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Background: Anorexia nervosa (AN) is a debilitating illness whose neural basis remains

unclear. Studies using tract-based spatial statistics (TBSS) with diffusion tensor imaging

(DTI) have demonstrated differences in white matter (WM) microarchitecture in AN, but

the findings are inconclusive and controversial.

Objectives: To identify the most consistent WM abnormalities among previous TBSS

studies of differences in WM microarchitecture in AN.

Methods: By systematically searching online databases, a total of 11 datasets were

identified, including 245 patients with AN and 246 healthy controls (HC). We used

Seed-based d Mapping to analyze fractional anisotropy (FA) differences between AN

patients and HC, and performedmeta-regression analysis to explore the effects of clinical

characteristics on WM abnormalities in AN.

Results: The pooled results of all AN patients showed robustly lower FA in the

corpus callosum (CC) and the cingulum compared to HC. These two regions preserved

significance in the sensitivity analysis as well as in all subgroup analyses. Fiber tracking

showed that the WM tracts primarily involved were the body of the CC and the cingulum

bundle. Meta-regression analysis revealed that the body mass index and mean age were

not linearly correlated with the lower FA.

Conclusions: The most consistent WM microstructural differences in AN were in the

interhemispheric connections and limbic association fibers. These common “targets”

advance our understanding of the complex neural mechanisms underlying the puzzling

symptoms of AN, and may help in developing early treatment approaches.

Keywords: anorexia nervosa, diffusion tensor, tract-based spatial statistics, fractional anisotropy, magnetic

resonance imaging, psychoradiology
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INTRODUCTION

Anorexia nervosa (AN) is a serious mental and somatic disorder
that typically develops during adolescence and primarily affects
females (Zipfel et al., 2015). With a prevalence of about 0.3%
it is relatively rare, but has serious medical consequences
leading to death in ∼10% of cases, and thus poses a major
clinical, psychological and societal burden (Nielsen, 2001). AN
is characterized by extreme restriction of energy intake, a
distorted body image, excessive concerns over weight and shape,
and emotional dysfunction (American Psychiatric Association
(APA), 2013; Zipfel et al., 2015). There may be severe long-
term medical and psychological sequelae besides acute effects
of self-starvation (Steinhausen, 2002). The etiology of AN
remains unknown, and the interaction of neurobiological,
psychological and environmental factors in its onset and outcome
is unclear (Kaye et al., 2013; Zipfel et al., 2015). Exploring
the neurobiological abnormalities associated with AN will be
important for improving the effectiveness of both diagnosis and
treatment (Hill et al., 2016).

With the development of noninvasive neuroimaging
technology, diffusion tensor imaging (DTI), as an important
psychoradiologic technique (Lui et al., 2016; Kressel, 2017;
Port, 2018; Sun et al., 2018; https://radiopaedia.org/articles/
psychoradiology), has become a powerful tool for detecting
white matter (WM) microstructural differences in various
psychiatric illnesses, including schizophrenia (Hao et al.,
2006), depression (Kieseppa et al., 2010) as well as bipolar
disorder (Wessa et al., 2009). Fractional anisotropy (FA) is the
most commonly used DTI metric for exploring anisotropy,
quantifying the directionality of diffusion. FA is considered as a
highly sensitive but fairly non-specific biomarker of brain WM
microstructural architecture and neuropathology (Alexander
et al., 2007).

To investigate whole brain FA differences, metrics can be
extracted globally by either voxel-based analysis (VBA) or
tract-based spatial statistics (TBSS). Several such studies have
demonstrated FA differences between patients with AN and
healthy controls (HC). Unfortunately, their results are not
consistent. Most studies report lower FA in widespread WM
regions, including the corpus callosum (CC) (Frieling et al.,
2012; Frank et al., 2013; Shott et al., 2016; Gaudio et al., 2017;
Phillipou et al., 2018; von Schwanenflug et al., 2019), fornix
fibers (Kazlouski et al., 2011; Frank et al., 2013; Gaudio et al.,
2017), thalamus (Frieling et al., 2012; Hu et al., 2017), cingulum
(Kazlouski et al., 2011; Frank et al., 2013), posterior thalamic
radiation (PTR) (Phillipou et al., 2018), superior longitudinal
fasciculus (SLF) (Via et al., 2014), fronto-occipital fasciculus
(FOF) (Kazlouski et al., 2011; Via et al., 2014), corona radiation
(Shott et al., 2016; Phillipou et al., 2018) and cerebellum
(Nagahara et al., 2014; Shott et al., 2016). Five studies, however,
observed no significant FA differences between AN patients and
HC (Yau et al., 2013; Cha et al., 2016; Pfuhl et al., 2016; Bang
et al., 2018; Olivo and Swenne, 2019). Two studies also reported
higher FA in corona radiation, SLF, FOF, PTR, and CC (Frank
et al., 2013; Vogel et al., 2016). These inconsistenciesmight be due
to differences in sample size or in the demographic and clinical

characteristics of the patients, and heterogeneity in the imaging
protocols. In such situations a powerful way to isolate reliable
neurobiological markers is meta-analysis.

To our knowledge, only Barona and colleagues have
conducted a coordinate-based meta-analysis of whole-brain DTI
studies in AN (Barona et al., 2019). However, the study has
a major limitation in using two different methods (TBSS and
VBA) to undertake whole brain analysis. VBA is relatively direct,
involving spatial normalization of high-resolution images from
all subjects to the same stereotactic space (Ashburner and Friston,
2000). By contrast TBSS is a statistical approach, particularly
developed to analyze DTI data. It restricts analysis to the center
of major WM fibers by projecting every subject’s FA data onto
the mean skeleton, thus alleviating the misalignment problems
that can affect regular VBA. Briefly, TBSS is a more accurate
method for exploring disorganization of WM architecture
(Smith et al., 2006).

Our aims in this paper are: first, to conduct an updated
meta-analysis of TBSS studies to define the most prominent
and replicable WM microarchitecture abnormalities in patients
with AN using Seed-based d Mapping (SDM), a statistical
technique for meta-analyzing studies which use neuroimaging
techniques such as fMRI, VBM, DTI or PET to investigate the
changes of brain activity or structure (https://www.sdmproject.
com/). This method is now widely accepted and has been used
in studies of major depressive disorder (Jiang et al., 2017),
childhood maltreatment (Lim et al., 2014) and bipolar disorder
(Wise et al., 2016). Second, to perform subgroup meta-analyses
based on the effects of age and stage of the disorder. Third,
to use meta-regression to examine the potential effects of age,
illness duration and body mass index (BMI) on the reported
WM abnormalities. We hypothesized that AN patients would
manifest lower FA compared to HC in tracts involved in reward-
related processing (viz. CC, fornix, thalamic projections, and
striatum) and limbic regions. We also speculated that WM
microarchitecture abnormalities might be associated with factors
related to starvation (viz. decreased BMI and illness duration)
and AN symptomatology.

MATERIALS AND METHODS

Literature Search Strategy
We searched for publications on the PubMed, Ovid databases,
Web of Science, Science Direct and Google Scholar. The
last screen was performed in March 2019. The key search
terms were: (“anorexia nervosa” or “eating disorder” or
“anorexia”) and (“tract-based spatial statistical” or “TBSS” or
“diffusion tensor” or “DTI” or “diffusion tensor imaging”
or “fractional anisotropy” or “FA”). The reference lists of
identified studies and relevant reviews weremanually checked for
further studies.

Selection Criteria and Data Extraction
Studies were included according to the following criteria: (a)
articles written in the English language and published in peer-
reviewed journals; (b) a primary diagnosis of AN according to
the international classification of diseases-10 (ICD-10) and/or
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Diagnostic and Statistical Manual of Mental Disorders (DSM);
(c) studies reported a TBSS comparison between patients with
AN and HC; (d) studies detected FA differences at the whole-
brain level and reported the results in stereotactic 3D coordinates
(Talairach or MNI). When details were not reported in the
original manuscripts, a request was made to the corresponding
author by e-mail.

Studies were excluded according to the following criteria: (a)
meta-analysis, case reports or reviews; (b) studies lacking a HC
group; (c) if several studies reported overlapping samples, only
the paper reporting the largest sample size was selected. We
conducted this meta-analysis according to Preferred Reporting
Items for Systematic Reviews and Meta-Analysis (PRISMA)
guidelines (Liberati et al., 2009).

The quality of each included study was assessed using a 12-
point checklist (see Table S1) that focused on both the clinical
and demographic aspects of individual studies and on the
imaging methodology (Du et al., 2014). From each included
study we recorded first author, cohort size, demographics (age
and gender), illness variables (stage of AN, subtype of AN,
age at onset, illness duration, BMI, symptom severity), imaging
parameters, data processing method and statistical threshold; the
peak coordinates were extracted using the SDM tool (Radua et al.,
2014b). Two authors (SZ and WW) did this independently, any
disagreement being resolved by discussion.

SDM Meta-Analysis
We conducted a voxel-based analysis to identify brain regions
showing consistent significant differences in FA between AN
patients and HC, according to the standardized process of the
SDM software (http://www.sdmproject.com). Briefly, the SDM

tool recreates a map of the effect size based on the peak
coordinates extracted from each included study.

The robustness of the main findings was checked by three
complementary analyses. First, jack-knife sensitivity analysis was
performed to assess the replicability of the results by iteratively
repeating the same analysis, discarding a data set each time to
establish whether the results remained significant (Radua et al.,
2014a). Second, a random-effects model with Q statistics was
used to detect the statistical (between-studies) heterogeneity of
individual clusters. Third, Egger tests using STATA (www.stata.
cn) were used to assess publication bias.

Initially, we planned to perform subgroup meta-analysis
of adolescent vs. adult subjects, medicated vs. drug-free
subjects, as well as acute cases vs. recovered subjects.
However, the number of studies in most of these subgroups
(adolescent, medicated, drug-free, recovered) was too small
to draw reliable conclusions. Finally, meta-analysis of the
subgroups was conducted only for the adult subjects and the
acute subjects.

All analytical processes were as described in the SDM tutorial
(https://www.sdmproject.com/software/tutorial.pdf) and related
publications (Radua et al., 2014b). We adopted the default SDM
thresholds (anisotropy = 1.0; full-width at half-maximum =

20mm, voxel p = 0.005, peak height threshold Z = 1, cluster
extent= 10 voxels) (Radua et al., 2012).

To convert the SDM results into images, we used MRIcron
software (http://www.mricro.com/mricron/), and overlaid the
results on a high-resolution brain image template (created
by the International Consortium for Brain Mapping) and the
FMRIB58_ FA skeleton.

We then used DSI Studio to identify and visualize the WM
tracts most probably involved, working as described in the DSI

FIGURE 1 | Flow diagram for the identification and exclusion of studies.
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studio tutorial (http://dsi-studio.labsolver.org). Meta-analysis
results were projected onto a high-resolution diffusion magnetic
resonance imaging dataset generated from 80 subjects of the
Human Connectome Project (Van Essen et al., 2012). A
three-dimensional atlas of human white matter tracts (Catani
and Thiebaut de Schotten, 2012) was used to identify the
implicated tracts.

Meta-Regression Analysis
Clinical variables explored by meta-regression analyses were
mean BMI, age, Beck Depression Inventory (BDI) and illness
duration, and percentages of females, and medicated patients.
As in previous meta-analyses (Jiang et al., 2017) and in

accordance with the recommendations of SDM’s authors
(Radua and Mataix-Cols, 2009), we adopted a conservative
threshold of p= 0.0005 to minimize Type I error.

RESULTS

Description of Included Studies
Of 526 potentially relevant studies, 11 met our criteria, as
summarized in Figure 1. The 11 included studies recruited a
total of 245 AN patients and 246 HC. Table 1 summarizes the
clinical and demographic data from all included studies. The
clinical characteristics (age, sex) of these studies showed no

TABLE 1 | Demographic and clinical characteristics of the participants in the 11 studies on anorexia nervosa included in the meta-analysis.

Study AN

stage

AN

subtype

Number (female) Age (y) Duration BMI BDI

score

Onset age

(y)

Medication % Comorbidity

AN HC AN HC (y) AN HC

Yau et al. (2013) REC R 12 (12) 10 (10) 28.7 26.7 5.6 21.2 22.0 NA 15.5 Drug-free No

Nagahara et al. (2014) A R and B/P 17 (17) 18 (18) 23.8 26.2 4.93 13.6 19.9 30.2 NA 35 Yes

Via et al. (2014) A R 19 (19) 19 (19) 28.3 28.6 6.52 17.0 21.1 NA 21.8 26 Yes

Shott et al. (2016) REC R 24 (24) 24 (24) 30.3 27.4 5.90 20.8 21.6 NA 16.7 25 Yes

Cha et al. (2016) A R and B/P 22 (22) 18 (18) 19.5 20.5 NA 17.3 21.2 NA NA Drug-free Yes

Olivo et al. (2017) A EDNOS 12 (12) 14 (12) 15.3 14.1 NA 18.7 20.6 NA NA Drug-free Yes

Bang et al. (2018) REC R and B/P 21 (21) 21 (21) 27.6 26.1 2.83 20.5 21.8 6.6 17.3 14 No

Gaudio et al. (2017) A R 14 (14) 15 (15) 15.7 16.3 0.41 16.2 21.1 30.4 15.4 Drug-free No

Phillipou et al. (2018) A R and B/P 23 (23) 26 (26) 22.0 22.6 5.35 16.7 22.8 NA 16.4 NA Yes

von Schwanenflug et al.

(2019)

A R 56 (56) 56 (56) 15.9 16.2 1.21 14.7 20.6 21.2 NA 2 No

Olivo and Swenne

(2019)

A Atypical 25 (25) 25 (25) 14.8 14.5 0.7 18.6 20.0 NA NA Drug-free No

A, accurate; AN, anorexia nervosa; BDI, Beck Depression Inventory; BMI, body mass index; B/P: binge and purge subtype of anorexia nervosa; HC, healthy controls; NA, not available;

R, restrictive subtype of anorexia nervosa; REC, recovered; EDNOS, eating disorder not otherwise specified.

TABLE 2 | Technical details of the 11 studies on anorexia nervosa included in the meta-analysis.

Study MRI scanner No. of DTI

directions

Coordinate

system

Analysis

software

Analysis

method

p-value No. of

coordinates

Yau et al. (2013) 3.0T 55 MNI FSL TBSS p < 0.05 (FWE) 0

Nagahara et al. (2014) 3.0T 32 MNI FSL TBSS p < 0.08 (corrected) 1

Via et al. (2014) 1.5T 25 MNI FSL TBSS p < 0.05 (FWE) 1

Shott et al. (2016) NA 25 MNI FSL TBSS p < 0.05 (FWE) 6

Cha et al. (2016) 1.5T 16 MNI FSL TBSS p < 0.05 (FDR) 0

Olivo et al. (2017) 3.0T 48 MNI FSL TBSS p < 0.05 (FDR) 2

Bang et al. (2018) 3.0T 32 MNI FSL TBSS p < 0.05 (FWE) 0

Gaudio et al. (2017) 1.5T 12 MNI FSL TBSS p < 0.05 (FWE) 4

Phillipou et al. (2018) 3.0T 60 MNI FSL TBSS p < 0.05 (FWE) 1

von Schwanenflug et al.

(2019)

3.0T 32 MNI FSL TBSS p < 0.05 (FWE) 1

Olivo and Swenne (2019) 3.0T 48 MNI FSL TBSS p < 0.05 (TFCE) 0

DTI, diffusion tensor imaging; FDR, false discovery rate; FSL, functional MRI of the brain (FMRIB) software library; FWE, family-wise error; MNI, Montreal Neurological Institute Space;

NA, not available; TBSS, tract-based spatial statistical; TFCE, threshold-free cluster enhancement.
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differences between AN and HC groups. Table 2 summarizes
technical details of all included studies.

Meta-Analysis
Pooled Voxel-Based Meta-Analysis
As illustrated in Figure 2 and Table 3, the pooled meta-analysis
revealed significantly lower FA in AN patients relative to HC
in two regions: CC and cingulum. No regions showed higher
FA. As shown in Figure 3, the WM tracts mainly involved were
the cingulum bundle and the interhemispheric fibers running
through the CC.

Subgroup Voxel-Based Meta-Analysis
The adult AN subgroup included seven datasets that showed
lower FA in the CC and cingulum bundle, sharing same clusters
with the pooled meta-analysis. No regions showed higher FA in
adult AN (Table 4).

The acute AN patient subgroup included 8 datasets that
showed lower FA in the CC and cingulum bundle. No regions
showed higher FA in AN (Table 4). These results are consistent
with the pooled meta-analysis, indicating that the main effects
related to the acute AN patients rather than recovered AN.

Reliability Analysis
The whole-brain jack-knife sensitivity analysis showed that lower
FA in the CC and cingulum was highly reliable, being retained
throughout 10 datasets combinations (Table 3). Analysis of
heterogeneity revealed that the CC and cingulum with lower
FA had significant statistical heterogeneity among studies (p <

0.005) (Table 3). Analysis of publication bias by the Egger test

FIGURE 2 | Results of pooled meta-analysis. Regions with blue color show

lower FA in AN patients compared with healthy controls in the CC. FA,

fractional anisotropy; AN, Anorexia nervosa; CC, Corpus callosum.

was non-significant for CC (p= 0.137) and cingulum (p= 0.484)
(Table 3).

Meta-Regression Analysis
Mean age and BMI showed no relationship with lower FA. Illness
duration, BDI score and percentage of medicated patients could
not be examined because of limited data. AN symptom severity
could not be examined because it was reported using various
inconsistent measures.

DISCUSSION

This is the first quantitative meta-analysis integrating TBSS
studies in patients with AN. Partly consistent with our
hypotheses, pooled analysis revealed that the most robust
disruption of WM microstructure, reflected in lower FA, in
AN patients were in the CC and cingulum. Subgroup analyses
of adult studies and acute studies replicated these findings.
However, we found no significant correlations between BMI
and lower FA.

Lower Fractional Anisotropy in the Corpus
Callosum and Cingulum Bundle
The biggest cluster with lower FA in AN was the CC, as reported
in several studies (Frieling et al., 2012; Frank et al., 2013; Shott
et al., 2016; Gaudio et al., 2017; Olivo et al., 2017; Phillipou et al.,
2018; Barona et al., 2019; von Schwanenflug et al., 2019). The
CC is the largest interhemispheric commissure, communicating
perceptual, cognitive, motor and affective information (Hofer
and Frahm, 2006; Catani and Thiebaut de Schotten, 2008).

FIGURE 3 | Results of pooled meta-analysis. Three-dimensional images show

the most probable white matter tracts running through CC (purple) and the

cingulum (green) bundle in AN patients. AN, Anorexia nervosa; CC, Corpus

callosum.

TABLE 3 | Regions of lower fractional anisotropy in anorexia nervosa patients compared with health controls identified by the main meta-analyses.

Region Maximum Cluster Robustness

MNI coordinates

x, y, z

SDM

z-score

P-value

uncorrected

Number of

voxels

Breakdown

(No. of voxels)

Jackknife Heterogeneity Publication bias

Corpus callosum 0, 6, 24 −2.070 ∼0 289 Corpus callosum

(275)

10 of 11 0.00001 ns

Cingulum (14)

MNI, Montreal Neurological Institute Space; SDM, Seed-based d Mapping; ns, non-significant; Jackknife: The jackknife sensitivity analysis column gives the number of studies whose

omission does not affect the finding.

Frontiers in Neuroscience | www.frontiersin.org 5 March 2020 | Volume 14 | Article 159

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Zhang et al. White Matter in Anorexia Nervosa

TABLE 4 | Regions of lower fractional anisotropy in anorexia nervosa patients compared with health controls identified by the subgroup meta-analyses (acute subgroup;

adult subgroup).

Region Maximum Cluster Jackknife sensitivity

analysis
MNI coordinates

x, y, z

SDM

z-score

P-value

uncorrected

Number of

voxels

Breakdown

(No. of voxels)

Acute subgroup

Corpus callosum −6, 16, 20 −2.112 0.000024557 284 Corpus callosum

(270)

8 of 8

Cingulum (14)

Adult subgroup

Corpus callosum −6, 14, 22 −1.071 0.000147164 138 Corpus callosum

(127)

6 of 7

Cingulum (11)

MNI, Montreal Neurological Institute Space; SDM, Seed-based d Mapping.

Notably, the WM fibers crossing through the body of the CC
connect the bilateral prefrontal cortices and supplementary
motor areas (SMA), and microstructural alterations in the
body of the CC, as reflected by the decreased FA, might lead
to reduced quantity and speed of information transfer between
these brain areas. The prefrontal cortices are involved in the
affective element of body image, which can be conceptualized
as feelings and the satisfaction or dissatisfaction with the body
(Gaudio and Quattrocchi, 2012). Therefore, the lower FA in
the body of CC in AN might reflect an impaired prefrontal
interhemispheric connectivity, underlying or contributing to
body image distortion in AN (Gaudio et al., 2014; Gadsby,
2017). The SMA is involved in the planning and control of
motor actions, and plays an important role in task switching,
especially in proactive behavioral switching (Nachev et al.,
2008; Hikosaka and Isoda, 2010). Functional MRI has shown
that the SMA is consistently activated when subjects switch
between two tasks proactively in response to a cue (Rushworth
et al., 2002). Therefore, we speculated that impaired WM
integrity in the bilateral SMA might lead to cognitive-behavioral
inflexibility (i.e. stereotyped or perseverative behaviors), which
may contribute to behaviors for self-induced starvation.
Furthermore, the observation that higher FA in the body of CC
is positively correlated with reward-related activation in the
nucleus accumbens suggests that CC might influence reward
responsiveness of the ventral striatum by regulating the efficiency
of information transfer within reward-related circuitries
(Koch et al., 2014).

We also identified lower FA in the cingulum, in line with prior

studies (Kazlouski et al., 2011; Frank et al., 2013). The cingulum
incorporates fibers of different length: the longest running from

the anterior temporal gyrus to the orbitofrontal cortex, while
short U-shaped fibers link the medial frontal, parietal, occipital,
and temporal lobes and different parts of the cingulate cortex
(Catani and Thiebaut de Schotten, 2008). The cingulum is a
component of the limbic system, involved in attention, memory
and emotions (Catani, 2006; Rudrauf et al., 2008). Given that
the cingulum bundle is a key part of the network integrating
behaviors necessary for emotion identification and processing
(Kazlouski et al., 2011), disruption of WM microstructures in

this area could explain abnormalities in emotion recognition
and regulation in AN, such as difficulties in concentrating
and accomplishing tasks when experiencing negative emotions
(Harrison et al., 2010).

Interestingly, these results of lower FA in the CC and cingulum
were retained in the subgroup meta-analysis. The findings seem
to show that the CC and cingulum are stable markers of the
disorder and interruptions in WM tracts of these areas may
be involved in the pathological mechanisms of AN. As the
numbers of studies in the subgroup meta-analyses are relatively
small (seven and eight respectively), we should treat these
results with caution. Additionally, because limited data precluded
meta-analysis of the recovered AN group, whether or not the
alterations persist after recovery is a question still to be addressed.

Null Results by Meta-Regression Analysis
Although there were no significant associations between clinical
variables andWM abnormalities, the effect of self-starvation (viz.
decreased BMI) is particularly interesting. Previous studies have
variously reported significant correlations (Kazlouski et al., 2011;
Nagahara et al., 2014; Olivo et al., 2017) and no correlations
(Gaudio et al., 2017; Bang et al., 2018; Phillipou et al., 2018)
between BMI and FA in different brain areas. Heterogeneity
in patient characteristics may contribute to this negative
result. Alternatively, it may indicate that WM microstructure
impairments in AN are not directly related to effects of starvation,
but instead to trait characteristics of the disorder (Phillipou
et al., 2018). Nevertheless, these preliminary findings need to be
validated by longitudinal studies.

An Unexpected Lack of Abnormality
Compared with a previous meta-analysis of AN, which revealed
disturbed WM in various regions (e.g. clusters with lower FA
in the left superior longitudinal fasciculus and left precentral
gyrus, and higher FA in the right cortico-spinal projections and
lingual gyrus) (Barona et al., 2019), the present meta-analysis
predominantly emphasized interhemispheric communication
and the limbic association fibers. This inconsistency might
be explained in two ways. Firstly, we only analyzed DTI
studies using TBSS, not VBA, thus avoiding any bias arising
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from methodological differences in diffusion data processing.
Secondly, we included a number of new studies, with resulting
differences in sample characteristics (e.g., age, gender, subtype,
and medication status).

Limitations of This Study
The study has some limitations. Firstly, voxel-based meta-
analyses are based on summarized data (i.e. coordinates and
effect sizes from published studies). Although analyzing a
cumulative set of primary data would in theory yield more
accurate results, it is rarely feasible to obtain raw image files.
Secondly, we could not take AN-subtypes into consideration;
the restricting subtype and the binge-purging subtype may have
different etiologies, but this was hard to explore because the
information was not available. Thirdly, although we found the
lower FA in the CC and cingulum retained significance in adult
AN and acute AN subgroup analyses, it cannot be concluded
that these abnormalities are a biomarker of the disorder, since
the differences in their comparator groups (recovered AN
and adolescent AN) are still unknown. More studies on these
subgroups are needed. Fourthly, themean FA skeleton is different
in each study due to heterogeneity in the data, which may
decrease the accuracy of the results of the meta-analysis. Finally,
it is useful to combine FA with other diffusion parameters (MD,
AD, and RD); unfortunately, most of the included studies did not
report them.

CONCLUSION

This meta-analysis detected significantly lower FA in AN in the
WM of the interhemispheric connection and limbic association
fibers, which are involved in body cognitive-behavioral
inflexibility, image processing and emotional function. Although
the neuropathology of AN is complex, our findings help provide
evidence on how symptoms and behaviors are encoded in the

brain, and thusmay aid in developing effective treatments. Future

studies with a longitudinal approach are needed to confirm our
results and to reveal the trajectory of the pathophysiology.
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