136 3, 136× 1, 024+ 1, 024 = 3, 212, 288

ReLu 1, 024 0

Dropout 1, 024 Probability 0.5

Fully connected 1, 024 1, 024× 3+ 3 = 3, 075

Cross entropy loss 3 0

bUnwarpJ because the majority of our colleagues working in
microscopy use this software. We also compared to the first and
second place winners of the related ANHIR challenge presented
at ISBI 20195, Histokat and Historeg (respectively). To give
further context, we also compare to results with no registration
and results with the best possible affine registration (which uses
information not available to the other methods).

In our fourth experiment, we demonstrate the accuracy of
our algorithm with both contrast variation and missing data and
compare to the partial data local affine method of Periaswamy
and Farid (2006), which has 2D source code available6. Using
a DTI atlas set from MRICloud7, we performed a mapping

5https://anhir.grand-challenge.org/
6https://farid.berkeley.edu/downloads/code/qr_0.2.tar.gz
7http://www.mricloud.org
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FIGURE 2 | Simulation results. (a) atlas and (b) target. (c–e) Show results using our method, with the (c) transformed atlas image, (d) nonmonotic cubic contrast

transform Fθ , and (e) final posterior probability of atlas labels at algorithm convergence. (f,g) Show similar results for a fixed binary mask, and (h,i) show them for no

mask. The identity line for contrast transforms is shown in gray. Because (e) does not render well in grayscale, we have presented it as three grayscale images in our

Supplementary Material.

experiment from b0 images to trace images, between each pair
of subjects in the atlas set, for a total of 56 maps. We chose
the axial slice where lateral ventricles appeared the largest and
calculated mean and standard deviation of Dice overlap of gray
matter, white matter, and lateral ventricle. We registered whole
brains to whole brains as a baseline, and, to examinemissing data,
we registered whole brains to hemispheres.

Our fifth and final example is to demonstrate an important
application in a 3D histology pipeline, quantifying the 3D
distribution of tau tangles in Alzheimer’s disease. Here, we
work with a sequence of transformations between 3D post-
mortem MRI and 2D histology slices. The sequence consists of
3D shape change (deformation and rigid positioning), adjusting
for scaling (slice spacing and pixel size), position on the
microscope slide (2D rigid motion), and variation in contrast
(cubic intensity transformation). Rigid, scale, and deformation
parameters are all jointly optimized using gradient descent. Since
these transformations are combined by composition, gradients
can be calculated using straightforward backpropagation (chain
rule). Deformable registration uses a relatively small gradient
descent step size, allowing linear transformations to be close to
optimal at all times.

This pipeline quantifies the distribution of tau tangles in each
2D slice using a convolutional neural network in TensorFlow
(Tward et al., 2018). Input data is 56 × 56 regions of interest,
and the network architecture is summarized in Table 1. The
center pixel of each region is classified as belonging to one of
three classes: “tau tangles,” “other tissue,” or “background.” A
total of 2,391 training examples were identified manually by
randomly choosing regions of interest and mouse-clicking in
the center of tau tangles or on other tissue or background, with
8.3% positive, and neural network weights were trained using
the Adam optimizer (Kingma and Ba, 2014). Every pixel in our
histology data was classified using a sliding window approach
as in Ciresan et al. (2012). After mapping this data into the
coordinates of the Mai atlas, we report the total area of tau

tangles within the entorhinal cortex, subiculum, and CA1-3 for
each atlas page. To place these numbers in context, we also
report the total area of these anatomical regions (which may be
affected by missing tissue) and the fraction of this area covered
by tau tangles.

4. RESULTS

In this section, we present results and comments for each
of our five image-registration experiments. In section 4.3, we
particularly highlight the difference between our asymmetric
generative statistical model and popular symmetric alternatives.

4.1. Mapping Simulated Images With
Artifact and Missing Tissue
To demonstrate the method, we start with simulated images.
Figure 2 shows the atlas (Figure 2a) and target (Figure 2b).
Contrast is chosen so that the atlas appears like a T1 MR brain
image (darker gray matter and brighter white matter) and the
target appears like a T2 MR brain image. The target also contains
a bright streak artifact and missing tissue. Specifically, the atlas
background has intensity 0, gray matter 1, and white matter 1.25.
The target background has intensity 0, gray matter 0.9, white
matter 0.675, and artifact 5. Both images have additive white
Gaussian noise with standard deviation 0.05 and are blurred with
a Gaussian kernel with a standard deviation of 2/3 pixels over a
5× 5 pixel window.

Figures 2c,d shows that a cubic intensity transformation is
sufficient to permute the order of gray and white matter, allowing
for accurate matching of the cortical boundary. Figure 2e

shows the posterior probabilities of the three atlases, shown as
components of an RGB image. The pixels are correctly classified,
with the atlas image in red, artifact in green, and background in
blue. Note that the dark region is magenta because “atlas image”
and “background” both describe the image intensity equally well.
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FIGURE 3 | Mapping across modality from tau to myelin. A tau-stained section through the hippocampus is mapped to a neighboring myelin-stained section using a

cubic polynomial intensity transform.

Figure 2 also shows the failed results that occur when
using a linear contrast transform only (i.e., normalized cross-
correlation), and a fixed mask (Figures 2f,g) or no mask
(Figures 2h,i). Several alternative methods that use these
approaches are described in section 1. With a fixed mask, the
artifact is still handled appropriately. An inversion of contrast
is estimated, which is appropriate within the masked region.
However, missing tissue is not distinguished from normal
background, so the informative “cortex/background” boundary is
treated equivalently to the uninformative “cut tissue” boundary,
resulting in very poor alignment. With no mask, huge distortions
in shape occur as the atlas is squeezed to match the shape
of the target with missing tissue and stretched to follow the
bright artifact.

The number of constant-valued atlases used in addition to our
template image is of importance. Because many neuroimages are
approximately piecewise constant (e.g., a single intensity value
for each of gray matter, white matter, and cerebrospinal fluid),
using many constant atlases has the potential for overfitting. In
the simulated example here, using four such atlases can describe
the target image exactly by assigning a probability of zero to
our non-constant atlas. This would give an undesirable solution
that avoids registration entirely. In all the work shown here,

we use one or two constant-valued atlases corresponding to
“background” or “background and artifact.” This small number
of atlases leads to good quality registration without overfitting.

4.2. Mapping Histology With Missing
Tissue and Different Stains
In Figure 3, we show results mapping a tau-stained section of
the medial temporal lobe to an immediately adjacent section
stained with LFB. We perform intensity transformation using
a non-monotonic cubic polynomial, allowing for a swapping
of brightness from gray matter (1) → white matter (2) →

background (3) in tau to (2) → (1) → (3) in LFB. As
a map from R

3 → R
3, this corresponds to 60 unknown

parameters (one constant, three linear, six quadratic, and 10
cubic, for each of three dimensions). This example illustrates
the intensity transformation component of our algorithm
in isolation.

In Figure 4, we map a tau-stained slice of medial temporal
lobe to its neighbor, which has significant missing tissue
due to damage. This illustrates the missing data component
of our algorithm in isolation. In this experiment, two atlas
labels are used: “tau-stained image” and “background.” The
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FIGURE 4 | Mapping a tau section with missing tissue. A tau-stained section through the hippocampus is mapped to a neighboring damaged section. The weights

show the posterior probability that a given pixel has an atlas label that corresponds to our tau-stained image, not background. High probability is shown in yellow,

probability 0.5 in green, and low probability in blue.

top right panel shows the posterior probability that each pixel
corresponds to the first label at the initialization of our algorithm,
and the middle right panel shows the same probability after
algorithm convergence.

In Figure 5, we show results mapping a tau-stained section of
the medial temporal lobe to an adjacent damaged slice stained
with LFB. This illustrates the intensity mapping and missing data
components of our algorithm simultaneously.

4.3. Quantitative Analysis on Standardized
Benchmark Datasets
Our statistical model of image formation removes the symmetry
assumptions between atlas and target used in other methods
(Christensen and Johnson, 2001; Avants et al., 2006, 2008),
since the correspondence of histology images with 3D atlases
is typically a non-invertible injection. The penalized Bayes
estimator therefore computes deformations and variations only
in the template image, which are compared to the histology
targets via log-likelihood. For example, Equation (7a) only
includes a gradient of the atlas image, whereas symmetric
methods would require gradients of atlas and target. Because of

missing tissue and sparse sampling, there is no 3D gradient in the
target histology coordinates.

This suggests that if the template and target are of the same
dimension and have similarly low noise, then the symmetric
constraint is an excellent assumption and will perform well.
Shown in Figure 6 are comparisons of our method to alternatives
including the symmetric approach ANTs, showing the landmark-
based accuracy between pairs of histology stains in seven datasets.
The results show that our method gives performance similar to
that of other state-of-the-art techniques on this well-controlled
dataset without missing tissue or artifacts. We obtained mean
and standard deviation results for ANTs by running it locally
using provided configuration files, and downloaded others from
the ANHIR challenge website from which mean but not standard
deviation was available. The computation time for registering
these benchmark images was on average 6.6± 2.1 minutes when
run using a standard Python implementation (FFTs computed
using NumPy and interpolation computed using scipy8) with no
explicit GPU or multi-threading support. Our system uses two 6
core Intel Xeon processors at 3.6 GHz.

8www.scipy.org
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FIGURE 5 | Mapping across modality from tau to myelin with missing tissue. A tau-stained section through the hippocampus is mapped to a neighboring LFB-stained

damaged section. The weights show the posterior probability that a given pixel has an atlas label that corresponds to our tau-stained image, not background. High

probability is shown in yellow, probability 0.5 in green, and low probability in blue.

FIGURE 6 | Comparison on standard datasets. Landmark target registration

error on benchmarking dataset (mean, and standard deviation if available,

across all datasets in each category). To give a sense of scale, we also include

error without registration and with the best possible affine registration (which

uses landmark location information not available to the other methods).

It is interesting to compare the symmetric and non-symmetric

approaches when we move toward scenarios where the target
has significant missing or damaged tissue. Our example in

Figure 5 is one such case, and in Figure 7, we compare our

results to the symmetric method. The figure shows overlaps
between the mapped histology section and a target section that

has missing tissue. The images were generated by applying
binary masks and summing the two images in RGB space.
Black and white colors mean background and foreground are
matching, respectively. Magenta implies that deformed atlas
tissue is present but not target, and green the opposite. The
symmetric method results in a roughly equal amount of magenta
and green, whereas our asymmetric method results in almost
entirely magenta. In situations like this one, where it is true that
tissue is missing, we expect our asymmetric method to provide
the desired result.

4.4. Dice Overlap for Whole Brains and
Hemispheres
We show an example pair of images from our Dice overlap
experiment in Figure 8 left. This illustrates the contrast
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FIGURE 7 | Comparison of symmetric and asymmetric methods on a histology section with missing tissue. Deformed atlas is shown in magenta, and target image is

shown in green. The two are combined by summing in RGB space. Black and white colors mean background and foreground are matching, respectively. Magenta

implies deformed atlas tissue is present but not target, and green the opposite. While the symmetric method shows magenta and green, our asymmetric method

shows almost entirely magenta.

FIGURE 8 | Evaluation of contrast variation and missing data using Dice overlap. We evaluate registration accuracy via Dice overlap for gray matter, white matter, and

lateral ventricle. (Left) example b0 and trace images used, illustrating whole brain and hemisphere slices. (Right) Dice scores for whole-brain registration are shown in

red, and whole brain to hemisphere in blue.

differences between b0 and trace images and also illustrates
our generated hemispheres. The mean and standard deviation
of Dice scores across 56 mappings is shown on the right in
Figure 8 for gray matter, white matter, and lateral ventricle. Both
methods examined (light vs. dark colors) perform similarly for
whole-brain data. Our method shows consistently higher Dice
overlaps when registering whole brains to hemispheres. This
difference may be explained by our method accommodating
more than one type of anomalous data or explicitly using
diffeomorphic transformations.

4.5. Mapping Histology Data to Mai Atlas
Coordinates
Alignments between 3D post-mortem MRI and each of our

three 2D stains are shown in Figure 9. For each stain, we
show registered MRI, intensity transformed registered MRI, and

histology images. We also show the posterior probability of each

atlas label (“template image,” “background,” “artifact”) at the start

and finish of the algorithm. Comparing the start to the finish
demonstrates the quality of the alignment. Several regions where
changes are not diffeomorphic, such as opening and closing of
the ventricle, are labeled as artifact or missing tissue. The LFB
stain, in particular, shows significant variation in contrast profiles
from slice to slice, which is handled effectively by our method. All
intensity transformations use a cubic polynomial for each of the
red, green, and blue channels on each slice, which corresponds to
12 parameters.

Example results of our tau-detection algorithm, using the
convolutional neural network with the architecture specified in
Table 1, are shown in Figure 10. We achieve a classification
accuracy of 0.996 on a test set of 500 examples that were randomly
left out from the 2,391 manually classified images in our training
set. The detection results are shown in Figure 10 by overlaying
the image with a red color at three different scales, with individual
detections at themicron level and densities at themillimeter level.

Figure 11 shows several sections of the Mai atlas along
the rostral to caudal axis in millimeters. In the same
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FIGURE 9 | Mapping from MRI to three histology slices. Alignment between our 3D MRI and histology slices at 11 locations with three stains is shown. From top to

bottom, boxes show data for amyloid, myelin, and tau stains. Within each box, from top to bottom: registered MRI, registered MRI intensity mapped to histology,

histology, posterior probability of atlas labels at each pixel, posterior probability of atlas labels at each pixel at start of the algorithm. As in Figure 2, we use red: atlas

image, blue: background, green: artifact.
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FIGURE 10 | Tau-detection results. Tau-stained histology sections (top) with the result of our tangle detection (bottom, red) at three different scales, zooming out

from single tangles (left) to the entire medial temporal lobe (right).

FIGURE 11 | Mapping MRI sections to Mai-Paxinos sections. High-field atlas section at 9.30 mm (top), 17.20 mm (middle), and 23.90 mm (bottom) along the

caudal-rostral axis of histology sections in Mai-Paxinos coordinates.

coordinate system, we show our post-mortem MRI with manual
segmentations superimposed and our histology stains and
estimated tangle density. For visualization of this sparse data
in 3D, interpolation was applied between slices. To sample at
a fraction p between slices I and J, a symmetric LDDMM
transformation was computed (Avants et al., 2008), and a
weighted average of images was computed from the flow (Lee
et al., 2019): (1− p)I ◦ ϕ−1

t + pJ ◦ ϕ−1
1t .

Finally, Figure 12 shows our estimated area covered by tau
tangles on each page of the Mai atlas for several structures
(entorhinal cortex, subiculum, and CA fields). We observe a
trend of decreasing tangle concentration in the rostral to caudal

direction. Note that a 3D rendering of the segmented structures
used for Figures 11, 12 is shown in Figure 1.

5. CONCLUSION

In this work, we proposed a new image-mapping method that
accommodates contrast differences, missing data, and artifacts.
This was achieved by formulating the imaging process as (i)
an unknown shape through the action of the diffeomorphism
group, (ii) an unknown change in contrast through the action
of polynomial maps, and (iii) the addition of Gaussian noise.
Here, (i) describes the object being imaged, and (ii) and (iii)
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FIGURE 12 | Tau tangles on each page of Mai atlas for several structures. Left shows the total area of tau tangles detected within several anatomical structures (ERC,

entorhinal cortex; SUB, subiculum; CA, Cornu Ammonis). Center shows the area of these structures, and right shows the relative area of tau tangles (area covered by

tau tangles divided by area of the structure).

describe the imaging process, reflecting the distinction made
by Shannon between source and channel. This model allows
multimodality image-matching to be formulated as a penalized
likelihood problem rather than simply the maximization of
an image-similarity function. This statistical model leads
naturally to the formulation of an expectation-maximization
algorithm that handles missing data or artifacts. We applied
this algorithm to simulated images, illustrating its effectiveness
for accurate mapping and classification of image pixels and
its superiority over typical alternatives. For 2D histology, we
qualitatively demonstrated the effectiveness of each of our two
contributions, contrast mapping and tissue classification, in
isolation and simultaneously. We quantitatively demonstrated
that our method gives an accuracy comparable to other
state-of-the-art alternatives using a benchmarking dataset that
evaluates contrast changes but not missing data. Finally, we
applied this technique to the challenge of reconstructing 3D
volumes from histology by mapping to post-mortem MRI. In
conjunction with convolutional neural networks, this allowed
us to map out the 3D distribution of tau tangles in the medial
temporal lobe.

Here, we demonstrated that for R → R affine contrast
transformations, our formulation is equivalent to normalized
cross-correlation. Another popular image-similarity term
is mutual information, which is invariant to all invertible
transformations. Our approach can accommodate these
invariances if we allow for arbitrary nonparametric
transformations, which can be thought of as high-degree
polynomials or as linear combinations of narrow kernel
functions. In this limit, a standard result of statistical prediction
results in an intensity transformation given by conditional
expectation, F(i) = EJ|I=i[J]. This transformation results in a cost
function with the same set of invariances as mutual information.

Typically, image registration has involved the balance
between a regularization term and a data attachment term
in optimization, which is characterized by a single parameter
chosen to reflect the researcher’s priorities. A limitation of our
algorithm is that it requires more parameters: a variance for
shape change (regularization) and variances of image noise,
background noise, and artifact noise. However, rather than
being chosen arbitrarily, these must be chosen carefully to

reflect the physical characteristics of a random imaging model.
The choice of polynomials here to describe intensity changes
provides an efficient method for basis representation of the
contrast or image variation. Further, as is typical of Expectation-
Maximization algorithms, optimization in our setting can be
slow and sensitive to initialization. We attempt to overcome this
initialization issue using standard approaches in the registration
community, including working from low resolution to high
resolution and beginning with linear transformations and
working toward deformations.

The scalability of the algorithm described is technically
O(N log(N)), where N is the number of voxels in the atlas image,
owing to the Fast Fourier Transform (FFT) used for applying and
inverting differential operators. In practice, however, themajority
of computation time is spent in linear interpolation, which is
O(N). Both linear interpolation and FFTs can be very efficiently
parallelized on multicore systems or graphics-processing units.

While we compared our algorithm to two state-of-the-art
methods for registration with contrast differences on a standard
benchmarking dataset, this was not possible for missing data
methods. To place our method in context, we briefly compare to
alternative modeling approaches. Quicksilver (Yang et al., 2017),
a deep learning-based method, has demonstrated robustness
against anomalies that are not present in the training set. While
these methods show promise, our contribution is made in
the setting of explicit modeling rather than implicitly learning
from large datasets. Such datasets are becoming common
in whole-brain MRI but are currently lacking in histology,
our intended application. Other models allow transformations
to become non-smooth or noninvertible at boundaries of
anomalous regions of the image (Risholm et al., 2009, 2010;
Nielsen et al., 2019), which may be accurate in situations such
as cut tissue. However, throughout the majority of images,
transformations are diffeomorphic, and we have chosen to work
in the computational anatomy random orbit model to preserve
properties that are useful for morphometry in addition to
registration, such as the embedding of human anatomy into a
metric space. Metamorphosis-based models (Miller et al., 2002;
Li et al., 2011; Nithiananthan et al., 2012) allow image intensity
to vary in certain regions to match anomalies, while mask-
based models (Periaswamy and Farid, 2006; Sdika and Pelletier,
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2009; Vidal et al., 2009; Chitphakdithai and Duncan, 2010b) or9

manually or automatically ignore these anomalies. Our method
leverages the strengths of these last two, modeling both non-
monotonic image intensity variation and masking in a generative
statistical framework.

Our contribution to AD understanding stems from the need
to bridge the gap between 3D imaging such as MRI, which can
be obtained in living subjects over time, and 2D histopathology,
which is the technique used to make the diagnosis postmortem.
While some authors have successfully registered histology to
MRI in well-controlled conditions (Adler et al., 2014), we believe
that the generative model proposed here, which accommodates
variable contrast and missing data, will be a valuable approach
for handling typical data moving forward. This earlier work,
which we compare to in our benchmarking results, is well
appreciated and pioneers the space via the introduction ofmutual
information with the symmetric methods. However, because of
the importance of the noise model in our setting for digital
pathology, in which the target images contain many deletions
of tissue and distortions within the image plane associated
with extremely sparse collections, we have not focused on the
symmetry of the orbit model described in (Christensen and
Johnson, 2001; Avants et al., 2006, 2008). The statistical model for
image formation of Equation (5) removes symmetry assumptions
between template and target, such as are associated with other
methods. This is because the correspondence of histology images
to the atlas is an injection. The penalized Bayes estimator
therefore computes deformations and variations only in the
atlas image, as shown by the necessary maximizer condition of
Equation (7a). This paper emphasizes the statistical estimation
model in which the atlas is an idealized representation, i.e.,
the atlas is densely sampled to 100 microns isotropically, while
the target has nonuniform sparse sampling to 1–2 mm with
significant noise associated to nuisance dimensions that are
unique to the histological preparation. An additional advantage
of our statistical likelihood interpretation for estimating missing
or distorted image data is that it allows us to perform Bayesian
calculations such as are used in multi-atlas interpretation (Tang
et al., 2012; Wang et al., 2012) and Bayesian segmentation
(Tang et al., 2013).

This work advances the field of brain mapping in two
important ways. First, it moves to exploit statistical models of
image formation under the key assumption that the measured
targets are sparse and noisy samples of the dense atlases.
No symmetric property is available because mappings from
histology slices to 3D atlases are injective: while there may
be only one point in the atlas corresponding to each point
in the target, the atlas is far more densely sampled. Second,
this method accommodates mapping between images taking
values in arbitrary dimensions in the presence of missing
tissue and artifacts. This allows accurate brain mapping to
expand from well-controlled clinical imaging to the massive
diversity of neuroscience data. For example, in the mouse
community, accurate image-mapping between Nissl-stained
tissue and microscopy with multiple fluorophores is commonly
required in the presence of variably dissected or damaged tissue.

9https://github.com/armaneshaghi/LesionFilling_example

We are currently applying these techniques to CLARITY (Chung
et al., 2013; Epp et al., 2015) and iDISCO (Renier et al., 2014)
images in mouse and rat (Branch et al., 2018), serially sectioned
mouse as part of the BRAIN Initiative Cell Census Network
(Lee et al., 2018) and revisiting older datasets where images were
excluded due to artifacts or damaged tissue.

DATA AVAILABILITY STATEMENT

The datasets analyzed and generated for this study can be found
on the Center for Imaging Science’s FTP server10. This repository
contains four datasets and a README file that describes which
datasets were used to make which figures. In particular, we
include images from our phantom experiment (Figure 2), ex-vivo
MRI images and their manual segmentations (Figures 1, 9, 11),
low-resolution histology images that were used for registration
(Figures 3, 4, 5, 7, 9, 11), and high-resolution histology images
with detected tau tangle probability (Figures 10–12). Images
from the benchmarking dataset can be acquired at11.

AUTHOR CONTRIBUTIONS

DT and MM designed the algorithm. DT wrote the resulting
code and performed the experiments. TB performed the manual
annotations. YK, JP, and JT prepared the histology images. ZH,
JP, and SM prepared the post-mortemMRI. DT, SM, MA, JT, and
MM conceived of this study and contributed to the writing and
revising of the manuscript.

FUNDING

This work was supported by the National Institutes of Health
(NIH) (www.nih.gov) grants P41EB015909 (SM), R01NS086888
(SM), R01EB020062 (MM), R01NS102670 (MM), U19AG033655
(MM), and R01MH105660 (MM), the National Science
Foundation (NSF) (www.nsf.gov) 16-569 NeuroNex contract
1707298 (MM), the Computational Anatomy Science Gateway
(DT and MM) as part of the Extreme Science and Engineering
Discovery Environment (XSEDE Towns et al., 2014), which
is supported by the NSF grant ACI1548562, Johns Hopkins
University Alzheimer’s Disease Research Center with NIH
grant P50AG05146 (MA), the Dana Foundation’s (www.
dana.org) clinical neuroscience research program (MA), the
BrightFocus Foundation (www.brightfocus.org) (JT), and the
Kavli Neuroscience Discovery Institute (kavlijhu.org) supported
by the Kavli Foundation (www.kavlifoundation.org) (DT,
MM, and JT). The funders had no role in study design, data
collection and analysis, decision to publish, or preparation of
the manuscript.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fnins.
2020.00052/full#supplementary-material

10ftp://ftp.cis.jhu.edu/pub/data_share/tward_frontiers_neuroscience_2019/
11http://cmp.felk.cvut.cz/~borovji3/?page=dataset

Frontiers in Neuroscience | www.frontiersin.org 15 February 2020 | Volume 14 | Article 52

https://github.com/armaneshaghi/LesionFilling_example
www.nih.gov
www.nsf.gov
www.dana.org
www.dana.org
www.brightfocus.org
kavlijhu.org
www.kavlifoundation.org
https://www.frontiersin.org/articles/10.3389/fnins.2020.00052/full#supplementary-material
ftp://ftp.cis.jhu.edu/pub/data_share/tward_frontiers_neuroscience_2019/
http://cmp.felk.cvut.cz/~borovji3/?page=dataset
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Tward et al. Registration With Intensity Transformation/Anomalies

REFERENCES

Adler, D. H., Pluta, J., Kadivar, S., Craige, C., Gee, J. C., Avants, B. B.,

et al. (2014). Histology-derived volumetric annotation of the human

hippocampal subfields in postmortem MRI. Neuroimage 84, 505–523.

doi: 10.1016/j.neuroimage.2013.08.067

Albert, M. S., DeKosky, S. T., Dickson, D., Dubois, B., Feldman, H. H.,

Fox, N. C., et al. (2011). The diagnosis of mild cognitive impairment

due to Alzheimer’s disease: recommendations from the national institute

on aging-Alzheimer’s association workgroups on diagnostic guidelines for

Alzheimer’s disease. Alzheimer’s Dement. 7, 270–279. doi: 10.1016/j.jalz.2011.

03.008

Ardekani, S., Jain, A., Jain, S., Abraham, T. P., Abraham, M. R., Zimmerman, S.,

et al. (2012). “Matching sparse sets of cardiac image cross-sections using large

deformation diffeomorphic metric mapping algorithm,” in Statistical Atlases

and Computational Models of the Heart. Imaging and Modelling Challenges, eds

O. Camara, E. Konukoglu, M. Pop, K. Rhode, M. Sermesant, and A. Young,

7085 in Lecture Notes in Computer Science (Berlin; Heidelberg:Springer),

234–243.

Ashburner, J. (2009). Computational anatomy with the SPM software.

Magn. Reson. Imaging 27, 1163–1174. doi: 10.1016/j.mri.2009.

01.006

Ashburner, J., and Friston, K. J. (2007). “Computational anatomy,” in Statistical

Parametric Mapping The Analysis of Functional Brain Images, eds K. J. Friston,

J. Ashburner, S. J. Kiebel, T. E. Nichols, and W. D. Penny (London; Burlington,

MA; San Diego, CA: Academic Press), 49–100.

Avants, B. B., Epstein, C. L., Grossman, M., and Gee, J. C. (2008). Symmetric

diffeomorphic image registration with cross-correlation: evaluating automated

labeling of elderly and neurodegenerative brain. Med. Image Anal. 12, 26–41.

doi: 10.1016/j.media.2007.06.004

Avants, B. B., Grossman, M., and Gee, J. C. (2006). “Symmetric diffeomorphic

image registration: evaluating automated labeling of elderly and

neurodegenerative cortex and frontal lobe,” in Proceedings of the Third

International Conference on Biomedical Image Registration, WBIR’06 (Berlin;

Heidelberg: Springer-Verlag), 50–57.

Avants, B. B., Tustison, N. J., Stauffer, M., Song, G., Wu, B., and Gee, J. C. (2014).

The insight toolkit image registration framework. Front. Neuroinformatics 8:44.

doi: 10.3389/fninf.2014.00044

Bashiri, F., Baghaie, A., Rostami, R., Yu, Z., and D’Souza, R. (2019).

Multi-modal medical image registration with full or partial data: a

manifold learning approach. J. Imaging 5:5. doi: 10.3390/jimaging50

10005

Beg, M. F., Miller, M. I., Trouvé, A., and Younes, L. (2005). Computing large

deformation metric mappings via geodesic flows of diffeomorphisms.

Int. J. Comput. Vis. 61, 139–157. doi: 10.1023/B:VISI.0000043755.93

987.aa

Borovec, J., Munoz-Barrutia, A., and Kybic, J. (2018). “Benchmarking of image

registration methods for differently stained histological slides,” in 2018 25th

IEEE International Conference on Image Processing (ICIP) (Athens: IEEE),

3368–3372.

Braak, H., Alafuzoff, I., Arzberger, T., Kretzschmar, H., and Del Tredici, K.

(2006). Staging of alzheimer disease-associated neurofibrillary pathology using

paraffin sections and immunocytochemistry. Acta Neuropathol. 112, 389–404.

doi: 10.1007/s00401-006-0127-z

Braak, H., and Braak, E. (1991). Neuropathological stageing of Alzheimer-

related changes. Acta Neuropathol. 82, 239–259. doi: 10.1007/bf00

308809

Branch, A. E., Tward, D. J., Chandrashekar, V., Miller, M.,

Vogelstein, J. T., and Gallagher, M. (2018). “Registration

methodology for cleared rodent brain tissue,” in Society for

Neuroscience Annual Meeting 2018 (San Diego, CA), 611.12/

LLL39.

Brett, M., Leff, A. P., Rorden, C., and Ashburner, J. (2001). Spatial normalization

of brain images with focal lesions using cost function masking. Neuroimage 14,

486–500. doi: 10.1006/nimg.2001.0845

Chitphakdithai, N., and Duncan, J. S. (2010a). “Non-rigid registration with

missing correspondences in preoperative and postresection brain images,” in

International Conference on Medical Image Computing and Computer-Assisted

Intervention (Beijing: Springer), 367–374.

Chitphakdithai, N., and Duncan, J. S. (2010b). “Pairwise registration of images

with missing correspondences due to resection,” in 2010 IEEE International

Symposium on Biomedical Imaging: From Nano to Macro (Rotterdam: IEEE),

1025–1028.

Christensen, G. E., and Johnson, H. J. (2001). Consistent image

registration. IEEE Trans. Med. Imaging 20, 568–582. doi: 10.1109/42.

932742

Chuang, N., Mori, S., Yamamoto, A., Jiang, H., Ye, X., Xu, X., et al. (2011). An

MRI-based atlas and database of the developing mouse brain. Neuroimage 54,

80–89. doi: 10.1016/j.neuroimage.2010.07.043

Chung, K., Wallace, J., Kim, S.-Y., Kalyanasundaram, S., Andalman, A. S.,

Davidson, T. J., et al. (2013). Structural and molecular interrogation

of intact biological systems. Nature 497:332. doi: 10.1038/nature

12107

Ciresan, D., Giusti, A., Gambardella, L. M., and Schmidhuber, J. (2012). “Deep

neural networks segment neuronal membranes in electronmicroscopy images,”

in Advances in Neural Information Processing Systems (Lake Tahoe, NV),

2843–2851.

Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Maximum likelihood

from incomplete data via the em algorithm. J. R. Stat. Soc. Ser. B 39, 1–38.

doi: 10.1111/j.2517-6161.1977.tb01600.x

Durrleman, S., Pennec, X., Trouvé, A., and Ayache, N. (2008). “A forward model

to build unbiased atlases from curves and surfaces,” in Proceedings of the

International Workshop on the Mathematical Foundations of Computational

Anatomy MFCA2008 (New York, NY).

Epp, J. R., Niibori, Y., Hsiang, H.-L., Mercaldo, V., Deisseroth, K., Josselyn,

S. A., et al. (2015). Optimization of clarity for clearing whole brain

and other intact organs. eneuro 2, 1–15. doi: 10.1523/ENEURO.0022-

15.2015

Evans, A. C., Collins, D. L., Mills, S., Brown, E., Kelly, R., and Peters, T. M.

(1993). “3D statistical neuroanatomical models from 305 MRI volumes,” in

Nuclear Science Symposium and Medical Imaging Conference, 1993., 1993 IEEE

Conference Record. (San Francisco, CA: IEEE), 1813–1817.

Grenander, M., and Miller, M. (2007). Pattern Theory: From Representation to

Inference. Oxford: Oxford Press.

Grenander, U. (1994). General Pattern Theory. Oxford: Oxford Science

Publications.

Grenander, U., and Miller, M. I. (1998). Computational anatomy: an

emerging discipline. Q. Appl. Math. 56, 617–694. doi: 10.1090/qam/16

68732

Heinrich, M. P., Jenkinson, M., Bhushan, M., Matin, T., Gleeson, F. V., Brady,

S. M., et al. (2012). Mind: modality independent neighbourhood descriptor

for multi-modal deformable registration. Med. Image Anal. 16, 1423–1435.

doi: 10.1016/j.media.2012.05.008

Hyman, B. T., Phelps, C. H., Beach, T. G., Bigio, E. H., Cairns, N. J., Carrillo, M. C.,

et al. (2012). National Institute on aging–Alzheimer’s association guidelines for

the neuropathologic assessment of Alzheimer’s disease. Alzheimer’s Dement. 8,

1–13. doi: 10.1016/j.jalz.2011.10.007

Kingma, D. P., and Ba, J. (2014). Adam: amethod for stochastic optimization. arXiv

preprint arXiv:1412.6980.

Krimer, L. S., Hyde, T. M., Herman, M. M., and Saunders, R. C. (1997).

The entorhinal cortex: an examination of cyto-and myeloarchitectonic

organization in humans. Cereb. Cortex 7, 722–731. doi: 10.1093/cercor/

7.8.722

Kulason, S., Tward, D. J., Brown, T., Sicat, C. S., Liu, C.-F., Ratnanather, J. T.,

et al. (2019). Cortical thickness atrophy in the transentorhinal cortex in

mild cognitive impairment. NeuroImage 21:101617. doi: 10.1016/j.nicl.2018.

101617

Kutten, K. S., Charon, N., Miller, M., Ratnanather, J., Matelsky, J., Baden, A. D.,

et al. (2017). A large deformation diffeomorphic approach to registration of

clarity images via mutual information. arXiv:1612.00356 275–282.

Lee, B. C., Tward, D. J., Mitra, P. P., and Miller, M. I. (2018). On

variational solutions for whole brain serial-section histology using the

computational anatomy random orbit model. arXiv preprint arXiv:1802.03453.

doi: 10.1371/journal.pcbi.1006610

Frontiers in Neuroscience | www.frontiersin.org 16 February 2020 | Volume 14 | Article 52

https://doi.org/10.1016/j.neuroimage.2013.08.067
https://doi.org/10.1016/j.jalz.2011.03.008
https://doi.org/10.1016/j.mri.2009.01.006
https://doi.org/10.1016/j.media.2007.06.004
https://doi.org/10.3389/fninf.2014.00044
https://doi.org/10.3390/jimaging5010005
https://doi.org/10.1023/B:VISI.0000043755.93987.aa
https://doi.org/10.1007/s00401-006-0127-z
https://doi.org/10.1007/bf00308809
https://doi.org/10.1006/nimg.2001.0845
https://doi.org/10.1109/42.932742
https://doi.org/10.1016/j.neuroimage.2010.07.043
https://doi.org/10.1038/nature12107
https://doi.org/10.1111/j.2517-6161.1977.tb01600.x
https://doi.org/10.1523/ENEURO.0022-15.2015
https://doi.org/10.1090/qam/1668732
https://doi.org/10.1016/j.media.2012.05.008
https://doi.org/10.1016/j.jalz.2011.10.007
https://doi.org/10.1093/cercor/7.8.722
https://doi.org/10.1016/j.nicl.2018.101617
https://doi.org/10.1371/journal.pcbi.1006610
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Tward et al. Registration With Intensity Transformation/Anomalies

Lee, B. C., Tward, D. J., Wei, J., Tipre, D., Weiss, R. G., Miller, M. I., et al.

(2019). “Diffeomorphic upsampling of serially acquired sparse 2D cross-

sections in cardiac MRI,” in 2019 41st Annual International Conference of the

IEEE Engineering in Medicine and Biology Society (EMBC) (Berlin), 4491–4495.

doi: 10.1109/EMBC.2019.8856317

Li, X., Long, X., Laurienti, P., and Wyatt, C. (2011). Registration of images

with varying topology using embedded maps. IEEE Trans. Med. Imaging 31,

749–765. doi: 10.1109/TMI.2011.2178609

Mai, J., and Paxinos, G. (2011). The Human Nervous System. San Diego, CA;

London: Academic Press.

Mattes, D., Haynor, D. R., Vesselle, H., Lewellen, T. K., and Eubank, W. (2003).

PET-CT image registration in the chest using free-form deformations. IEEE

Trans. Med. Imaging 22, 120–128. doi: 10.1109/TMI.2003.809072

Miller, M. I., Arguillère, S., Tward, D. J., and Younes, L. (2018). Computational

anatomy and diffeomorphometry: a dynamical systems model of

neuroanatomy in the soft condensed matter continuum. Wiley Interdisc.

Rev. 10:e1425. doi: 10.1002/wsbm.1425

Miller, M. I., Christensen, G. E., Amit, Y., and Grenander, U. (1993). Mathematical

textbook of deformable neuroanatomies. Proc. Natl. Acad. Sci. U.S.A. 90,

11944–11948. doi: 10.1073/pnas.90.24.11944

Miller, M. I., Faria, A. V., Oishi, K., and Mori, S. (2013a). High-

throughput neuro-imaging informatics. Front. Neuroinformatics 7:31.

doi: 10.3389/fninf.2013.00031

Miller, M. I., Ratnanather, J. T., Tward, D. J., Brown, T., Lee, D. S., Ketcha, M.,

et al. (2015). Network neurodegeneration in Alzheimer’s disease via MRI based

shape diffeomorphometry and high-field atlasing. Front. Bioeng. Biotechnol.

3:54. doi: 10.3389/fbioe.2015.00054

Miller, M. I., Trouve, A., and Younes, L. (2002). On the metrics and Euler-lagrange

equations of computational anatomy. Annu. Rev. Biomed. Eng. 4, 375–405.

doi: 10.1146/annurev.bioeng.4.092101.125733

Miller, M. I., Trouvé, A., and Younes, L. (2014). Diffeomorphometry and

geodesic positioning systems for human anatomy. Technology 1:36.

doi: 10.1142/S2339547814500010

Miller, M. I., Younes, L., Ratnanather, J. T., Brown, T., Trinh, H., Postell, E.,

et al. (2013b). The diffeomorphometry of temporal lobe structures in preclinical

alzheimer’s disease. NeuroImage 3, 352–360. doi: 10.1016/j.nicl.2013.09.001

Mirra, S. S., Gearing, M., and Nash, F. (1997). Neuropathologic

assessment of Alzheimer’s disease. Neurology 49(3 Suppl. 3), S14–S16.

doi: 10.1212/WNL.49.3_Suppl_3.S14

Mirra, S. S., Heyman, A.,McKeel, D., Sumi, S.M., Crain, B. J., Brownlee, L.M., et al.

(1991). The consortium to establish a registry for Alzheimer’s disease (cerad)

part II. standardization of the neuropathologic assessment of Alzheimer’s

disease. Neurology 41:479. doi: 10.1212/wnl.41.4.479

Mori, S., Oishi, K., Faria, A., and Zijl, P. (2005).MRI Atlas of HumanWhite Matter.

London; Burlington, MA; San Diego, CA: Elsevier.

Mori, S., Oishi, K., Faria, A. V., and Miller, M. I. (2013). Atlas-based

neuroinformatics via MRI: harnessing information from past clinical cases and

quantitative image analysis for patient care. Annu. Rev. Biomed. Eng. 15, 71–92.

doi: 10.1146/annurev-bioeng-071812-152335

Mori, S., and Van Zijl, P. C. (1998). A motion correction scheme by

twin-echo navigation for diffusion-weighted magnetic resonance imaging

with multiple RF echo acquisition. Magn. Reson. Med. 40, 511–516.

doi: 10.1002/mrm.1910400403

Nielsen, R. K., Darkner, S., and Feragen, A. (2019). “Topaware: topology-aware

registration,” in International Conference on Medical Image Computing and

Computer-Assisted Intervention (Shenzhen: Springer), 364–372.

Nithiananthan, S., Schafer, S., Mirota, D. J., Stayman, J. W., Zbijewski, W., Reh,

D. D., et al. (2012). Extra-dimensional demons: a method for incorporating

missing tissue in deformable image registration. Med. Phys. 39, 5718–5731.

doi: 10.1118/1.4747270

Periaswamy, S., and Farid, H. (2006). Medical image registration with partial data.

Med. Image Anal. 10, 452–464. doi: 10.1016/j.media.2005.03.006

Pichat, J., Iglesias, J. E., Yousry, T., Ourselin, S., and Modat, M. (2018). A survey

of methods for 3D histology reconstruction. Med. Image Anal. 46, 73–105.

doi: 10.1016/j.media.2018.02.004

Pluim, J. P., Maintz, J. B., and Viergever, M. A. (2003). Mutual-information-

based registration of medical images: a survey. IEEE Trans. Med. Imaging 22,

986–1004. doi: 10.1109/TMI.2003.815867

Renier, N., Wu, Z., Simon, D. J., Yang, J., Ariel, P., and Tessier-Lavigne, M.

(2014). iDISCO: a simple, rapid method to immunolabel large tissue samples

for volume imaging. Cell 159, 896–910. doi: 10.1016/j.cell.2014.10.010

Risholm, P., Samset, E., Talos, I.-F., andWells,W. (2009). “A non-rigid registration

framework that accommodates resection and retraction,” in International

Conference on Information Processing in Medical Imaging (Williamsburg, VA:

Springer), 447–458.

Risholm, P., Samset, E., and Wells III, W. (2010). “Validation of a nonrigid

registration framework that accommodates tissue resection,” in Medical

Imaging 2010: Image Processing, Vol. 7623. (San Diego, CA: International

Society for Optics and Photonics), 762319.

Sdika, M., and Pelletier, D. (2009). Nonrigid registration of multiple sclerosis brain

images using lesion inpainting for morphometry or lesion mapping. Hum.

Brain Mapp. 30, 1060–1067. doi: 10.1002/hbm.20566

Stefanescu, R., Commowick, O., Malandain, G., Bondiau, P.-Y., Ayache, N., and

Pennec, X. (2004). “Non-rigid atlas to subject registration with pathologies

for conformal brain radiotherapy,” in International Conference on Medical

Image Computing and Computer-Assisted Intervention (Saint-Malo: Springer),

704–711.

Sunkin, S. M., Ng, L., Lau, C., Dolbeare, T., Gilbert, T. L., Thompson, C. L.,

et al. (2013). Allen brain atlas: an integrated spatio-temporal portal for

exploring the central nervous system. Nucleic Acids Res. 41, D996–D1008.

doi: 10.1093/nar/gks1042

Talairach, J., and Szikla, G. (1980). “Application of stereotactic concepts to the

surgery of epilepsy,” in Advances in Stereotactic and Functional Neurosurgery,

Vol. 4, eds F. J. Gillingham, J. Gybels, E. Hitchcock, G. F. Rossi, and G. Szikla

(Vienna: Springer), 35–54.

Tang, X., Mori, S., and Miller, M. (2012). “Segmentation via multi-atlas LDDMM,”

inMICCAI 2012 Workshop on Multi-Atlas Labeling (Nice), 123–133.

Tang, X., Oishi, K., Faria, A. V., Hillis, A. E., Albert, M. S., Mori, S., et al. (2013).

Bayesian parameter estimation and segmentation in the multi-atlas random

orbit model. PLoS ONE 8:e65591. doi: 10.1371/journal.pone.0065591

Thompson, P. M., and Toga, A. W. (2002). A framework for computational

anatomy. Comput. Visual. Sci. 5, 13–34. 65591

Toga, A.W., and Thompson, P.M. (2001). Maps of the brain.Anat Rec. 265, 37–53.

doi: 10.1002/ar.1057

Towns, J., Cockerill, T., Dahan, M., Foster, I., Gaither, K., Grimshaw, A., et al.

(2014). Xsede: accelerating scientific discovery. Comput. Sci. Eng. 16, 62–74.

doi: 10.1109/MCSE.2014.80

Tward, D. J., Brown, T., Patel, J., Kageyama, Y., Mori, S., Troncoso, J. C., et al.

(2018). Quantification of 3D tangle distribution in medial temporal lobe using

multimodal image registration and convolutional neural networks. Alzheimer’s

Dement. 14:P57. doi: 10.1016/j.jalz.2018.06.2126

Tward, D. J., Sicat, C. S., Brown, T., Bakker, A., Gallagher, M., Albert, M.,

et al. (2017). Entorhinal and transentorhinal atrophy in mild cognitive

impairment using longitudinal diffeomorphometry. Alzheimer’s Dement. 9,

41–50. doi: 10.1016/j.dadm.2017.07.005

Vialard, F.-x., Risser, L., Holm, D., and Rueckert, D. (2011). “Diffeomorphic

atlas estimation using Kärcher mean and geodesic shooting on

volumetric images Kärcher mean,” in Medical Image Understanding

and Analysis, eds W. R. Crum and G. Penney (London).

Vidal, C., Hewitt, J., Davis, S., Younes, L., Jain, S., and Jedynak, B. (2009).

“Template registration with missing parts: application to the segmentation

of M. tuberculosis infected lungs,” in 2009 IEEE International Symposium on

Biomedical Imaging: From Nano to Macro (Boston, MA: IEEE), 718–721.

Wachinger, C., and Navab, N. (2012). Entropy and laplacian images: Structural

representations for multi-modal registration. Med. Image Anal. 16, 1–17.

doi: 10.1016/j.media.2011.03.001

Wang, H., Suh, J. W., Das, S. R., Pluta, J. B., Craige, C., and Yushkevich, P. A.

(2012). Multi-atlas segmentation with joint label fusion. IEEE Trans. Pattern

Anal. Mach. Intell. 35, 611–623. doi: 10.1109/TPAMI.2012.143

Wu, J., and Tang, X. (2018). “Fast diffeomorphic image registration via GPU-

based parallel computing: an investigation of the matching cost function,” in

Proceedings of SPIE Medical Imaging (SPIE-MI) (Orlando, FL).

Xue, R., Sawada, M., Goto, S., Hurn, P. D., Traystman, R. J., van Zijl, P. C.,

et al. (2001). “Rapid three-dimensional diffusion mri facilitates the study

of acute stroke in mice,” Magn. Reson. Med. 46, 183–188. doi: 10.1002/

mrm.1174

Frontiers in Neuroscience | www.frontiersin.org 17 February 2020 | Volume 14 | Article 52

https://doi.org/10.1109/EMBC.2019.8856317
https://doi.org/10.1109/TMI.2011.2178609
https://doi.org/10.1109/TMI.2003.809072
https://doi.org/10.1002/wsbm.1425
https://doi.org/10.1073/pnas.90.24.11944
https://doi.org/10.3389/fninf.2013.00031
https://doi.org/10.3389/fbioe.2015.00054
https://doi.org/10.1146/annurev.bioeng.4.092101.125733
https://doi.org/10.1142/S2339547814500010
https://doi.org/10.1016/j.nicl.2013.09.001
https://doi.org/10.1212/WNL.49.3_Suppl_3.S14
https://doi.org/10.1212/wnl.41.4.479
https://doi.org/10.1146/annurev-bioeng-071812-152335
https://doi.org/10.1002/mrm.1910400403
https://doi.org/10.1118/1.4747270
https://doi.org/10.1016/j.media.2005.03.006
https://doi.org/10.1016/j.media.2018.02.004
https://doi.org/10.1109/TMI.2003.815867
https://doi.org/10.1016/j.cell.2014.10.010
https://doi.org/10.1002/hbm.20566
https://doi.org/10.1093/nar/gks1042
https://doi.org/10.1371/journal.pone.0065591
https://doi.org/10.1002/ar.1057
https://doi.org/10.1109/MCSE.2014.80
https://doi.org/10.1016/j.jalz.2018.06.2126
https://doi.org/10.1016/j.dadm.2017.07.005
https://doi.org/10.1016/j.media.2011.03.001
https://doi.org/10.1109/TPAMI.2012.143
https://doi.org/10.1002/mrm.1174
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Tward et al. Registration With Intensity Transformation/Anomalies

Yang, X., Kwitt, R., Styner, M., and Niethammer, M. (2017). Quicksilver: fast

predictive image registration–a deep learning approach. NeuroImage 158, 378–

396. doi: 10.1016/j.neuroimage.2017.07.008

Yoo, T. S., Ackerman, M. J., Lorensen, W. E., Schroeder, W., Chalana, V., Aylward,

S., et al. (2002). Engineering and algorithm design for an image processing API:

a technical report on ITK-the insight toolkit. Stud. Health Technol. Inform. 85,

586–592.

Younes, L., Albert, M., Miller, M. I., et al. (2014). Inferring changepoint times of

medial temporal lobe morphometric change in preclinical Alzheimer’s disease.

NeuroImage 5, 178–187.

Younes, L., Albert, M. S., Moghekar, A., Soldan, A., Pettigrew, C., and

Miller, M. I. (2019). Identifying changepoints in biomarkers during the

preclinical phase of AD. Front. Aging Neurosci. 11:74. doi: 10.3389/fnagi.2019.

00074

Zacharaki, E. I., Shen, D., Lee, S.-K., and Davatzikos, C. (2008). Orbit: A

multiresolution framework for deformable registration of brain tumor images.

IEEE Trans. Med. Imaging 27, 1003–1017. doi: 10.1109/TMI.2008.916954

Zhang, D. P., Risser, L., Vialard, F.-X., Edwards, P., Metz, C., Neefjes, L.,

et al. (2010a). Coronary motion estimation from CTA using probability atlas

and diffeomorphic registration. Med. Imaging Augment. Real. 6326, 78–87.

doi: 10.1007/978-3-642-15699-1_9

Zhang, Y., Zhang, J., Oishi, K., Faria, A. V., Jiang, H., Li, X.,

et al. (2010b). Atlas-guided tract reconstruction for automated

and comprehensive examination of the white matter anatomy.

NeuroImage 52, 1289–1301. doi: 10.1016/j.neuroimage.2010.

05.049

Conflict of Interest: SM and MM own Anatomy Works, with SM serving as

its CEO. This arrangement is being managed by Johns Hopkins University in

accordance with its conflict of interest policies.

The remaining authors declare that the research was conducted in the absence of

any commercial or financial relationships that could be construed as a potential

conflict of interest.

Copyright © 2020 Tward, Brown, Kageyama, Patel, Hou, Mori, Albert, Troncoso

and Miller. This is an open-access article distributed under the terms of the Creative

Commons Attribution License (CC BY). The use, distribution or reproduction in

other forums is permitted, provided the original author(s) and the copyright owner(s)

are credited and that the original publication in this journal is cited, in accordance

with accepted academic practice. No use, distribution or reproduction is permitted

which does not comply with these terms.

Frontiers in Neuroscience | www.frontiersin.org 18 February 2020 | Volume 14 | Article 52

https://doi.org/10.1016/j.neuroimage.2017.07.008
https://doi.org/10.3389/fnagi.2019.00074
https://doi.org/10.1109/TMI.2008.916954
https://doi.org/10.1007/978-3-642-15699-1_9
https://doi.org/10.1016/j.neuroimage.2010.05.049
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

	Diffeomorphic Registration With Intensity Transformation and Missing Data: Application to 3D Digital Pathology of Alzheimer's Disease
	1. Introduction
	2. Methods
	2.1. Background: LDDMM and the Geometric Transformation Problem
	2.2. Polynomial, Non-monotonic Mappings, and the Contrast Transformation Problem
	2.3. EM Algorithm and the Missing Data Problem
	2.4. Optimization Algorithm

	3. Experimental Setting and Material
	3.1. Post-mortem Imaging
	3.2. Image Mapping Experiments

	4. Results
	4.1. Mapping Simulated Images With Artifact and Missing Tissue
	4.2. Mapping Histology With Missing Tissue and Different Stains
	4.3. Quantitative Analysis on Standardized Benchmark Datasets
	4.4. Dice Overlap for Whole Brains and Hemispheres
	4.5. Mapping Histology Data to Mai Atlas Coordinates

	5. Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Supplementary Material
	References


