
ORIGINAL RESEARCH
published: 14 February 2020

doi: 10.3389/fnins.2020.00104

Frontiers in Neuroscience | www.frontiersin.org 1 February 2020 | Volume 14 | Article 104

Edited by:

Michael Pfeiffer,

Bosch Center for Artificial Intelligence,

Germany

Reviewed by:

Davide Zambrano,

École Polytechnique Fédérale de

Lausanne, Switzerland

Junxiu Liu,

Ulster University, United Kingdom

*Correspondence:

Peng Li

lip@ucsb.edu

Specialty section:

This article was submitted to

Neuromorphic Engineering,

a section of the journal

Frontiers in Neuroscience

Received: 17 September 2019

Accepted: 27 January 2020

Published: 14 February 2020

Citation:

Xu C, Zhang W, Liu Y and Li P (2020)

Boosting Throughput and Efficiency of

Hardware Spiking Neural Accelerators

Using Time Compression Supporting

Multiple Spike Codes.

Front. Neurosci. 14:104.

doi: 10.3389/fnins.2020.00104

Boosting Throughput and Efficiency
of Hardware Spiking Neural
Accelerators Using Time
Compression Supporting Multiple
Spike Codes
Changqing Xu 1, Wenrui Zhang 2, Yu Liu 3 and Peng Li 2*

1 School of Microelectronics, Xidian University, Xi’an, China, 2Department of Electrical and Computer Engineering, University

of California, Santa Barbara, Santa Barbara, CA, United States, 3Department of Electrical and Computer Engineering, Texas

A&M University, College Station, TX, United States

Spiking neural networks (SNNs) are the third generation of neural networks and can

explore both rate and temporal coding for energy-efficient event-driven computation.

However, the decision accuracy of existing SNN designs is contingent upon processing

a large number of spikes over a long period. Nevertheless, the switching power of

SNN hardware accelerators is proportional to the number of spikes processed while

the length of spike trains limits throughput and static power efficiency. This paper

presents the first study on developing temporal compression to significantly boost

throughput and reduce energy dissipation of digital hardware SNN accelerators while

being applicable to multiple spike codes. The proposed compression architectures

consist of low-cost input spike compression units, novel input-and-output-weighted

spiking neurons, and reconfigurable time constant scaling to support large and flexible

time compression ratios. Our compression architectures can be transparently applied to

any given pre-designed SNNs employing either rate or temporal codes while incurring

minimal modification of the neural models, learning algorithms, and hardware design.

Using spiking speech and image recognition datasets, we demonstrate the feasibility

of supporting large time compression ratios of up to 16×, delivering up to 15.93×,

13.88×, and 86.21× improvements in throughput, energy dissipation, the tradeoffs

between hardware area, runtime, energy, and classification accuracy, respectively based

on different spike codes on a Xilinx Zynq-7000 FPGA. These results are achieved while

incurring little extra hardware overhead.

Keywords: time compression, spiking neural networks, input-output-weighted spiking neurons, time averaging,

liquid-state machine

1. INTRODUCTION

Spiking neural networks (SNNs) closely emulate the spiking behaviors of biological brains (Ponulak
and Kasinski, 2011). Moreover, the event-driven nature of SNNs offer potentials in achieving great
computational/energy efficiency on hardware neuromorphic computing systems (Furber et al.,
2014; Merolla et al., 2014). For instance, processing a single spike may only consume a few pJ of

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2020.00104
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2020.00104&domain=pdf&date_stamp=2020-02-14
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:lip@ucsb.edu
https://doi.org/10.3389/fnins.2020.00104
https://www.frontiersin.org/articles/10.3389/fnins.2020.00104/full
http://loop.frontiersin.org/people/808399/overview
http://loop.frontiersin.org/people/601652/overview
http://loop.frontiersin.org/people/577111/overview

Xu et al. Time Compressed Spiking Neural Networks

energy on recent neuromorphic chips such as IBM’s TrueNorth
(Merolla et al., 2014) and Intel’s Loihi (Davies et al., 2018).

SNNs support various rate/temporal spike codes among which
rate coding using Poisson spike trains is popular. However,
in that case, the low-power advantage of SNNs may be offset
by long latency during which many spikes are processed for
ensuring decision accuracy (Kim et al., 2018; Park et al., 2019).
Various temporal codes have been attempted to improve the
efficiency of information representation (Thorpe, 1990; Thorpe
et al., 2001; Izhikevich, 2002; Kayser et al., 2009; Kim et al.,
2018). The time-to-first-spike coding encodes information using
arrival time of the first spike (Thorpe et al., 2001). Phase coding
(Kayser et al., 2009) encodes information in a spike by its
phase relative to a periodic reference signal (Kim et al., 2018).
For example, Kim et al. (2018) converts a pre-trained ANN to
an approximate SNN by exploring a phase coding method to
encode input spikes by the phase of a global reference clock
and achieves latency reduction over the rate coding for image
recognition.Other studied coding schemes include rank-order
coding (Thorpe, 1990) and resonant burst coding (Izhikevich,
2002). While the on-going neural coding work shows promises,
no coding is considered universally optimal thus far. The
achievable latency/spike reduction of a particular code can vary
widely with network structure and application. Furthermore,
software/hardware overheads of various codes are yet to be
fully evaluated.

Except for studying on various codes to attempt to improve
the efficiency of information representation, there are some
researches utilizing neural adaptation to achieves a high coding
efficiency. For example, Bohte (2012) proposed a multiplicative
Adaptive Spike Response Model which can achieve a high coding
efficiency and maintain the coding efficiency over changes in
the dynamic signal range of several orders of magnitude. In
Zambrano and Bohte (2016) and Zambrano et al. (2017), author
proposed an Adapting Spiking Neural Network (ASNN) based
on adaptive spiking neurons which can use an order ofmagnitude
fewer spikes to get a good performance. In Zambrano et al. (2019)
and O’Connor et al. (2017), they use the speed of adaptation and
the effective spike height to control the precision of the spike-
based neural coding. By utilizing neural adaptation, fire rate can
be reduced, effectively, which saves a large amount of energy.
Due to the fact that large numbers of neurons fire in irregular
bursts (Trappenberg, 2009), a spike traffic compression technique
is proposed to reduce traffic overhead and improving throughput
on the Network-on-Chip based Spiking neural Network (Carrillo
et al., 2012) The proposed compression technique can compress
spike events generated by different neural cells within the same
neuron facility into a single packet.

Rather than advocating a particular code, for the first time,
we focus on an orthogonal problem: temporal compression
applicable to any given SNN (accelerator) and spike code to
boost throughput and energy efficiency. We propose a general
compression technique that preserves both the spike count
and temporal characteristics of the original SNN with low
information loss, as shown in Figure 1. Unlike the work in
Zambrano and Bohte (2016), Zambrano et al. (2017), and
Carrillo et al. (2012), our work transparently compresses the

duration of the spike trains, hence classification latency, on
top of an existing rate/temporal code. More broadly, this work
extends the notion of weight/model pruning/compression of
DNN accelerators from the spatial domain to the temporal
domain. The proposed technique does not alter the given code
already put in place; it intends to further reduce latency via
time compression.

The contributions of this paper include: (1) the first general
time-compression technique transparently compressing spike
train duration of a given SNN and achieving large latency
reduction on top of the spike codes that come with the SNN,
(2) facilitating the proposed time compression by four key ideas:
spike train compression using a weighted representation, a new
family of input-output-weighted (IOW) spiking neural models
for processing time-compressed spike trains for multiple spike
codes, scaling of time constants defining neural, synaptic, and
learning dynamics, and low-cost support of flexible compression
ratios (powers of two or not) using time averaging, (3) low-
overhead hardware modifications of a given SNN accelerator
to operate it on a compressed time scale while preserving the
spike counts and temporal behaviors in inference and training,
(4) a time-compressed SNN (TC-SNN) accelerator architecture
and its programmable variant (PTC-SNN) operating on a wide
range of (programmable) compression ratios and achieving
significantly improved latency, energy efficiency, and tradeoffs
between latency/energy/classification accuracy.

We demonstrate the proposed TC-SNN and PTC-SNN
compression architectures by realizing several liquid-state
machine (LSM) spiking neural accelerators with a time
compression ratio up to 16:1 on a Xilinx Zynq-7000 FPGA.
Using the TI46 Speech Corpus (Liberman et al., 1991), the
CityScape image recognition dataset (Cordts et al., 2016), and
N-TIDIGITS18 dataset (Anumula et al., 2018), we demonstrate
the feasibility of supporting large time compression ratios of
up to 16×, delivering up to 15.93×, 13.88×, and 86.21×
improvements in throughput, energy dissipation, the tradeoffs
between hardware area, runtime, energy, and classification
accuracy, respectively based on various spike coding mechanisms
including burst coding (Park et al., 2019) on a Xilinx Zynq-
7000 FPGA. These results are achieved while incurring little extra
hardware overhead.

2. MATERIALS AND METHODS

2.1. Proposed Time-Compressed Neural
Computation
This work aims to enable time-compressed neural computation
that preserves the spike counts and temporal behaviors in
inference and training of a given SNN while significantly
improving latency, energy efficiency, and tradeoffs between
latency/energy/classification accuracy. We develop four
techniques for this objective: (1) spike train compression
using a weighted representation, (2) a new family of input-
output-weighted (IOW) spiking neural models processing
time-compressed spike trains for multiple spike codes, (3)
scaling of time constants of neural, synaptic, and learning

Frontiers in Neuroscience | www.frontiersin.org 2 February 2020 | Volume 14 | Article 104

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Xu et al. Time Compressed Spiking Neural Networks

FIGURE 1 | Proposed general time compression for SNNs.

dynamics, and (4) low-cost support of flexible compression
ratios (powers of two or not) using time averaging.

2.1.1. Spike Train Compression in Weighted Form
We time-compress a given spiking neural network first by
shrinking the duration of the input spike trains. To support
large compression ratios hence significant latency reductions,
we represent the compressed input trains using an weighted
form. Typical binary spike trains with temporal sparsity may
be time-compressed into another binary spike train of a shorter
duration. However, as shown in Figure 2, the spike count
and temporal characteristics of the uncompressed train can
only be preserved under a small compression ratio bound by
the minimal interspike interval. More aggressive compression
would lead to merging multiple adjacent spikes into a single
spike, resulting in significant alterations of firing count and
temporally coded information. This severely limits the amount
of compression possible. Instead, we propose a new weighted
form for representing compressed spike trains, where multiple
adjacent binary spikes are compressed into a single weighted
spike with a weight value equal to the number of binary spikes
combined, allowing preservation of spike information even
under very large compression ratios (Figure 2). Compared to the
uncompressed spike train, the compressed spike train preserved
the information of spike count and its temporal resolution drops
to 1/γ , where γ is the compression ratio.

2.1.2. Input-Output-Weighted (IOW) Spiking Neurons
As such, each spiking neuron would process the received input
spike trains in the weighted form. Furthermore, as shown in
Figure 3, under large compression ratios themembrane potential
of a spiking neuron may rise high above the firing threshold
voltage within a single time step as a result of receiving input
spikes with large weights. In this case, outputting spike trains
in the standard binary form can lead to significant loss of
input information, translating into large performance loss as we
demonstrate in our experimental results. Instead, we propose
a new family of input-output-weighted (IOW) spiking neural
models which take the input spike trains in the weighted form
and produce the output spike train in the same weighted form,

where the multi-bit weight value of each output spike reflects
the amplitude of the membrane potential as a multiple of the
firing threshold. Spiking neuronal models such as the leaky
integrate-and-fire (LIF) model and other models supporting
various spike codes can be converted to their IOW counterpart
with streamlined low-overhead modification as detailed later.

2.1.3. Scaling of Time Constants of SNN Dynamics
The proposed compression is general in the sense that it intends
to preserve the spike counts and temporal behaviors in the neural
dynamics, synaptic responses, and dynamics employed in the
given SNN such that no substantial alterations are introduced
by compression other than that the time-compressed SNN just
effectively operates on a faster time scale. The dynamics of
the cell membrane is typically specified by a membrane time
constant τm, which controls the process of action potential
(spike) generation and influences the information processing
of each spiking neuron (Gerstner and Kistler, 2002). Synaptic
models also play an important role in an SNN and may be
specified by one or multiple time constants, translating received
spike inputs into a continuous synaptic current waveform based
on the dynamics of a particular order (Gerstner and Kistler,
2002). Finally, Spike traces or temporal variables filtered with
a specific time constant may be used to implement spike-
dependent learning rules (Thorpe et al., 2001; Zhang et al.,
2015).

Maintaining the key spiking/temporal characteristics in the
neural, synaptic, and learning processes is favorable because: (1)
the SNNs with time compression essentially attains pretty much
the same dynamic behavior like before such that the classification
performance would be also similar to the one under no time
compression, i.e., no large performance degradation is expected
when employing time compression; (2) the deployed learning
rules need no modification and the same rules can effectively
train the SNNs with time compression. Spike-dependent training
algorithms often make use of internal dynamics. For example,
the probabilistic spike-dependent learning rule (Zhang et al.,
2015) uses a first-order calcium dynamics to characterize the
time-averaged output firing rate. Attaining the above goal entails
proper scaling of the time constants associated with these

Frontiers in Neuroscience | www.frontiersin.org 3 February 2020 | Volume 14 | Article 104

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Xu et al. Time Compressed Spiking Neural Networks

FIGURE 2 | Binary vs. (compressed) weighted spike trains.

FIGURE 3 | Binary vs. weighted output spikes.

processes as a function of the time compression ratio as shown
in Figure 4.

Without loss of generality, consider a decaying first order
dynamics ẋ(t) = −x(t)/τ with time constant τ . For digital
hardware implementation, forward Euler discretization may be
adopted to discretize the dynamics over time:

X(t + 1t) = X(t)
(

1− 1t
τ

)

= X(t)
(

1− 1
τnom

)

(1)

where 1t is the discretization time stepsize and τnom =

τ/1t is the normalized time constant used in digital hardware
implementation. Now denote the target time compression ratio
by γ (γ ≥ 1). The discretization stepsize with time compression
is: 1tc = γ1t, i.e., one time step of the time-compressed SNN
equals to γ time steps of the uncompressed SNN. Based on (1),

discretizing the first order dynamics with time compression for
one step gives:

X(t + 1tc) = X(t)

(

1−
1

τnom,c

)

= X(t)

(

1−
1

τnom

)γ

, (2)

where τnom,c is the normalized time constant with compression.
Linearly scaling τnom,c by τnom,c=

τnom
γ

is equivalent to: X(t +

1tc)≈X(t)
(

1− 1
τnom/γ

)

, which produces large errors when γ ≫

1. Instead, we get an accurate τnom,c value according to:
τnom,c = 1

1−
(

1− 1
τnom

)γ .

Frontiers in Neuroscience | www.frontiersin.org 4 February 2020 | Volume 14 | Article 104

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Xu et al. Time Compressed Spiking Neural Networks

FIGURE 4 | Scaling of time constants of SNN dynamics.

2.1.4. Flexible Compression Ratios Using Time

Averaging
Digital multipliers and dividers are costly in area and power
dissipation. Normalized time constants in a digital SNN
hardware accelerator are typically set to a power of 2, i.e.,
τnom = 2K such that the dynamics can be efficiently implemented
by a shifter rather than expensive multipliers and dividers
(Zhang et al., 2015). However, it may be desirable to choose a
compression ratio and/or scale each time constant continuously
in a wide integer range, e.g., within {1, 2, 3, ..., 16}. In this case,
each scaled normalized time constant τnom,c may not be a power
of 2. For example, when τnom,c = 10, τnom,c is far away from its
two nearest powers of 2, namely 8 and 16. Setting τnom,c to either
of the two would lead to large errors.

We propose a novel time averaging approach to address
the above problem (Figure 5). For a given scaled normalized
τnom,c, we find its two adjacent powers of 2: 2K2 ≤ τnom,c ≤

2K1 . We decay the targeted first order dynamics by toggling its
scaled normalized time constant between two values: 2K2 and
2K1 . Since each of them is a power of two, the corresponding
decaying behavior can be efficiently realized using a shifter.
The usage frequencies of 2K2 and 2K1 are properly chosen
such the time-averaged time constant is equal to the desired
τnom,c. Figure 5 shows how the time-averaged (normalized)
time constant value of 5 is achieved by averaging between two
compression ratios 4 and 8.

2.2. Proposed Input-and-Output Weighted
(IOW) Spiking Neural Models
Any given spiking neural model can be converted into its input-
and-output (IOW) counterpart based on straightforward low-
overhead modifications. Without loss of generality, we consider
conversion of two models: the standard leaky integrate-and-fire
(LIF) neuron model, which has been widely used in many SNNs

including ones based on rating coding, and one of its variants
for supporting burst coding. The same approach can be taken to
convert other types of neuron models.

2.2.1. IOW Neurons Based on Standard LIF Model
The LIF model dynamics is Gerstner and Kistler (2002):

τm
du

dt
= −u(t)+ RI(t), (3)

where u(t) is the membrane potential, τm=RC is the membrane
time constant, and I(t) is the total received post-synaptic current
given by:

I(t) =
∑

i

wi

∑

f

α(t − t
(f)
i), (4)

where wi is the synaptic weight from the pre-synaptic neuron i,

α(t) =
q
τs
exp

(

− t
τs

)

H(t) for a first order synaptic model with

time constant τs, H(t) is the Heaviside step function, and q is
the total charge injected into the post-synaptic neuron through
a synapse of a weight of 1.

Once the membrane potential reaches the firing threshold uth,
an output spike is generated and the membrane potential is reset
according to:

lim
δ−>0;δ>0

u(t(f) + δ) = u(t(f))− uth, (5)

where t(f) is the firing time.
IOW LIF neurons shall process weighted input spikes because

of time compression with the modified synaptic input:

I(t) =
∑

i

wi

∑

f

ω
f

spike,i
α(t − t

(f)
i), (6)

where a weight ω
f

spike,i
is introduced for each input spike.

Frontiers in Neuroscience | www.frontiersin.org 5 February 2020 | Volume 14 | Article 104

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Xu et al. Time Compressed Spiking Neural Networks

FIGURE 5 | Time-averaged time constants: the realized averaged time constant is 5.

IOW LIF neurons shall also generate weighted output spikes.
According to Figure 3, we introduce a set of firing thresholds
{uth, 2uth,...,nuth} with each being a multiple of the original
threshold uth. At each time step t, an output spike is generated
whenever the membrane potential reaches above any firing
threshold from the set and the weight of the output spike is
determined by the actual threshold crossed. For example, when
kuth ≤ u(t) < (k + 1)uth, the output spike weight is set to k.
Upon firing, the membrane potential is reset according to:

lim u(t(f) + δ)
δ−>0;δ>0

=















u(t(f))− uth, uth ≤ u(t(f)) < 2uth
u(t(f))− u2th, 2uth ≤ u(t(f)) < 3uth
... ...

u(t(f))− nuth, u(t
(f)) ≥ nuth

(7)

2.2.2. IOW Neurons Based on Bursting LIF Model
The LIF model for burst coding is also based on (3) (Park et al.,
2019). A bursting function gi(t) is introduced to implement the
bursting behavior per each presynaptic neuron i (Park et al.,
2019):

gi(t) =

{

βgi(t − 1t),
1,

if Ei(t − 1t) = 1
otherwise

(8)

where β is a burst constant, Ei(t − 1t) = 1 if the presynaptic
neuron i fired at the previous time step and otherwise Ei(t −
1t) = 0. We assume a zero-th order synaptic response
model. Per input spikes from the presynaptic neuron i, the
firing threshold voltage is modified from uth to gi(t)uth and the
corresponding reset characteristic of the membrane potential
after firing is:

lim
δ−>0;δ>0

u(t(f) + δ) = u(t(f))− gi(t
(f))uth. (9)

Furthermore, the total post-synaptic current is:

I(t) =
∑

i

wi

∑

f

gi(t)α(t − t
(f)
i). (10)

To implement the IOW version of the LIF model with burst
coding, we modify the burst function to:

gi(t) =

{

βωspike,i(t)g(t − 1t),
1,

if Ei(t − 1t) = 1
otherwise

(11)

Similar to the case of the IOW LIF model, we use a set of firing
thresholds to determine the weight of each output spike and
a behavior similar to (7) for reset. The only difference here is
that the adopted set of firing thresholds are gi(t)uth, 2gi(t)uth,
· · · ,ngi(t)uth.

2.3. Time-Compressed SNN Accelerator
Architectures
The proposed time compression technique can be employed to
support a fixed time compression ratio or user-programmable
time compression ratio, leading to the time-compressed SNN
(TC-SNN) and programmable time-compressed SNN (PTC-
SNN) architectures, respectively. We describe the more general
PTC-SNN architecture shown in Figure 6. It can be adopted
for any pre-designed SNN hardware accelerator for added
programmable time compression. PTC-SNN introduces three
streamlined additions and minor modifications to the embedded
SNN accelerator to enable application and coding independent
time compression.

For demonstration purpose, we show how an existing liquid
state machine (LSM) SNN accelerator (Wang et al., 2016) can be
re-designed to a TC-SNN and PTC-SNN. As shown in Figure 7A,
the architecture consists of an input layer, a reservoir layer and an
output layer. In the input layer, a set of input-spike compression
units (ISCUs), one for each input spike channel, are used to
convert the raw binary input spike trains into the more compact
weighted form with shortened time duration. A user-specified
command sets the time compression ratio of all ISCUs through
the Global Compression Controller. ISCUs compress the given
spike channels without assuming sparsity of the input spike trains
and can support large compression ratios. In the reservoir layer,
we introduce modest added hardware overhead to replace all
original silicon spiking neurons by their input-output-weighted
neuron elements (IOW-NEs) counterparts which is shown in

Frontiers in Neuroscience | www.frontiersin.org 6 February 2020 | Volume 14 | Article 104

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Xu et al. Time Compressed Spiking Neural Networks

FIGURE 6 | Proposed time-compressed SNN architecture with programmable compression ratio (PTC-SNN). ISCU, input spike compression unit; SIPO, serial-in and

parallel-out; IOW-NE, input-output-weighted spiking neuron element; SP, synapse response; NE, regular binary-input-output neuron element; Vm, membrane

potential. The LUT enables programmable scaling of time constants of the neuron/synaptic models and the learning unit.

Figure 7C. The output layer is composed of output elements
(OEs) and all the OEs update the corresponding synaptic weights
in parallel. These plastic synaptic weights are stored in the
corresponding block RAMs (BRAMs). The external input spikes
are sent to their target IOW-NEs through a crossbar switching
interface. The spikes generated by the IOW-NEs are buffered in
a wide register. Then, the spikes in the register are sent to other
IOW-NEs through another crossbar switching interface. At the
same time, the spikes in the register are also sent to each OE in
the output layer as the reservoir response.We apply a biologically
plausible supervised learning rule, which is proposed in Zhang
et al. (2015), to realize supervised learning, a teacher signal is
used to modulate the firing activity of each OE and implement
a particular form of Hebbian learning. For the recognition phase,
if the fire count of the OE corresponding to a sample’s true class is
the most, this particular speech sample is successfully recognized.
Because the output spikes have weight, we use the sum of spike
multiply by spike weight as fire count. Finally, all time constants
in the SNN are scaled by the Global Compression Controller
according to a user-specified compression ratio command.

[Input Spike Compression Unit (ISCU)] Each input spike
channel is compressed by one low-cost ISCU according to the
user-specified compression ratio γ . When each uncompressed
spike input channel is fed by a single binary serial input,
a demultiplexer is utilized in the ISCU to perform the

reconfigurable serial-in and parallel-out (SIPO) operation to
convert the serial input into γ parallel outputs, as shown in
Figure 7B. If the input spike channel is supplied by parallel spike
data, the SIPO operation is skipped. In order to achieve real-time
input spike compression, the work frequency of the ISCU is γ

times that of reservoir layer and output layer. During each clock
cycle, the γ bits of the parallel outputs are added by an adder,
which effectively combines these spikes into a single weighted
spike with a weight value set by the output of the adder. No
spike count loss is resulted as the sum of spike weights is same
as the total number of binary spikes in the raw spike input train.
The global temporal spike distribution of the input spike train is
preserved up to the temporal resolution of the compressed spike
train. As shown in Figure 7B, when compression ratio is 4:1, the
first four serial input “1100” is converted to a parallel form. The
four parallel spikes "1100" are added by an adder and converted
into a single spike with weight “2”.

There is unavoidable loss of fine temporal resolution since
γ adjacent spikes in the raw input spike train are combined
into a single weighted spike. When the compression ratio is
low, this loss of temporal resolution may be negligible while
large latency and energy reduction can be achieved. As will
be demonstrated by our experimental studies, it is possible to
explore aggressively large input compression ratios, e.g., 16:1,
for huge latency and energy dissipation improvements. Under

Frontiers in Neuroscience | www.frontiersin.org 7 February 2020 | Volume 14 | Article 104

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Xu et al. Time Compressed Spiking Neural Networks

FIGURE 7 | (A) Top-level block diagram of the proposed time-compressed liquid state machine (LSM) SNN accelerator with programmable compression ratio

(PTC-SNN), (B) ISCU with 4:1 time compression, (C) LIF IOW neuron: SU - synaptic unit, NU - neural unit, and (D) OE: P - Potentiation, D - Depression

(Wang et al., 2016).

this case, it is still possible to retain a decent classification
performance as the lost temporal resolution can be partially
compensated by training, which operates under the same time
compression ratio.

[Input-Output-Weighted (IOW) Neuron Elements] We
discuss efficient hardware realization of the IOW spiking neural
models (section 2.2). The IOW neuron element (IOW-NE) is
shown in Figure 7C, which consists of a synaptic unit (SU), a
neural unit (NU), and a time constant configuration module,
described later. SU realizes a discretized version of (6). As in
many practical implementations of hardware SNNs, each ωi is
constrained to be in the form of 2K . The product of ωspike,i · ωi is
efficiently realized by left shifting ωspike,ki by K bits. NU performs
membrane potential u(t) update based on discretization of (3)
and reset behavior (7). NU generates a weighted output spike
when u(t) is above certain threshold in the firing threshold
set uth, 2uth, · · · .

The design of IOW LIF neurons with burst coding is almost
identical to that of the IOW LIF neurons except for the following
differences. We add a LUT to store the set of firing thresholds
{gi(t)uth, 2gi(t)uth, · · · }, which are calculated based on (11).
Because gi(t)uth might not be in the form of 2K , a multiplier is
used to compute the product g(t) · uth · ωi · ωspike, i.

[Output Elements (OE)] In output elements (OE), we apply
the a biologically plausible supervised learning rule which is
proposed in Zhang et al. (2015). The similar functional blocks
(SU, NU) are used to calculate the state variables, and its
implementation is the same as the blocks in Figure 7C, except
that the internal fixed synaptic weight is replaced by a plastic
synaptic weight. The plastic synaptic weights are stored in a
BRAM updated by the biologically plausible learning rule (Zhang
et al., 2015). In the learning rule, the Calcium concentration C is
calculated by

C(t) = C(t − 1)−
C(t − 1)

τc
+ E(t) (12)

where E(t) is the spiking event at current time step and τc is the
time constant of calcium concentration. In our design, τc is in
the form of 2Kc . The weight of synapse between current output
neuron and the i-th reservoir neuron wi is updated by

{

wi = wi + 1w with P if Cθ < C < (Cθ + 1C)
wi = w′

i − 1w with P if (Cθ − 1C) < C < Cθ
(13)

where P, Cθ and 1C are the update probability, the Calcium
concentration threshold and margin width, respectively. In our

Frontiers in Neuroscience | www.frontiersin.org 8 February 2020 | Volume 14 | Article 104

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Xu et al. Time Compressed Spiking Neural Networks

design, P is 2%,Cθ is 320 and1C is 192. According to Figure 7D,
besides the components for Vmem updating, each OE involves
additional logic to realize (12) and (13). Once a synaptic weight is
updated, it is written back to the BRAM. The update probability
in (13) is simply realized by a comparator and a random number
generator (RNG). To realize the spike-based supervised learning
rule, the teacher signal is used to add an additional injection into
each readout neuron to modulate the firing activity of each OE.

3. RESULTS

The proposed time-compressed SNN (TC-SNN) architecture
with a fixed compression ratio and the more general
programmable PTC-SNN architecture with user-programmable
compression ratio can be adopted to re-design any given digital
SNN accelerator to a time-compressed SNN accelerator with
low additional design overhead in a highly streamlined manner.
For demonstration purpose, we show how an existing liquid
state machine (LSM) SNN accelerator can be re-designed to a
TC-SNN and PTC-SNN on a Xilinx Zynq-7000 FPGA. The LSM
is a recurrent spiking neural network model. With its spatio-
temporal computing power, it has demonstrated promising
performances for various applications (Maass et al., 2002).
Based on the design of the Liquid State Machine based SNN
accelerator in Wang et al. (2016), we redesign and implement the
time-compressed Liquid State Machine based SNN on FPGA.

Three speech/image recognition datasets are adopted for
benchmarking. The first dataset is a subset of the TI46 speech
corpus (Liberman et al., 1991) and consists of 260 isolated
spoken English letters recorded by a single speaker. The time
domain speech examples are pre-processed by the Lyon’s passive
ear model (Lyon, 1982) and transformed to 78 channel spike
trains using the BSA spike encoding algorithm (Schrauwen and
Van Campenhout, 2003). The second one is the CityScape dataset
(Cordts et al., 2016) which contains 18 classes of 1,080 images
of semantic urban scenes taken in several European cities. Each
image is segmented and remapped into a size of 15 × 15, are
then converted to 225 Poisson spike trains with the mean firing
rate proportional to the corresponding pixel intensity. The third
one is a subset of N-TIDIGITS18 speech dataset (Anumula
et al., 2018) which is obtained by playing the audio files from
the TIDIGITS dataset to a CochleaAMS1b sensor. This dataset
contains 10 classes of single digits (the digits “0” to “9”). There
are 111 male and 114 female speakers in the dataset and 2,250
training and 2,250 testing examples. For the first two datasets,
we adopt 80% examples for training and the remaining 20% for
testing. The three datasets present two different types tasks, i.e.,
speech vs. image classification, and are based on three different
raw input encoding schemes, i.e., the BSA encoding, Poisson-
based rate coding, and CochleaAMS1b sensor based coding.
Therefore, they are well-suited for testing the generality of the
proposed time compression.

The baseline LSM FPGA accelerator (without compression)
we built in this paper is referred to Wang et al. (2016), which is
based on the standard LIF model, and consists of an input layer,
a recurrent reservoir, and a readout layer. The number of input

neurons is set by the number of the input spike trains, which
is 78, 225, and 64, respectively for the TI46 dataset, CityScape
dataset, and N-TIDIGITS18 dataset, respectively. The reservoir
has 135 neurons for the TI46 and CityScape datasets and 300
neurons for the N-TIDIGITS18 dataset, respectively. Each input
neuron is randomly connected to 16 reservoir neurons. The
connection probability among two reservoir neurons decays in
their Euclidean distance to mimic the connectivity of biological
brains (Maass et al., 2002). The number of the readout neurons
is 26, 18, and 10 for the TI46, CityScape, and N-TIDIGITS18
dataset, respectively. The reservoir neurons are fully connected
to the readout neurons. All readout synapses are plastic and
trained using the supervised spike-dependent training algorithm
in Zhang et al. (2015). The power consumption of various FPGA
accelerators is measured using the Xilinx Power Analyzer (XPA)
tool and their recognition performances are measured from
the FPGA board. The runtime is the time the proposed FPGA
accelerator takes to complete 1 training and testing epoch with
an operation frequency of 50 MHz.

3.1. Input Spike Train Compression
Figure 8 demonstrates how the proposed input spike
compression unit (ISCU) compresses one input spike train
of the spoken English letter “A” from the TI46 speech dataset
(Liberman et al., 1991). As in Figure 8, the inter-spike interval of
the raw input spike train can be as low as 0 so that any brute-force
time compression leads to loss of spikes and hence information
loss, jeopardizing classification accuracy. ISCU compresses the
raw spikes by converting them to the input-weighted (IW)
representation in which densely populated regions of the input
train are represented by spikes with a weight greater than one
without any spike loss. This makes it possible to dramatically
shrink the duration of the spike train while capturing the
global temporal distribution of the input spikes using the
spike weights. As demonstrated later, ISCU is able to compress
the raw input spike trains by large compression ratio while
retaining the essential input information necessary for accurate
pattern recognition.

3.2. Behavior of the Proposed IOW-LIF
Neurons
The proposed IOW-LIF neurons play the important role of
processing the input-weighted spike trains produced by ISCUs.
Except for time compression, the outputs of these IOW-LIF
neurons shall be identical or close to the standard LIF neurons
receiving the uncompressed spike inputs. We select a single
neuron at random from the reservoir of the LSM design for The
I46 dataset to observe its membrane potential and the output
spike train.

To ease the comparison, the membrane potential is not
reset by output firing in Figure 9. It can be seen that the
waveform of the membrane potential and output spike train
produced by the IOW-LIF neuron bear close resemblance to
those of the LIF neuron. It shall be noted that existence of
minor difference between the two neurons typically does not lead
to large recognition performance drop since such difference is

Frontiers in Neuroscience | www.frontiersin.org 9 February 2020 | Volume 14 | Article 104

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Xu et al. Time Compressed Spiking Neural Networks

FIGURE 8 | Proposed input compression of a speech example. (A) No compression, (B) 2:1 compression, (C) 3:1 compression, (D) 4:1 compression, (E) 8:1

compression, and (F) 16:1 compression.

factored in during the training of the SNN, which is based on the
same time compression ratio.

3.3. Reservoir Responses of the LSMs
We plot the raster plots of the reservoir IOW-LIF neurons when
the input speech example is the letter “A” from the TI46 Speech
Corpus to examine the impact of time compression in Figure 10.
It is fascinating to observe that when the compression ratio is
between 2:1 to 4:1, the reservoir response in terms of both total
spike count and spatio-temporal spike distribution changes little
from the one without compression. When the compression ratio
increases to the very large values of 8:1 and 16:1, the total spike
count drops but the original spatio-temporal spike distribution is
still largely preserved. Since certain spike counts are converted
to firing spike weights by the IOW neurons, the information
of spike count will not be lost. This is consistent to the decent
recognition performance achieved at 8:1 and 16:1 compression
ratios presented next.

3.3.1. Performances of TC-SNNs With IOW LIF

Neurons
For the three datasets mentioned, we design a baseline LSM SNN

without time compression and five time-compressed SNNs (TC-

SNNs) with IOW LIF neurons referred to Wang et al. (2016)

and a fixed time compression ratio from 2:1 to 16:1, all clocked
at 50MHz.

For the TI46 speech dataset (Liberman et al., 1991), the
runtime and energy dissipation of each accelerator expended on
350 training epochs of a batch of 208 randomly selected examples
are measured. We compare the inference accuracy, hardware
overhead measured by FPGA lookup (LUT) and flip-flop (FF)
utilization, power, runtime, and energy of all six accelerators
in Table 1. For the inference accuracy, we measure the best
accuracy and average accuracy of multiple experiments with
different initial weights and the standard deviation (STD). The
same evaluation method is used hereinafter. To show the benefit
of producing weighted output spikes, we create a new input-
weighted (IW) LIF model which differs from the IOW LIF
model in that the IW model generates binary output spikes. We
redesign the five TC-SNN accelerators using IW LIF neurons
and compare them with their IOW counterparts in Table 1.
With large compression ratios the IOW accelerators significantly
outperform their IW counterparts on classification accuracy. For
example, the IOW accelerator improves accuracy from 69.23 to
80.77% with a compression ratio of 16:1.

Firstly, we compare the TC-SNN accelerators based on IW-
NEs and the TC-SNN accelerators based on IOW-NEs. As
Table 1 shows that TC-SNN accelerators based on IW-NEs
and TC-SNN accelerators based on IOW-NEs obtain the same
accuracy, when the compression ratio is small. However, the
accuracy of TC-SNN accelerators based on IW-NEs drop rapidly
when compression ratio is large, e.g., the accuracy is only 69.23%

Frontiers in Neuroscience | www.frontiersin.org 10 February 2020 | Volume 14 | Article 104

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Xu et al. Time Compressed Spiking Neural Networks

FIGURE 9 | Comparison of LIF and IOW-LIF neurons. (A) No compression, (B) 2:1 compression, (C) 3:1 compression, (D) 4:1 compression, (E) 8:1 compression,

and (F) 16:1 compression.

FIGURE 10 | Reservoir response vs. compression ratio. (A) No compression, (B) 2:1 compression, (C) 3:1 compression, (D) 4:1 compression, (E) 8:1 compression,

and (F) 16:1 compression.

Frontiers in Neuroscience | www.frontiersin.org 11 February 2020 | Volume 14 | Article 104

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Xu et al. Time Compressed Spiking Neural Networks

TABLE 1 | Comparison of the baseline and TC-SNN accelerators with IW/IOW LIF neurons based on TI46 Speech Corpus.

Compression

ratio

Neuron

model

Best

accuracy

Average

accuracy

(STD)

LUT FF Power

(W) @50

MHz

Runtime(s)

(normalized

runtime)

Runtime

speedup

Energy (J)

(normalized

energy)

Energy

reduction

ratio (%)

Normalized

ATEL

Baseline LIF 96.15%
95.58%

(0.89%)
57326 18200 0.073

1.991

(100%)
1.00x

0.145

(100%)
1.00x 100%

2:1 IW-LIF 96.15%
95.29%

(0.96%)
58497 18460 0.077

0.995

(49.97%)
2.00x

0.077

(52.71%)
1.88x 26.68%

2:1 IOW-LIF 96.15%
95.50%

(0.92%)
60096 18532 0.086

0.995

(49.97%)
2.00x

0.086

(58.87%)
1.69x 30.72%

3:1 IW-LIF 90.38%
89.81%

(0.89%)
58538 18549 0.079

0.663

(33.30%)
3.00x

0.052

(35.86%)
2.79x 30.46%

3:1 IOW-LIF 90.38%
89.94%

(0.81%)
60103 18625 0.088

0.663

(33.30%)
3.00x

0.058

(40.00%)
2.50x 34.78%

3:1
IW-LIF

(TATC)
92.31%

92.08%

(0.63%)
58762 18782 0.080

0.664

(33.35%)
3.00x

0.053

(36.55%)
2.74x 24.98%

3:1
IOW-LIF

(TATC)
92.31%

92.13%

(0.55%)
61162 18799 0.092

0.664

(33.35%)
3.00x

0.061

(42.03%)
2.38x 29.74%

4:1 IW-LIF 92.31%
91.46%

(0.96%)
58910 18753 0.081

0.499

(25.06%)
3.99x

0.036

(27.81%)
4.03x 14.31%

4:1 IOW-LIF 92.31%
91.58%

(0.80%)
61313 18923 0.095

0.499

(25.06%)
3.99x

0.047

(32.62%)
3.09x 17.40%

8:1 IW-LIF 80.77%
80.44%

(0.73%)
59210 19087 0.083

0.248

(12.46%)
8.03x

0.021

(14.16%)
6.90x 9.12%

8:1 IOW-LIF 86.54%
85.87%

(0.92%)
62548 19098 0.099

0.248

(12.46%)
8.03x

0.025

(16.89%)
5.80x 7.98%

16:1 IW-LIF 69.23%
68.50%

(0.94%)
59400 20000 0.117

0.125

(6.28%)
15.93x

0.015

(10.06%)
9.67x 5.28%

16:1 IOW-LIF 80.77%
80.17%

(0.89%)
65349 20808 0.134

0.125

(6.28%)
15.93x

0.017

(11.52%)
8.53x 4.12%

when compression ratio is 16:1. While the accuracy of TC-SNN
accelerators based on IOW-NEs still is 80.77%. This shows that
IOW-NEs can preserve the spike information, effectively, when
compression ratio is large.

Secondly, we compare the TC-SNN accelerators using Time
Averaging time compression(TATC) and without using time
average time compression, when compression ratio is 3:1. As
Table 1 shows that TC-SNN using TATC improve the accuracy
from 90.38 to 92.31%. Due to the introduction of time average,
hardware cost will increase a little. This shows that time average
time compression can improve the accuracy when compression
ratio is not a power of 2. We will apply time average time
compression in our experiments when the compression ratio is
not a power of 2.

The power/hardware overhead of the TC-SNN accelerators
with IOW LIF neurons only increases modestly with the
time compression ratio. For the TC-SNN accelerators, as the
compression ratio increase, the throughput steadily improves,
reducing the runtime and energy dissipation. Over a very wide
range of compression ratio, the runtime is linearly scaled with
the compression ratio while the energy is scaled almost linearly.
For example, 2:1 compression speeds up the runtime by 2×,
reduces the energy by 1.69×, retaining the same classification

accuracy of 96.15% without degradation. With 4:1 compression,
the runtime is sped up by 3.99×, the energy is reduced by
3.09×, and the classification accuracy is as high as 92.31%.
With a large 16:1 compression ratio, the runtime and energy are
reduced significantly by 15.93× and 8.53×, respectively, and the
accuracy is 80.77%.

To jointly evaluate the tradeoffs between hardware area,
runtime, energy, and loss of accuracy, we define a figure of
merit (FOM) ATEL as: ATEL = Area × Time × Energy × Loss,
where each metric is normalized with respect to the baseline (no
compression), and Loss = (100% - Classification Accuracy). Here
the hardware area is evaluated by Flop count + 2*LUT count
as suggested by Xilinx. Table 1 shows that as the compression
ratio increases from 1:1 to 16:1, the ATEL of the TC-SNNs with
IOW LIF neurons favorably drops from 100 to 4.12%, a nearly
25-fold reduction.

We evaluate the proposed architectures using the CityScape
image recognition dataset (Cordts et al., 2016) and N-
TIDIGITS18 dataset (Anumula et al., 2018) in a similar way.
The results for the CityScape dataset are reported in Table 2, for
which the runtime and energy dissipation of each accelerator are
measured for 350 training epochs of a batch of 864 randomly
selected examples. Since the proposed compression is application

Frontiers in Neuroscience | www.frontiersin.org 12 February 2020 | Volume 14 | Article 104

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Xu et al. Time Compressed Spiking Neural Networks

TABLE 2 | Comparison of the baseline and TC-SNN accelerators with IOW LIF neurons based on the CityScape image dataset and the NTIDIGITS18 dataset.

Compression

ratio

Neuron

model

Best

accuracy

Average

accuracy

(STD)

LUT FF Power (W)

@50 MHz

Runtime(s)

(normalized

runtime)

Runtime

speedup

Energy (J)

(normalized

energy)

Energy

reduction

ratio (%)

Normalized

ATEL

CityScape image dataset

Baseline LIF 99.07%
98.94%

(0.31%)
57017 16373 0.074

1.497

(100%)
1.00x

0.111

(100%)
1.00x 100%

2:1 IOW-LIF 99.07%
98.75%

(0.36%)
58826 17294 0.078

0.749

(50.03%)
2.00x

0.058

(52.25%)
1.91x 27.31%

3:1 IOW-LIF 97.69%
97.53%

(0.30%)
58895 17506 0.088

0.499

(33.33%)
3.00x

0.044

(39.64%)
2.52x 34.05%

4:1 IOW-LIF 97.69%
97.39%

(0.39%)
59276 17374 0.082

0.375

(25.05%)
3.99x

0.031

27.93%)
3.58x 18.00%

8:1 IOW-LIF 95.37%
95.21%

(0.31%)
61254 19322 0.092

0.189

(12.63%)
7.92x

0.017

(15.32%)
6.53x 10.73%

16:1 IOW-LIF 94.91%
94.76%

(0.32%)
66350 21618 0.079

0.096

(6.41%)
15.59x

0.008

(7.21%)
13.88x 2.84%

NTIDIGITS18 dataset

Baseline LIF 83.63%
83.38%

(0.29%)
106263 25778 0.116W

424.61

(100%)
1.00x

49.255

(100%)
1.00x 100%

2:1 IWIO-LIF 82.82%
82.50%

(0.32%)
111688 26070 0.110W

212.31

(50.00%)
2.00x

23.354

(47.41%)
2.11x 26.04%

3:1 IWIO-LIF 82.22%
81.93%

(0.29%)
124756 28364 0.112W

141.50

(33.32%)
3.00x

15.848

(32.18%)
3.11x 13.58%

4:1 IWIO-LIF 81.91%
81.60%

(0.29%)
112224 26158 0.113W

106.87

(25.17%)
3.97x

12.076

(24.52%)
4.08x 7.17%

8:1 IWIO-LIF 80.91%
80.56%

(0.31%)
131614 28934 0.158W

53.61

(12.63%)
7.92x

8.470

(17.20%)
5.82x 3.10%

16:1 IWIO-LIF 74.54%
74.26%

(0.29%)
128094 34707 0.174W

27.17

(6.40%)
15.63x

4.728

(9.60%)
10.42x 1.16%

independent, the TC-SNN architectures can be applied to this
image recognition task without any modification. Large runtime
and energy reductions similar to the ones for the TI46 dataset
are achieved by the proposed time compression while the
degradation of classification accuracy is more graceful. The TC-
SNN with 8:1 compression reduces the runtime and energy
dissipation by 7.92× and 6.53×, respectively while the accuracy
only drops to 95.37%. The figure of merit ATEL improves from
100 to 2.84% (35× improvement) when the TC-SNN runs with
16:1 compression. The results on the N-TIDIGITS18 dataset
are in Table 2, for which the runtime and energy dissipation
of each accelerator are measured for 350 training epochs of a
batch of 2,250 training samples. Again, large runtime and energy
reductions are achieved by the proposed time compression. The
TC-SNN with 8:1 compression ratio reduces the runtime and
energy dissipation by 7.92× and 5.82×, respectively while the
accuracy only drop from 83.63 to 80.91%.

Clearly, the proposed compression architectures can linearly
scale the runtime, and hence dramatically reduce the decision
latency, and energy dissipation with acceptable accuracy
degradation at low compression ratios, e.g., up to 4:1. Applying
an aggressively large compression ratio can produce huge energy
and runtime reduction while the degraded performance may be

still acceptable for practical applications. The supported large
range of compression ratio offers the user great flexibility in
targeting an appropriate performance/overhead tradeoff for a
given application.

3.3.2. Performances of TC-SNNs With Bursting

Coding
We redesign our TC-SNN accelerators using bursting IOW
LIF models to support burst coding (Park et al., 2019) and
compare their performances with the baseline on the TI46
speech dataset and CityScape image dataset in Table 3. Once
again, the proposed time compression leads to large runtime
and energy reductions and the degradation of classification
accuracy is graceful. The additional hardware cost for
supporting bursting coding is somewhat increased but still
rather oderate.

3.3.3. Performances of Time Compressed Multi-Layer

Feedforward SNN With IOW LIF Neurons
To show the generality of our proposed method, we design
a pre-trained multi-layer feedforward SNN (196-100-100-10)
based on the design in Lee et al. (2019) as the baseline
and redesign the pre-trained multi-layer feedforward SNN

Frontiers in Neuroscience | www.frontiersin.org 13 February 2020 | Volume 14 | Article 104

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Xu et al. Time Compressed Spiking Neural Networks

TABLE 3 | Comparison of the baseline and TC-SNN accelerators with burst coding on the TI46 Speech Corpus and on CityScape image dataset.

Compression

ratio

Neuron

model

Best

accuracy

Average

accuracy

(STD)

LUT FF Power (W)

@50

MHz

Runtime(s)

(normalized

runtime)

Runtime

speedup

Energy (J)

(normalized

energy)

Energy

reduction

ratio (%)

Normalized

ATEL

TI46 Speech Corpus dataset

Baseline LIF 98.08%
97.42%

(0.92%)
92052 62390 0.240W

2.527

(100%)
1.00x

0.606

(100%)
1.00x 100%

2:1 IOW-LIF 92.31%
91.83%

(0.84%)
107263 64845 0.163W

1.266

(50.10%)
2.00x

0.206

(33.99%)
2.94x 77.38%

3:1 IOW-LIF 92.31%
91.60%

(0.93%)
124881 67343 0.168W

0.946

(37.44%)
2.67x

0.158

(26.07%)
3.82x 50.55%

4:1 IOW-LIF 92.31%
90.56%

(1.57%)
102362 61332 0.172W

0.637

(25.21%)
3.97x

0.110

(18.15%)
5.54x 19.68%

8:1 IOW-LIF 88.46%
87.67%

(0.95%)
121183 64481 0.212W

0.318

(12.58%)
7.94x

0.067

(11.06%)
9.00x 10.47%

16:1 IOW-LIF 80.77%
79.85%

(0.97%)
132055 72508 0.289W

0.163

(6.45%)
15.50x

0.047

(7.76%)
12.87x 6.85%

CityScape image dataset

Baseline LIF 98.61%
98.42%

(0.32%)
92166 60721 0.242

1.899

(100%)
1.00x

0.460

(100%)
1..00x 100%

2:1 IOW-LIF 98.15%
97.58%

(0.49%)
106416 63765 0.156

0.950

(50.03%)
1.99x

0.148

(32.25%)
3.10x 24.18%

3:1 IOW-LIF 98.15%
96.80%

(0.65%)
123037 66208 0.191

0.633

(33.33%)
3.00x

0.121

(26.31%)
3.80x 14.87%

4:1 IOW-LIF 97.69%
95.83%

(1.52%)
100748 59941 0.163

0.476

(25.05%)
3.99x

0.078

(16.87%)
5.93x 7.54%

8:1 IOW-LIF 96.29%
95.03%

(0.57%)
120312 64863 0.209

0.239

(12.62%)
7.92x

0.050

(10.90%)
9.17x 4.56%

16:1 IOW-LIF 96.29%
94.89%

(1.25%)
133479 73476 0.241

0.122

(6.42%)
15.59x

0.029

(6.38%)
15.66x 1.50%

TABLE 4 | Comparison of the baseline and time compressed multi-layer feedforward SNN accelerators on the MNIST dataset.

Compression

ratio

Neuron

model

Accuracy LUT FF Power (W)

@50

MHz

Runtime(s)

(normalized

runtime)

Runtime

speedup

Energy (J)

(normalized

energy)

Energy

reduction

ratio (%)

Normalized

ATEL

baseline LIF 96.48% 34779 5910 0.376 32.23(100%) 1.00x 12.118(100%) 1.00x 100%

2:1 IOW-LIF 96.09% 38743 6084 0.391 16.35(50.73%) 1.97x 6.392(52.75%) 1.90x 67.48%

3:1 IOW-LIF 95.96% 44213 6227 0.399 10.88(33.76%) 2.96x 4.341(35.82%) 2.89x 54.72%

4:1 IOW-LIF 95.92% 46254 6260 0.416 8.23(25.53%) 3.91x 3.423(28.25%) 3.54x 47.42%

8:1 IOW-LIF 95.58% 47635 6134 0.440 4.18(12.97%) 7.71x 1.839(15.18%) 6.59x 29.97%

16:1 IOW-LIF 93.01% 47955 6140 0.477 2.16(6.70%) 14.92x 1.030(8.50%) 11.76x 28.96%

TABLE 5 | Performances of the reconfigurable PTC-SNN hardware accelerator on the TI46 Speech Corpus.

Compression ratio Best accuracy Average accuracy (STD) Power (W) @50 MHz Runtime(s) Energy (J) Normalized ATEL

Baseline 96.15% 95.58%(0.89%) 0.073 1.991 0.145 100%

2:1 96.15% 95.50%(0.92%) 0.151 0.995 0.130 57.64%

3:1 92.31% 89.94%(0.81%) 0.152 0.664 0.088 51.65%

4:1 92.31% 91.58%(0.80%) 0.155 0.499 0.067 29.87%

8:1 86.54% 85.87%(0.92%) 0.173 0.248 0.038 14.61%

16:1 80.77% 80.17%(0.89%) 0.194 0.125 0.022 6.05%

Frontiers in Neuroscience | www.frontiersin.org 14 February 2020 | Volume 14 | Article 104

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Xu et al. Time Compressed Spiking Neural Networks

with time compression for the MNIST dataset (LeCun et al.,
1998). Each pixel value of the MNIST image is converted
into a spike train using Poisson sampling and the probability
of spike generation is proportional to the pixel intensity.
Due to the limited hardware resources available, we crop
each image to include only 14×14 pixels around the center
for FPGA evaluation. The spike-train level direct feedback
alignment (ST-DFA) algorithm, which is proposed in Lee
et al. (2019) , is used to pre-train the multi-layer SNN. The
experimental results are shown in Table 4. Compared to the
baseline, the pre-trained multi-layer feedforward SNN with 16:1
compression ratio reduces the runtime and energy dissipation
by 14.92× and 11.76×, respectively, while the accuracy only
drops from 96.48 to 93.01%. As the Table 4 is shown, the
additional hardware cost for supporting time compression
increases moderately.

3.3.4. Performances of PTC-SNNs With

Reconfigurable Compression Ratio
We also design a time-compressed SNN (PTC-SNN) accelerator
supporting programmable ratio ranging from 2:1 to 16:1 and
evaluate it using the TI46 dataset in Table 5. The LUT and FF
utilizations of PTC-SNN are 7,4742 and 2,1391, respectively.
The overall hardware area overhead stays constant with the
programmable compression ratio, which is only 12.78% more
than that of the TC-SNN accelerator with a fixed 16:1
compression ratio. Here the hardware area is also evaluated
by Flop count + 2*LUT count. The runtime and accuracy of
the PTC-SNN are identical to those of the corresponding TC-
SNN running on the same (fixed) compression ratio. The energy
overhead of the PTC-SNN is still near linearly scaled down by
the compression ratio albeit that it is somewhat greater than that
of the corresponding TC-SNN. And yet, the PT-SNN reduces the
energy dissipation and ATEL of the baseline by 6.59x and 16.53x,
respectively when running at 16:1 compression ratio.

4. DISCUSSION

SNNs can support a variety of rate and temporal spike codes
among which rate coding using Poisson spike trains has been
popular. However, in that case, the low-power advantage of SNNs
may be offset to certain extend by long latency during which
many spikes are processed for ensuring decision accuracy. This
work aims to boost the throughput and reduce energy dissipation
of SNN accelerators by temporal compression. We propose a
general compression technique that preserves both the spike
count and temporal characteristics of the original SNN with low
information loss. It transparently compresses duration of the
spike trains on top of an existing rate/temporal code to reduce
classification latency.

More specifically, the proposed temporal compression aims
to preserve the spike counts and temporal behaviors in the
neural dynamics, synaptic responses, and dynamics employed
in the given SNN such that no substantial alterations are
introduced by compression other than that the time-compressed
SNN just effectively operates on a faster time scale. However,
there are several challenges when we work toward achieving
the above goal. Firstly, we propose a new weighted form for
representing compressed spike trains, where multiple adjacent
binary spikes are compressed into a single weighted spike with
a weight value equal to the number of binary spikes combined,
allowing preservation of spike information even under very large
compression ratios. Furthermore, we proposed a new family of
input-output-weighted (IOW) spiking neural models which take
the input spike trains in the weighted form and produce the
output spike train in the same weighted form, where the multi-
bit weight value of each output spike reflects the amplitude of
the membrane potential as a multiple of the firing threshold.
Finally, we proposed a method to scale the time constant of SNN
dynamic to preserve the spike counts and temporal behaviors in
the neural dynamics.

In the experimental studies, we propose a general time
compression technique and two compression architectures,
namely TC-SNN and PTC-SNN, to significantly boost
the throughput and reduce energy dissipation of SNN
accelerators. Our experimental results show that the proposed
time compression architectures can support large time
compression ratios of up to 16×, delivering up to 15.93×,
13.88×, and 86.21× improvements in throughput, energy
dissipation, and a figure of merit (ATEL), respectively,
and be realized with modest additional hardware design
overhead on a Xilinx Zynq-7000 FPGA. Our future work will
explore the relationship between compression ratio and the
information loss. Based on the relationship between them,
we can further propose a method to tune the compression
ratio, automatically.

DATA AVAILABILITY STATEMENT

The datasets generated for this study are available on request to
the corresponding author.

AUTHOR CONTRIBUTIONS

CX and PL developed the theoretical approach for the proposed
time compression techniques and wrote the paper. CX and YL
implemented the FPGA spiking neural accelerators. CX and WZ
performed the simulation studies. CX performed this work at
the University of California, Santa Barbara while being a visiting
scholar from Xidian University.

REFERENCES

Anumula, J., Neil, D., Delbruck, T., and Liu, S.-C. (2018). Feature

representations for neuromorphic audio spike streams. Front. Neurosci.

12:23. doi: 10.3389/fnins.2018.00023

Bohte, S. M. (2012). “Efficient spike-coding with multiplicative adaptation in a

spike response model,” in Advances in Neural Information Processing Systems

(Lake Tahoe, NV), 1835–1843.

Carrillo, S., Harkin, J., McDaid, L. J., Morgan, F., Pande, S., Cawley, S., et al. (2012).

Scalable hierarchical network-on-chip architecture for spiking neural network

Frontiers in Neuroscience | www.frontiersin.org 15 February 2020 | Volume 14 | Article 104

https://doi.org/10.3389/fnins.2018.00023
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Xu et al. Time Compressed Spiking Neural Networks

hardware implementations. IEEE Trans. Parallel Distrib. Syst. 24, 2451–2461.

doi: 10.1109/TPDS.2012.289

Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., et al.

(2016). “The cityscapes dataset for semantic urban scene understanding,” in

Proceedings of the IEEE CVPR (Las Vegas, NV), 3213–3223.

Davies, M., Srinivasa, N., Lin, T.-H., Chinya, G., Cao, Y., Choday, S. H.,

et al. (2018). Loihi: a neuromorphic manycore processor with on-

chip learning. IEEE Micro 38, 82–99. doi: 10.1109/MM.2018.1121

30359

Furber, S. B., Galluppi, F., Temple, S., and Plana, L. A. (2014). The

spinnaker project. Proc. IEEE 102, 652–665. doi: 10.1109/JPROC.2014.

2304638

Gerstner, W., and Kistler, W. M. (2002). Spiking Neuron Models: Single Neurons,

Populations, Plasticity. Cambridge: Cambridge University Press.

Izhikevich, E. M. (2002). Resonance and selective communication via bursts

in neurons having subthreshold oscillations. Biosystems 67, 95–102.

doi: 10.1016/S0303-2647(02)00067-9

Kayser, C., Montemurro, M. A., Logothetis, N. K., and Panzeri, S. (2009).

Spike-phase coding boosts and stabilizes information carried by spatial and

temporal spike patterns. Neuron 61, 597–608. doi: 10.1016/j.neuron.2009.

01.008

Kim, J., Kim, H., Huh, S., Lee, J., and Choi, K. (2018). Deep neural

networks with weighted spikes. Neurocomputing 311, 373–386.

doi: 10.1016/j.neucom.2018.05.087

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based

learning applied to document recognition. Proc. IEEE 86, 2278–2324.

doi: 10.1109/5.726791

Lee, J., Zhang, R., and Li, P. (2019). Spike-train level direct feedback alignment:

sidestepping backpropagation for on-chip training of spiking neural nets.

Front. Neurosci. 14:143. doi: 10.3389/fnins.2020.00143

Liberman, M., Amsler, R., Church, K., Fox, E., Hafner, C., Klavans, J., et al. (1991).

TI 46-word LDC93S9.

Lyon, R. (1982). “A computational model of filtering, detection, and compression

in the cochlea,” in ICASSP’82. IEEE ICASSP, Vol. 7 (Paris: IEEE), 1282–1285.

Maass, W., Natschläger, T., and Markram, H. (2002). Real-time computing

without stable states: a new framework for neural computation based on

perturbations. Neural Comput. 14, 2531–2560. doi: 10.1162/089976602760

407955

Merolla, P. A., Arthur, J. V., Alvarez-Icaza, R., Cassidy, A. S., Sawada, J.,

Akopyan, F., et al. (2014). A million spiking-neuron integrated circuit with

a scalable communication network and interface. Science 345, 668–673.

doi: 10.1126/science.1254642

O’Connor, P., Gavves, E., and Welling, M. (2017). Temporally efficient deep

learning with spikes. arXiv preprint arXiv:1706.04159.

Park, S., Kim, S., Choe, H., and Yoon, S. (2019). “Fast and efficient information

transmission with burst spikes in deep spiking neural networks,” in 2019 56th

ACM/IEEE DAC (Las Vegas, NV: IEEE), 1–6.

Ponulak, F., and Kasinski, A. (2011). Introduction to spiking neural networks:

information processing, learning and applications. Acta Neurobiol. Exp. 71,

409–433.

Schrauwen, B., and Van Campenhout, J. (2003). “Bsa, a fast and accurate spike

train encoding scheme,” in Proceedings of IJCNN, 2003 (Portland, OR), Vol. 4,

2825–2830.

Thorpe, S., Delorme, A., and Van Rullen, R. (2001). Spike-based strategies for rapid

processing. Neural Netw. 14, 715–725. doi: 10.1016/S0893-6080(01)00083-1

Thorpe, S. J. (1990). “Spike arrival times: a highly efficient coding scheme for

neural networks,” in Parallel Processing in Neural Systems and Computers, eds

R. Eckmiller, G. Hartmann, and G. Hauske (Amsterdam: Elsevier), 91–94.

Trappenberg, T. (2009). Fundamentals of Computational Neuroscience. Oxford:

OUP.

Wang, Q., Li, Y., and Li, P. (2016). “Liquid state machine based pattern recognition

on fpga with firing-activity dependent power gating and approximate

computing,” in 2016 IEEE International Symposium on Circuits and Systems

(ISCAS) (Montreal, QC: IEEE), 361–364.

Zambrano, D., and Bohte, S. M. (2016). Fast and efficient asynchronous

neural computation with adapting spiking neural networks. arXiv preprint

arXiv:1609.02053.

Zambrano, D., Nusselder, R., Scholte, H. S., and Bohte, S. (2017). Efficient

computation in adaptive artificial spiking neural networks. arXiv [Preprint].

arXiv:1710.04838.

Zambrano, D., Nusselder, R., Scholte, H. S., and Bohté, S. M. (2019). Sparse

computation in adaptive spiking neural networks. Front. Neurosci. 12:987.

doi: 10.3389/fnins.2018.00987

Zhang, Y., Li, P., Jin, Y., and Choe, Y. (2015). A digital liquid state

machine with biologically inspired learning and its application to speech

recognition. IEEE Trans. Neural Netw. Learn. Syst. 26, 2635–2649.

doi: 10.1109/TNNLS.2015.2388544

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2020 Xu, Zhang, Liu and Li. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is permitted, provided the original

author(s) and the copyright owner(s) are credited and that the original publication

in this journal is cited, in accordance with accepted academic practice. No use,

distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Neuroscience | www.frontiersin.org 16 February 2020 | Volume 14 | Article 104

https://doi.org/10.1109/TPDS.2012.289
https://doi.org/10.1109/MM.2018.112130359
https://doi.org/10.1109/JPROC.2014.2304638
https://doi.org/10.1016/S0303-2647(02)00067-9
https://doi.org/10.1016/j.neuron.2009.01.008
https://doi.org/10.1016/j.neucom.2018.05.087
https://doi.org/10.1109/5.726791
https://doi.org/10.3389/fnins.2020.00143
https://doi.org/10.1162/089976602760407955
https://doi.org/10.1126/science.1254642
https://doi.org/10.1016/S0893-6080(01)00083-1
https://doi.org/10.3389/fnins.2018.00987
https://doi.org/10.1109/TNNLS.2015.2388544
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

	Boosting Throughput and Efficiency of Hardware Spiking Neural Accelerators Using Time Compression Supporting Multiple Spike Codes
	1. Introduction
	2. Materials and Methods
	2.1. Proposed Time-Compressed Neural Computation
	2.1.1. Spike Train Compression in Weighted Form
	2.1.2. Input-Output-Weighted (IOW) Spiking Neurons
	2.1.3. Scaling of Time Constants of SNN Dynamics
	2.1.4. Flexible Compression Ratios Using Time Averaging

	2.2. Proposed Input-and-Output Weighted (IOW) Spiking Neural Models
	2.2.1. IOW Neurons Based on Standard LIF Model
	2.2.2. IOW Neurons Based on Bursting LIF Model

	2.3. Time-Compressed SNN Accelerator Architectures

	3. Results
	3.1. Input Spike Train Compression
	3.2. Behavior of the Proposed IOW-LIF Neurons
	3.3. Reservoir Responses of the LSMs
	3.3.1. Performances of TC-SNNs With IOW LIF Neurons
	3.3.2. Performances of TC-SNNs With Bursting Coding
	3.3.3. Performances of Time Compressed Multi-Layer Feedforward SNN With IOW LIF Neurons
	3.3.4. Performances of PTC-SNNs With Reconfigurable Compression Ratio

	4. Discussion
	Data Availability Statement
	Author Contributions
	References

