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Despite great advances in brain tumor segmentation and clear clinical need, translation

of state-of-the-art computational methods into clinical routine and scientific practice

remains amajor challenge. Several factors impede successful implementations, including

data standardization and preprocessing. However, these steps are pivotal for the

deployment of state-of-the-art image segmentation algorithms. To overcome these

issues, we present BraTS Toolkit. BraTS Toolkit is a holistic approach to brain

tumor segmentation and consists of three components: First, the BraTS Preprocessor

facilitates data standardization and preprocessing for researchers and clinicians alike.

It covers the entire image analysis workflow prior to tumor segmentation, from

image conversion and registration to brain extraction. Second, BraTS Segmentor

enables orchestration of BraTS brain tumor segmentation algorithms for generation

of fully-automated segmentations. Finally, Brats Fusionator can combine the resulting

candidate segmentations into consensus segmentations using fusion methods such as

majority voting and iterative SIMPLE fusion. The capabilities of our tools are illustrated

with a practical example to enable easy translation to clinical and scientific practice.

Keywords: brain tumor segmentation, anonymization, MRI data preprocessing, medical imaging, brain extraction,

BraTS, glioma

1. INTRODUCTION

Advances in deep learning have led to unprecedented opportunities for computer-aided image
analysis. In image segmentation, the introduction of the U-Net architecture (Ronneberger et al.,
2015) and subsequently developed variations like the V-Net (Milletari et al., 2016) or the 3D
U-Net (Çiçek et al., 2016) have yielded algorithms for brain tumor segmentation that achieve a
performance comparable to experienced human raters (Dvorak and Menze, 2015; Menze et al.,
2015a; Bakas et al., 2018). A recent retrospective analysis of a large, multi-center cohort of
glioblastoma patients convincingly demonstrated that objective assessment of tumor response via
U-Net-based segmentation outperforms the assessment by human readers in terms of predicting
patient survival (Kickingereder et al., 2019; Kofler et al., 2019), suggesting a potential benefit of
implementing these algorithms into clinical routine.
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FIGURE 1 | Illustration of a typical dataflow to get from raw MRI scans to segmented brain tumors by combining the three components of the BraTS Toolkit. After

preprocessing the raw MRI scans using the BraTS Preprocessor, the data is passed to the BraTS Segmentor, where arbitrary state-of-the-art models from the BraTS

algorithmic repository can be used for segmentation. With BraTS Fusionator, multiple candidate segmentations may then be fused to obtain a consensus

segmentation. As the Toolkit is designed to be completely modular and with clearly defined interfaces, each component can be replaced with custom solutions

if required.

Recent works present diverse approaches toward brain
tumor segmentation and analysis. Jena and Awate (2019)
introduced a Deep-Neural-Network for image segmentation
with uncertainty estimates based on Bayesian decision theory.
Shboul et al. (2019) deployed feature-guided radiomics for
glioblastoma segmentation and survival prediction. Jungo et al.
(2018) analyzed the impact of inter-rater variability and
fusion techniques for ground truth generation on uncertainty
estimation. Shah et al. (2018) combined strong and weak
supervision in training of their segmentation network to reduce
overall supervision cost. Cheplygina et al. (2019) created an
overview of Machine Learning methods in medical image
analysis employing less or unconventional kinds of supervision.

In earlier years researchers experimented with a variety of
approaches to tackle brain tumor segmentation (Prastawa et al.,
2003; Menze et al., 2010, 2015b; Geremia et al., 2012), however in
recent years the field is increasingly dominated by convolutional
neural networks (CNN). This is also reflected in the contributions
to the Multimodel Brain Tumor Segmentation Benchmark
(BraTS) challenge (Bakas et al., 2018). The BraTS challenge
(Menze et al., 2015a; Bakas et al., 2017) was introduced in 2012 at
the International Conference on Medical Image Computing and
Computer Assisted Intervention (MICCAI), evaluating different
algorithms for automated brain tumor segmentation. Therefore,
every year the BraTS organizers provide a set of MRI scans,
consisting of T1, T1c, T2, and FLAIR images from low- and high-
grade glioma patients, coming with the corresponding ground
truth segmentations.

Nonetheless, the computational methods presented in the
BraTS challenge have not found their way into clinical and
scientific practice. While the individual reasons vary, there are
some key obstacles that impede the successful implementation
of these algorithms. First of all, the availability of data for
training, especially of high-quality, well-annotated data, is

limited. Additionally, data protection as well as ethical barriers,
complicate the development of centralized solutions, making
local solutions strongly preferable. Furthermore, there are
knowledge and skill barriers, when it comes to the conduction
of setting up necessary preprocessing of data, while time and
resources are limited.

While individual solutions for several of these problems
exist, such as containerization for simplified distribution of code
or public datasets, these are oftentimes fragmented and hence
difficult to combine. Centralizing these efforts holds promise
for making advances in image analysis easily available for
broad implementation. Here we introduce three components to
tackle these problems. First BraTS preprocessor facilitates data
standardization and preprocessing for researchers and clinicians
alike. Building upon that, varying tumor segmentations can
be obtained from multiple algorithms with BraTS Segmentor.
Finally, BraTS Fusionator can fuse these candidate segmentations
into consensus segmentations by majority voting and iterative
SIMPLE (Langerak et al., 2010) fusion. Together our tools
represent BraTS Toolkit and enable a holistic approach
integrating all the steps necessary for brain tumor image analysis.

2. METHODS

We developed BraTS Toolkit to get from raw DICOM data
to fully automatically generate tumor segmentations in NIFTI
format. The toolkit consists of three modular components.
Figure 1 visualizes how a typical brain tumor segmentation
pipeline can be realized using the toolkit. The data is first
preprocessed using the BraTS Preprocessor, then candidate
segmentations are obtained from the BraTS Segmentor and
finally fused via the BraTS Fusionator. Each component
can be replaced with custom solutions to account for local
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requirements1. A key design principle of the software is that all
data processing happens locally to comply with data privacy and
protection regulations.

BraTS Toolkit comes as a python package and can be
deployed either via Python or by using the integrated command
line interface (CLI). As the software is subject to ongoing
development and improvement this work focuses on more
abstract descriptions of the software’s fundamental design
principles. To ease deployment in scientific and clinical practice
an up-to-date user guide with installation and usage instructions
can be found here: https://neuronflow.github.io/BraTS-Toolkit/.

Users that prefer an easier approach can alternatively use
the BraTS Preprocessor’s graphical user interface (GUI) to
take care of the data preprocessing2. The GUI is constantly
improved in a close feedback loop with radiologists from the
department of Neuroradiology at Klinikum Rechts der Isar
(Technical University of Munich) to address the needs of clinical
practitioners. Depending on the community’s feedback, we plan
to additionally provide graphical user interfaces for BraTS
Segmentor and BraTS Fusionator in the future. Therefore, BraTS
Toolkit features update mechanisms to ensure that users have
access to the latest features.

2.1. Component One: BraTS Preprocessor
BraTS Preprocessor provides image conversion, registration, and
anonymization functionality. The starting point to use BraTS
Preprocessor is to have T1, T1c, T2, and FLAIR imaging data in
NIFTI format. DICOM files can be converted to NIFTI format
using the embedded dcm2niix conversion software (Li et al.,
2016).

The main output of BraTS Preprocessor consists of the
anonymized image data of all four modalities in BraTS
space. Moreover, it generates the original input images
converted to BraTS space, anonymized data in native space,
defacing/skullstripping masks for anonymization, registration
matrices to convert between BraTS and native space and
overview images of the volumes’ slices in png format. Figure 2
depicts the data-processing in detail.

BraTS Preprocessor handles standardization and
preprocessing of brain MRI data using a classical front- and back
end software architecture. Figure 3 illustrates the GUI variant’s
software architecture, which enables users without programming
knowledge to handle MRI data pre-processing steps.

Advanced Normalization Tools (ANTs) (Avants et al., 2011)
are deployed for linear registration and transformation of images
into BraTS space, independent of the selected mode. In order
to achieve proper anonymization of the image data there are
four different processing modes to account for different local
requirements and hardware configurations:

1. GPU brain-extraction mode

1As an example users who do not want to generate tumor segmentations on their
own hardware using the BraTS Segmentor, can alternatively try our experimental
web technology based solution nicknamed the Kraken: https://neuronflow.github.
io/kraken/.
2For an up-to-date installation and user guide please refer to: https://neuronflow.
github.io/BraTS-Preprocessor/.

2. CPU brain-extraction mode
3. GPU defacing mode (under development)
4. CPU defacing mode

Brain extraction is implemented by means of HD-BET (Isensee
et al., 2019) using GPU or CPU, respectively. HD-BET is a
deep learning based brain extraction method, which is trained
on glioma patients and therefore particularly well-suited for
our task. In case the available RAM is not sufficient the CPU
mode automatically falls back to ROBEX (Iglesias et al., 2011).
ROBEX is another robust, but slightly less accurate, skull-
stripping method that requires less RAM than HD-BET, when
running on CPU.

Alternatively, the BraTS Preprocessor features GPU and
CPU defacing modes for users who find brain-extraction too
destructive. Defacing on the CPU is implemented via Freesurfer’s
mri-deface (Fischl, 2012), while deep-learning based defacing on
the GPU is currently under development.

2.2. Component Two: BraTS Segmentor
The Segmentor module provides a standardized control interface
for the BraTS algorithmic repository3 (Bakas et al., 2018). This
repository is a collection of Docker images, each containing
a Deep Learning model and accompanying code designed for
the BraTS challenge. Each model has a rigidly defined interface
to hand data to the model and retrieve segmentation results
from the model. This enables the application of state-of-the-
art models for brain tumor segmentation on new data without
the need to install additional software or to train a model
from scratch. However, even though the algorithmic repository
provides unified models, it is still up to the interested user to
download and run each Docker image individually as well as
manage the input and output. This final gap in the pipeline
is closed by the Segmentor, which enables less experienced
users to download, run and evaluate any model in the BraTS
algorithmic repository. It provides a front end to manage all
available containers and run them on arbitrary data, as long as the
data conforms to the BraTS format. To this end, the Segmentor
provides a command line interface to process data with any or all
of the available Docker images in the repository while ensuring
proper handling of the files. Its modular structure also allows
anyone to extend the code, include other Docker containers or
include it as a Python package.

2.3. Component Three: BraTS Fusionator
The Segmentor module can generate multiple segmentations
for a given set of images which usually vary in accuracy
and without prior knowledge, a user might be unsure which
segmentation is the most accurate. The Fusionator module
provides two methods to combine this arbitrary number of
segmentation candidates into one final fusion which represents
the consensus of all available segmentations. There are two main
methods offered: Majority voting and the selective and iterative
method for performance level estimation (SIMPLE) proposed by

3https://github.com/BraTS/Instructions/blob/master/Repository_Links.md#
brats-algorithmic-repository
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FIGURE 2 | Illustration of the data-processing. We start with a T1, T1c, T2, and FLAIR volume. In a first step we co-register all modalities to the T1 image. Depending

on the chosen mode, we then compute the brain segmentation or defacing mask in T1-space. To morph the segmented images in native space, we transform the

mask to the respective native spaces and multiply it with the volumes. For obtaining the segmented images in BraTS space, we transform the masks and volumes to

the BraTS space using a brain atlas. We then apply the masks to the volumes.

Langerak et al. (2010). Both methods take all available candidate
segmentations produced by the algorithms of the repository and
combine each label to generate a final fusion. In majority voting,
a class is assigned to a given voxel if at least half of the candidate
segmentations agree that this voxel is of a certain class. This is
repeated for each class to generate the complete segmentation.
The SIMPLE fusion works as follows: First, a majority vote fusion
with all candidate segmentations is performed. Secondly, each
candidate segmentation is compared to the current consensus
fusion and the resulting overlap score (a standard DICE measure
in the proposed method) is used as a weight for the majority
voting. This causes the candidate segmentations with higher

estimated accuracy to have a higher influence on the final result.
Lastly, each candidate segmentation with an accuracy below
a certain threshold is dropped out after each iteration. This
iterative process is stopped once the consensus fusion converges.
After repeating the processes for each label, a final segmentation
is obtained.

3. RESULTS

The broad availability of Python, Electron.js, and Docker allows
us to support all major operating systems with an easy installation
process. Users can choose to process data using the command line
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FIGURE 3 | BraTS Preprocessor software architecture (GUI variant). The front end is implemented by a Vue.js web application packaged via Electron.js. To ensure a

constant runtime environment the Python based back end resides in a Docker container (Merkel, 2014). Redis Queue allows for load balancing and parallelization of

the processing. The architecture enables two-way communication between front end and back end by implementing Socket.IO on the former and Flask-Socket.IO on

the latter. In contrast to this the python package’s front end is implemented using python-socketio.

(CLI) or through the user friendly graphical user interface (GUI).
Depending on the available hardware, multiple threads are run to
efficiently use the system’s resources.

3.1. Practicality in Clinical and Scientific
Practice
To test the practicality of BraTS Toolkit we conducted a brain
tumor segmentation experiment on 191 patients of the BraTS
2016 dataset. As a first step we generated candidate tumor
segmentations. BraTS Segmentor allowed us to rapidly obtain
tumor delineations from ten different algorithms of the BraTS
algorithmic repository (Bakas et al., 2018). The standardized
user interface of BraTS Segmentor abstracts all the required
background knowledge regarding docker and the particularities
of the algorithms. In the next step we used BraTS Fusionator to
fuse the generated segmentations by consensus voting. Figure 4
shows that fusion by iterative SIMPLE and class-wise majority
voting had a slight advantage over single algorithms. This effect
was particularly driven by removal of false positives as illustrated
for an exemplary patient in Figure 5. BraTS Toolkit enabled us
to conduct the experiment in a user-friendly way. With only a
few lines of Python code we were able to obtain segmentation
results in a fully-automated fashion. This impression was
confirmed by experiments on further in house data-sets where
we also deployed the CLI and GUI variants of all three BraTS
Toolkit components with great feedback from clinical and
scientific practitioners. Users especially appreciated the increased
robustness and precision of consensus segmentations compared
to existing single algorithm solutions.

4. DISCUSSION

Overall, the BraTS Toolkit is a step toward the democratization of
automatic brain tumor segmentation. By lowering resource and

FIGURE 4 | Evaluation of the segmentation results on the BraTS 2016 data

set for whole tumor labels on n = 191 evaluated test cases. We generated

candidate segmentations with ten different algorithms. Segmentation methods

are sorted in descending order by mean dice score. The two fusion methods,

iterative SIMPLE (sim) and class-wise majority voting displayed on the left,

outperformed individual algorithms depicted further right. The red horizontal

line shows the SIMPLE median dice score (M = 0.863) for better comparison.

knowledge barriers, users can effectively disseminate dockerized
brain tumor segmentation algorithms collected through the
BraTS challenge. Thus, it makes objective brain tumor volumetry,
which has been demonstrated to be superior to traditional image
assessment (Kickingereder et al., 2019), readily available for
scientific and clinical use.

Currently, BraTS segmentation algorithms and therefore
BraTS Segmentor require each of T1, T1c, T2, and FLAIR
sequences to be present. In practice, this can become a limiting
factor due to errors in data acquisition or incomplete protocols
leading to missing modalities. Recent efforts try to bridge this
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A B

C D

FIGURE 5 | Single algorithm vs. iterative SIMPLE consensus segmentation. T2 scans with segmented labels by exemplary candidate algorithms from (A) Pawar et al.

(2018), (B) Sedlar (2018), and (C) Isensee et al. (2017) (Green: edema; Red: necrotic region/non-enhancing tumor; Yellow: enhancing tumor). (D) Shows a

consensus segmentation obtained using the iterative SIMPLE fusion. Notice the false positives marked with white circles on the candidate segmentations. These

outliers are effectively reduced in the fusion segmentation shown in (D).

gap by using machine learning techniques to reconstruct missing
image modalities (e.g., Dorent et al., 2019; Li et al., 2019).

Other crucial aspects of data preprocessing are the lack
of standards for pulse sequences across different scanners
and manufacturers, and absence of data acquisition protocols’
harmonization in general. For the moment, we address this only
with primitive image standardization strategies as described in
Figure 2. However, in clinical and scientific practice, we already
found our application to be very robust across different data
sources. Brain extraction with HD-BET also proved to be sound
for patients from multiple institutions with different pathologies
(Isensee et al., 2019).

These limitations are in fact some of the key motivations
for our initiative. We strive to provide researchers with tools
to build comprehensive databases which capture more of the
data variability in magnetic resonance imaging. In the longterm
this will enable the development of more precise algorithms.

With BraTS Toolkit clinicians can actively contribute to
this process.

Through well-defined interfaces, the resulting output
from our software can be integrated seamlessly with further
downstream software to create new scientific and medical
applications such as but not limited to, fully-automatic MR
reporting4 or tumor growth modeling (Ezhov et al., 2019;
Lipková et al., 2019). Another promising future direction
is to focus on integration with the local PACS to enable
streamlined processing of imaging data directly from the
radiologist’s workplace.

4Our Kraken web service can be seen as an an exemplary prototype for this
(for the moment it is not for clinical use, but for research and entertainment
purposes only). The Kraken is able to send automatically generated segmentation
and volumetry reports to the user’s email address: https://neuronflow.github.io/
kraken/.
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