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This study presents a computational model of closed-loop control of deep brain
stimulation (DBS) for Parkinson’s disease (PD) to investigate clinically viable control
schemes for suppressing pathological beta-band activity. Closed-loop DBS for PD has
shown promising results in preliminary clinical studies and offers the potential to achieve
better control of patient symptoms and side effects with lower power consumption
than conventional open-loop DBS. However, extensive testing of algorithms in patients
is difficult. The model presented provides a means to explore a range of control
algorithms in silico and optimize control parameters before preclinical testing. The
model incorporates (i) the extracellular DBS electric field, (ii) antidromic and orthodromic
activation of STN afferent fibers, (iii) the LFP detected at non-stimulating contacts
on the DBS electrode and (iv) temporal variation of network beta-band activity within
the thalamo-cortico-basal ganglia loop. The performance of on-off and dual-threshold
controllers for suppressing beta-band activity by modulating the DBS amplitude were
first verified, showing levels of beta suppression and reductions in power consumption
comparable with previous clinical studies. Proportional (P) and proportional-integral (PI)
closed-loop controllers for amplitude and frequency modulation were then investigated.
A simple tuning rule was derived for selecting effective PI controller parameters to
target long duration beta bursts while respecting clinical constraints that limit the rate
of change of stimulation parameters. Of the controllers tested, PI controllers displayed
superior performance for regulating network beta-band activity whilst accounting for
clinical considerations. Proportional controllers resulted in undesirable rapid fluctuations
of the DBS parameters which may exceed clinically tolerable rate limits. Overall, the PI
controller for modulating DBS frequency performed best, reducing the mean error by
83% compared to DBS off and the mean power consumed to 25% of that utilized by
open-loop DBS. The network model presented captures sufficient physiological detail to
act as a surrogate for preclinical testing of closed-loop DBS algorithms using a clinically
accessible biomarker, providing a first step for deriving and testing novel, clinically
suitable closed-loop DBS controllers.

Keywords: closed-loop deep brain stimulation, Parkinson’s disease, beta-band activity, proportional-integral
controller, computational model, control schemes, adaptive
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INTRODUCTION

In recent years, there has been growing interest on the potential
offered by “closed-loop” deep brain stimulation (DBS). In
a closed-loop DBS configuration, the patient’s clinical state
is quantified and utilized to alter stimulation parameters as
necessary, so the required stimulation to minimize their disease
symptoms is delivered, thus reducing potential stimulation
induced side-effects while controlling symptoms. A critical step
in the development of such systems is the identification of signal
features or “biomarkers” which have the potential to quantify
the clinical state. One of the most promising features examined
for closed-loop control of DBS in PD is the level of beta-
band (13 – 30 Hz) oscillatory activity within the subthalamic
nucleus (STN) and cortico-basal ganglia network. Pathological
exaggerated activity within this frequency band is correlated
with motor impairment and its suppression, due to medication
or DBS, with motor improvement (Silberstein et al., 2005a,b;
Kühn et al., 2008, 2009). This oscillatory activity, however, is
not continuously elevated, but rather fluctuates between long,
greater than 400 ms, and short duration bursts of beta activity,
with only long burst durations being positively correlated with
motor impairment in PD (Tinkhauser et al., 2017a,b, 2020). These
features, in combination with the potential to record LFP activity
during stimulation from non-stimulating contacts on the DBS
electrode, render LFP beta band activity an appealing biomarker
for closed-loop DBS.

Closed-loop DBS for PD utilizing LFP derived measures of
beta-band oscillatory activity has been successfully tested in
small cohorts of PD patients over relatively short timescales
(Little et al., 2013, 2016; Rosa et al., 2015; Arlotti et al., 2018;
Velisar et al., 2019). These studies have examined amplitude
modulation of the DBS waveform in response to changes in the
LFP beta-band activity. “On-off” stimulation strategies, where
DBS is triggered on or off as the measured oscillatory activity
crosses a desired threshold value, were the first closed-loop
strategies tested in patients (Little et al., 2013, 2016). Although
these strategies offer benefits with respect to traditional open-
loop stimulation, they rely on optimal stimulation parameters
that are identified during open-loop, continuous DBS. If these
stimulation parameters are no longer effective, for example, due
to diurnal changes in beta activity, variations in the electrode
impedance, or as the disease progresses, the controller is unable
to adapt and delivers suboptimal performance. Velisar et al.
(2019) proposed an alternative “dual-threshold” algorithm where
the amplitude of the DBS waveform is systematically increased,
decreased or kept constant as the measured LFP beta-band
activity remains above, below or within a desired target range.
Although the strategy can maintain the beta activity within
a target range, it remains a relatively simple form of control
where the DBS amplitude is varied at a fixed rate if the beta-
band activity lies outside the target range. Rosa et al. (2015);
Arlotti et al. (2018) investigated an alternative approach where
the DBS waveform was linearly modulated in response to the
measured LFP beta-band activity in freely moving PD patients.
Proportional amplitude modulation stimulation strategies such
as this, where the DBS amplitude is varied proportionally to the

measured LFP beta-band activity, potentially offer more benefits
than on-off and dual-threshold strategies, in theory, because they
ideally only deliver the stimulation required to reduce beta-band
LFP activity to suppress PD symptoms.

In conjunction with the amplitude modulation stimulation
strategies that have been investigated so far, control theory offers
a wealth of control schemes which may potentially offer better
control of patient symptoms and side effects, whilst minimizing
battery consumption, over the current state-of-the-art strategies.
The development of novel, effective control schemes for DBS,
however, is challenging and trialing in humans or animals is
difficult due to its invasive nature. Computational modeling
provides an alternative approach for designing and testing
more complex forms of closed-loop DBS control. Although
computational models have been previously used to investigate
closed-loop control strategies for DBS (Santaniello et al., 2011;
Carron et al., 2013; Gorzelic et al., 2013; Grant and Lowery, 2013;
Pasillas-Lepine et al., 2013; Haidar et al., 2016; Liu et al., 2017a;
Popovych and Tass, 2019; Su et al., 2019), they typically do not
relate well to clinically relevant parameters and, in particular,
rarely incorporate both simulation of the LFP and extracellular
application of DBS. Simulation of the LFP is desirable for
developing computational models that can be readily translated
to patients as LFP derived features, such as frequency and time
domain features, are currently the most accessible biomarkers
for closed-loop DBS in PD (Priori et al., 2013). In addition,
simulation of the electric field and extracellular application of
DBS to axons and branching afferents is necessary to enable
variations in DBS amplitude to be simulated. To bridge the link
between computational approaches and clinically viable closed-
loop approaches it is thus necessary to develop a model which
captures the dynamics of the relevant neural system, the electric
field generated by DBS, and the resulting LFP recording.

To address this, the aim of this study was to develop a
physiologically based model of the cortico-basal ganglia network,
which incorporates extracellular DBS and simulation of the
STN LFP, that can be utilized to test clinically relevant closed-
loop DBS control strategies. The developed model captures
increased network beta-band oscillatory activity and simulates
the synaptically generated STN LFP and extracellular application
of DBS to STN afferent fibers, including antidromic activation of
cortical pathways. The performance of on-off and dual-threshold
amplitude modulation strategies are verified in the model before
the feasibility of proportional (P) and proportional-integral (PI)
control schemes for modulating DBS amplitude or frequency
are investigated. The model provides an in silico testbed for
developing new closed-loop DBS control strategies using STN
LFP-derived features in PD.

MATERIALS AND METHODS

The structure of the network model of DBS is presented in
Figure 1 and includes the closed loop formed between the cortex,
basal ganglia and thalamus (Parent and Hazrati, 1995a,b; Nambu
et al., 2002; McHaffie et al., 2005). The model extends previous
network models of the parkinsonian cortico-basal ganglia during
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FIGURE 1 | Schematic diagram of cortical basal ganglia network model. (A) Network diagram of cortical basal ganglia neuron populations. Excitatory and inhibitory
synaptic connections within the network are represented as solid red arrow and blue dotted arrows, respectively. (B) Electric field distribution due to monopolar
stimulation electrode. Cortical collaterals, represented as black dots, are oriented perpendicular to the page. The electrode bipolar recording contacts are
represented by + and –, respectively. (C) Schematic diagram of the closed-loop stimulator utilizing an LFP derived measured of network beta-band activity. Contacts
1 and 3 represent the bipolar recording electrode contacts on the DBS electrode. The recorded LFP is bandpass filtered, rectified and averaged to calculate the
average rectified value of the LFP beta-band activity. The beta average rectified value is used as input to a controller which determines an updated value for the DBS
parameter being modulated. The updated DBS waveform is subsequently simulated at electrode contact 2 and varies the electric field distribution.

DBS (Terman et al., 2002; Rubin and Terman, 2004; Hahn
and McIntyre, 2010; Kang and Lowery, 2013, 2014; Kumaravelu
et al., 2016) by (i) incorporating the extracellular DBS electric
field (ii) simulating antidromic and orthodromic activation of
cortical and globus pallidus efferent fibers to the STN and (iii)
simulating the LFP detected at non-stimulating contacts on the
DBS electrode due to STN synaptic activity and (iv) mimics
temporal variation of network beta activity within the thalamo-
cortico-basal ganglia loop. The model was used to investigate the
performance of closed-loop amplitude and frequency modulation
strategies using an LFP derived measure of the network beta-band
oscillatory activity.

Network Structure
The major model components include single compartment,
conductance-based biophysical models of cortical interneurons,
STN, globus pallidus externa (GPe), globus pallidus interna
(GPi), and thalamus neurons. Cortical Layer V pyramidal
neurons, with axons projecting to the STN through the
hyperdirect pathway, were simulated using multi-compartment,

conductance-based biophysical models to enable extracellular
application of DBS to cortical axon collaterals. The individual cell
models have been validated and employed in previous modeling
studies (Terman et al., 2002; Otsuka et al., 2004; Rubin and
Terman, 2004; Pospischil et al., 2008; Hahn and McIntyre,
2010; Kang and Lowery, 2013, 2014; Kumaravelu et al., 2016).
Six hundred cells consisting of one hundred STN, GPe, GPi,
thalamic, cortical interneuron and cortical pyramidal neurons
were connected through excitatory and inhibitory synapses,
AMPA and GABAa, respectively, as described below, Figure 1A.
While the type and direction of connections between the nuclei
of the thalamo-cortico-basal ganglia network are well established,
it is more difficult to ascertain the exact number of connections
between individual neurons, and their relative strengths, in
different nuclei. Input to a single neuron was therefore assumed
to be from one or two neurons in each of the connected
presynaptic nuclei, with the exception of the STN, which receives
substantial direct cortical input (Nambu et al., 2002), with
increased functional connectivity between the cortex and STN
in the dopamine depleted state (Litvak et al., 2011; Moran et al.,
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2011; West et al., 2018). Connections between neurons in the
cortico-basal ganglia network followed a random connectivity
pattern. Each STN neuron received excitatory input from five
cortical neurons and inhibitory input from two GPe neurons
(Smith et al., 1990; Bevan et al., 1995). Each GPe neuron received
inhibitory input from one striatal neuron, and one other GPe
neuron, and excitatory input from two STN neurons (Shink
and Smith, 1995; Chan et al., 2004; Sadek et al., 2007). Each
GPi neuron received excitatory input from a single STN neuron
and inhibitory input from a single GPe neuron (Shink and
Smith, 1995). Thalamic neuron received inhibitory input from a
single GPi neuron (Sidibé et al., 1997). Cortical neurons received
excitatory input from a single thalamic neurons and inhibitory
input from ten interneurons (Kayahara and Nakano, 1996; Packer
et al., 2013). Interneurons received excitatory input from ten
cortical neurons (Packer et al., 2013). The values for all model
parameters are provided as Supplementary Material.

Pathological beta oscillations in the cortico-basal ganglia
network were modeled based on the hypothesis that beta activity
entering the network from the cortex is enhanced locally within
the reciprocally coupled STN-GPe loop and propagates through
the closed-loop network from the cortex through the basal
ganglia, thalamus and back to cortex (Mallet et al., 2008;
Tachibana et al., 2008, 2011; Nambu and Tachibana, 2014).
This hypothesis is supported by observations from primate
studies, where oscillations in the STN, GPe and GPi were
investigated while inputs to each population were systematically
blocked (Tachibana et al., 2008, 2011). Nambu and Tachibana
summarized their findings in Nambu and Tachibana (2014),
where the authors articulate that oscillatory activity in the GPe
and GPi were generated mainly due to glutamatergic inputs
from the STN, while oscillations in the STN were mainly due
to glutamatergic inputs from the cortex, with STN GABAergic
inputs from the GPe potentially increasing the oscillatory activity.
Furthermore, Litvak et al. (2011) observed that beta activity
in the cortex led beta activity in the STN in parkinsonian
patients (Litvak et al., 2011), while Sharott et al. (2005) found
that in a parkinsonian rat model dopamine depletion increased
the power and coherence of beta oscillations in the cerebral
cortex and STN (Sharott et al., 2005). Further evidence of
this hypothesis is supported by investigations of directional
connectivity within the dopamine depleted cortico-basal ganglia,
inversion of biophysical models using electrophysiological data
from rats and patients (Moran et al., 2011; Marreiros et al., 2013;
West et al., 2018), and functional imaging studies in individuals
with Parkinson’s disease (PD) (Lalo et al., 2008; Baudrexel et al.,
2011; Fernández-Seara et al., 2015).

The strength of synaptic connections between the cortex
and STN, between the STN and GPe, and the thalamus cortex
were increased to induce beta oscillations within the network
and the STN LFP, similar to that observed experimentally
(West et al., 2018). Previous simulation studies have similarly
increased the strength of connections between nuclei to simulate
the effects of dopamine depletion on basal ganglia network
activity in PD resulting in the emergence of oscillatory
activity in conductance-based models (Rubin and Terman,
2004; Humphries et al., 2006; Hahn and McIntyre, 2010;

Kang and Lowery, 2013; Kumaravelu et al., 2016) and mean-field
models (Nevado-Holgado et al., 2010; Davidson et al., 2016;
Liu et al., 2017b, 2020).

Neuron Models
The compartmental membrane voltage of each neuron in the
network is described by

Cmxi

dvmxi

dt
= −

Jx∑
jx

IIonxi
−

Kxi∑
kxi

I
kxi
synxi
+

Mxi∑
mxi

IAppxi
(1)

where x specifies the neuron population, i is the ith neuron
in population x, Cmxi

is the membrane capacitance of the ith
neuron in population x, vmxi

is the membrane potential of the
ith neuron in population x. The membrane potential of the ith
neuron in population x was calculated as the summation of the
J ionic currents of population x’s neuron model, IIonxi

, the Kx
synaptic currents which project to the ith neuron in population
x, Isynxi

, and the M intracellularly applied currents, IAppxi
. Further

details regarding the neuron models are included below, and in
the Supplementary Material.

Cortex
The cortex was represented by a network of interneurons
and cortical pyramidal neurons. The cortical neuron model,
based on a layer V pyramidal tract neuron, comprised a soma,
axon initial segment (AIS), main axon, and axon collateral
as described by Kang and Lowery (2014). To summarize, the
cortical neuron soma and interneuron models were based on
the regular spiking neuron model developed in Pospischil et al.
(2008), while the model used to simulate the AIS, main axon,
and axon collateral was based on results from the experimental
modeling study in Foust et al. (2011). The model compartments
include leak, sodium, and three potassium ionic currents and
an intracellular bias current for setting the neuron firing rate.
The cortical soma compartment model excluded the D-type
potassium current, while the AIS, main axon, and axon collateral
compartments excluded the slow, voltage dependent potassium
current. Cortical interneurons excluded both the D-type and
slow, voltage dependent potassium currents.

Subthalamic Nucleus
The STN model incorporated a physiological representation
of STN neurons developed by Otsuka et al. (2004) and
implemented by Hahn and McIntyre (2010) that captures the
generation of plateau potentials which have been identified as
playing an important role in generating STN bursting activity
that is observed during PD (Beurrier et al., 1999). The STN
model included leak, sodium, three potassium, two calcium
ionic currents and an intracellular bias current for setting the
neuron firing rate. Further details regarding the parameter
values used can be found in the Supplementary Material
and in Otsuka et al. (2004), Hahn and McIntyre (2010),
Kang and Lowery (2013, 2014).
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Globus Pallidus and Thalamus
GPe, GPi, and thalamic neurons were represented using the
model developed in Rubin and Terman (2004) and implemented
by Hahn and McIntyre (2010). The GPe and GPi neuron models
included leak, sodium, two potassium, and two calcium ionic
currents and an intracellular bias current for setting the neuron
firing rates. GPe neurons included an additional intracellularly
injected current to simulate the application of DBS to the GPe
neuron model, assuming that an equivalent proportion of GPe
neurons were stimulated to the proportion of extracellularly
stimulated cortical neurons during DBS. Further details on the
application of DBS to GPe neurons is included below in the
Application of DBS section. Thalamic neurons were modeled
similarly, with the exception of excluding one of the calcium
and one of the potassium currents. Striatal synaptic input to
GPe neurons was modeled as a population of Poisson-distributed
spike trains at 3 Hz.

Synapses
Synaptic connections between neurons were modeled by spike
detectors in presynaptic neurons, coupled to synapses in
postsynaptic neurons by a time delay. Individual synaptic
currents, Ik

syn, were described by

Ik
syn = Rk (Vm − Erev) (2)

where Ik
syn is the kth synaptic current, Rk represents the

kinetics of the onset decay of current following a presynaptic
spike for synapse k, and Erev is the reversal potential for the
appropriate synapse type, excitatory AMPAergic synapses or
inhibitory GABAergic synapses, respectively (Destexhe et al.,
1994). The topology of synaptic connections between the network
populations followed a random connectivity pattern, where the
number of connections between each population and their
associated synaptic transmission delay are detailed in Table 13
of Supplementary Material. Full details regarding the synapse
models and their parameter values can also be found in their
original publication (Destexhe et al., 1994).

Application of DBS
The DBS electrode was modeled with three point source
electrodes located in a homogeneous, isotropic medium of
infinite extent and conductivity, σ, where a single point source
was used to represent the application of extracellular DBS in
a monopolar configuration, while the remaining two point
source electrodes were used for simulating recording the local
field potential with a bipolar, differential recording electrode.
Propagation, inductive, and capacitive effects were assumed to
be negligible, in accordance with the quasi-static approximation
(Plonsey and Heppner, 1967; Bossetti et al., 2008).

The extracellular potential due DBS, Vei (t), at each point
located on the cortical collateral, i, located a distance ri from the
monopolar electrode was calculated as

Vei (t) =
IDBS (t)
4πσri

(3)

where σ is the conductivity of gray matter, with the specified
value 0.27 S/m (Latikka et al., 2001), IDBS is the DBS current,
simulated as a series of periodic cathodic rectangular current
pulses of variable amplitude, frequency, and duration.

Cortical collaterals were randomly distributed around the
monopolar electrode in a 6 mm by 6 mm square, using uniformly
distributed random variables for their cartesian coordinates.
The collaterals were oriented perpendicular to the cross-section,
parallel to one another, and were not permitted to lie within
the area covered by the cylindrical electrode lead of radius of
0.7 mm, Figure 1B.

The application of DBS to the model was simulated by
stimulating afferent STN projections resulting in antidromic
activation of the cortex and GPe and orthodromic activation
of excitatory and inhibitory afferent projections to the STN.
This resulted in disruption of activity in the cortex and GPe
and net inhibition of the STN, consistent with experimental
observations (Filali et al., 2004; Li et al., 2012; Milosevic et al.,
2018). The extracellular potential due to DBS was applied to
cortical collaterals projecting to the STN from descending layer V
pyramidal tract fibers (Kang and Lowery, 2014). It was assumed
that an equal percentage of cortical and GPe neurons were
activated during stimulation. During DBS, the percentage of
activated cortical neurons was calculated and an intracellular DBS
current was injected to the corresponding percentage of activated
GPe neurons, where cortical neurons were labeled as activated
during 130 Hz DBS if their collateral firing rate increased above
60 Hz. The entrainment order of the GPe neurons was generated
as a randomized sequence from the first to the hundredth neuron
in the population, where ten percent activation corresponded to
the intracellular DBS current being delivered to the first ten GPe
neurons in the entrainment order.

Local Field Potential Simulation
The STN LFP recorded at the bipolar, recording electrode was
estimated as the summation of the extracellular potentials due
to the spatially distributed synaptic currents across the STN
population (Rall and Shepherd, 1968; Lindén et al., 2011; Bedard
and Destexhe, 2012; Einevoll et al., 2013). The x and y locations
of STN neurons were randomly assigned as described previously,
where the excitatory and inhibitory synapses for a given STN
neuron were positioned at its x and y location, 250 µm from the
bipolar electrode in the z direction. Assuming conduction within
a purely resistive homogenous medium of infinite extent, the LFP
at the bipolar electrode contacts was estimated as

LFPi (t) =
1

4πσ

M∑
j=1

N∑
k=1

Ik
synj

rij
(4)

Where LFPi (t) is the LFP recorded by the ith bipolar, electrode
contact at time t, Ik

synj
is the kth synaptic current of the jth STN

neuron, and rij is the distance from the ith electrode contact to
the kth synapse of the jth STN neuron assuming M neurons, each
with N synapses.
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Beta-Band LFP Activity
The average rectified value (ARV) of the beta-band LFP was
calculated by full-wave rectifying the filtered LFP signal using a
fourth order Chebyshev band-pass filter with an 8 Hz bandwidth,
centered about the peak in the LFP power spectrum. The last
100 ms epoch of the rectified signal was discarded to remove
filtering artifact before taking the mean value of the last 100 ms
epoch of the resulting signal. A target value for the beta ARV
was estimated as the 20th percentile of the beta ARV signal
estimated for a thirty second epoch with DBS off. Cortical soma
bias currents were modulated to vary the duration of beta activity
within the network and simulated periods of high beta activity,
or “beta bursts” periods, and low frequency activity. The duration
of the beta burst periods were varied to simulate short, “healthy
bursts” of beta activity, THB, and prolonged, “pathological bursts”
of beta activity, TPB. Healthy burst periods were defined as 100 ms
in duration while the duration of pathological bursts were drawn
from a uniform distribution between 600 and 1000 ms to capture
variability of pathological burst durations (Tinkhauser et al.,
2017a; Anidi et al., 2018). The time between beta bursts, the
interburst period, was fixed at 300 ms. The beta modulation signal
was generated by selecting a random number at the start of each
beta burst. If the random number was less than, or equal to
0.5 the burst was labeled healthy and its duration assigned as
the healthy burst duration. If the random number was greater
than 0.5 it was labeled pathological and its duration was set
appropriately, selecting a value from the uniform distribution
of pathological burst durations. The probability of pathological
burst occurrence in the model was a simplified representation of
beta burst activity observed in PD. Research has observed that
the probability of pathological burst occurrence is modulated
in PD patients by factors such as medication and motor tasks
(Tinkhauser et al., 2017a, 2020). Although not considered in
this study, future studies may incorporate modulation of the
burst probabilities to emulate variations in burst probabilities
induced by these factors. During controller simulations, a beta
ARV above the target corresponded to pathological beta activity,
while a beta ARV below the target represented fluctuations of
healthy beta activity. In practice, the target could be chosen based
on an appropriate balance between symptom suppression and
device power consumption. The controller input, e, at time t was
calculated as the normalized error between the measured beta
ARV, bmeasured, and the target beta ARV, btarget , according to

e (t) =
bmeasured (t)− btarget

btarget
(5)

The controller operated with a sampling interval, Ts, of 20 ms,
updating the modulated DBS parameter at each controller call.
During amplitude modulation, the DBS frequency and pulse
duration were fixed at 130 Hz and 60 µs, respectively, with the
amplitude varying between 0 – 3 mA, where the upper amplitude
bound was selected as the amplitude which minimized the beta
ARV. During frequency modulation, the DBS amplitude and
pulse duration were fixed at 1.5 mA and 60 µs, respectively, with
the frequency varying between 0 – 250 Hz.

It has been observed in clinical studies of closed-loop DBS
amplitude modulation that rapid changes in the stimulation
amplitude can potentially induce stimulation induced side-
effects, or paresthesia. To avoid unintentional paresthesia
Little et al. (2013) ramped their DBS amplitude from its
minimum to maximum value over a 250 ms period during
closed-loop DBS. Following this approach, the maximum
tolerable rate limit for the modulated DBS parameter during
closed-loop DBS was defined as

RL =
umax − umin

TRamp
⇒ u1RL

∼=
Ts (umax − umin)

TRamp
(6)

where RL is the rate limit of the DBS parameter per second,
TRamp is the duration of the ramping period, Ts is the controller
sampling period, u1RL

is the maximum tolerable variation of
the DBS parameter per controller call, and umax and umin are
the maximum and minimum bounds of the modulated DBS
parameter. Utilizing this, the maximum rate limit for DBS
amplitude modulation was calculated as RL = 0.012 A/s and
RL = 1000 Hz/s for frequency modulation.

Closed-Loop Control
On-off, dual-threshold, P and PI controllers were investigated for
closed-loop control of the DBS amplitude as detailed below. P and
PI control were also used to investigate closed-loop control of the
DBS frequency. The closed-loop DBS methodology simulated by
the model is summarized in Figure 1C.

On-Off Controller
The on-off controller utilized a single target and increased or
decreased the stimulation amplitude toward its upper or lower
bounds if the beta ARV was measured above or below the target,
respectively. The on-off controller is defined as

u (t) =

{
u (t − 1)+ u1RL

if e (t) > 0
u (t − 1)− u1RL

if e (t) < 0

where umin ≤ u (t) ≤ umax (7)

where u(t) is the modulated DBS parameter value, i.e., the
stimulation amplitude, at time t, u1RL

is the rate limit of the DBS
parameter at each controller call, and e(t) is the controller error
input signal at time t.

Dual-Threshold Controller
The dual-threshold controller utilized a target range where
the upper bound of the target range was selected as the 20th
percentile and the lower bound was selected as the 10th percentile
of the beta ARV with DBS off. If the beta ARV was greater than
the upper bound of the target range, the error was calculated with
respect to the upper bound, while if it was less than the lower
target range bound, the error was calculated with respect to the
lower bound. The behavior of the dual-threshold controller is
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defined as follows

u (t) =


u (t − 1)+ u1RL

if e (t) > 0
u (t − 1) if e (t) = 0
u (t − 1)− u1RL

if e (t) < 0

where umin ≤ u (t) ≤ umax (8)

where the parameters are as described for the on-off controller.

PI and P Controllers
The PI controller utilized a single target and is defined as

u (t) = Kp

(
e (t)+

1
Ti

∫
e (τ) dτ

)
(9)

where u(t) is the modulated DBS parameter value at time t, Kp is
the controller proportional gain and Ti is the controller integral
time constant. The PI proportional component contributes
to the modulated DBS parameter at time t by scaling the
current controller measured error while the integral component
contributes to the controller output at time t by scaling the
integrated history of the controller measured errors up to time
t. Conditional integration of the integral component was used
to prevent integral wind-up, where integration of the integral
component was paused if the modulated DBS parameter reached
its upper or lower parameter bounds. Inclusion of a derivative
gain, which would make the controller a PID controller rather
than a PI controller, was deemed undesirable because below target
fluctuations in beta-band activity, which occur during healthy
beta bursts, would contribute to the modulated stimulation
parameter through the derivative term. The P controller was
simulated by omission of the integral term in (9).

PI Controller Gain Tuning
The performance of PI controllers is heavily dependent on
selection of appropriate values for the proportional gain, Kp, and
integral time constant, Ti. The tuning process here is complicated
by the constraint that the controller should not exceed the
maximum tolerable rate limit of the modulated DBS parameter
and that controller should act only on pathological beta bursts,
while minimally effecting healthy beta bursts. The following
tuning rules were thus designed for selecting PI controller
parameters which adhere to these requirements.

Selection of Integral Time Constant
The duration of beta bursts in the model varied between healthy
and pathological durations, THB and TPB respectively. It was
thus desirable to select the integral time constant longer than
the duration of healthy bursts and shorter than the duration of
pathological beta bursts. Therefore, the integral time constant, Ti,
was selected as 0.2 s, so

THB ≤ Ti ≤ TPB (10)

Selection of Proportional Gain
The proportional gain, Kp, was selected so that the rate limit of the
modulated DBS parameter was not exceeded. This was calculated

by differentiation of Eq. (9) and setting the DBS parameter rate
limit, RL, as an inequality constraint

du (t)
dt
= Kp

(
de (t)

dt
+

1
Ti

e (t)
)
≤ RL (11)

Rearranging, Kp was defined as

Kpmax ≤
RL

max
[

de(t)
dt

]
+

1
Ti

max [e (t)]
(12)

The maximum value of e(t) and de(t)
dt were estimated from a 30 s

simulation with no DBS. Substituting in the corresponding values
allows the calculation of an upper bound value for Kp, Kpmax .
Using these rules, the PI controller parameters were calculated
as (Kp, Ti) = (0.23, 0.20) for the PI amplitude controller and (Kp,
Ti) = (19.30, 0.20) for the PI frequency controller.

A parameter sweep was conducted to select the proportional
gain term for the P controllers, where the gain selected minimized
the resulting mean controller error. The Kp parameters were
selected as 5.0 and 417 for the amplitude and frequency P
controllers, respectively.

Simulation Details
The behavior of the model during continuous open-loop DBS
was initially investigated with a constant level of beta activity
within the network to characterize the relationship between the
DBS waveform parameters and (i) the antidromic spike rate
of cortical neurons detected at the cortical soma (ii) the beta-
band power measured from the STN LFP and (iii) the firing
rate of STN neurons. Ten simulations were conducted with
initial random seeds varied between each simulation. Following
this, a parameter sweep of the stimulation amplitude and
frequency values was conducted to characterize the effect of
parameter values on the LFP beta ARV. The parameter space
was divided into 1024 linearly spaced sample points between
the minimum and maximum bounds of the DBS amplitude,
0 – 3 mA, and frequency, 0 – 250 Hz. Each sample point
corresponded to a 10 s simulation of open-loop DBS with the
DBS parameters specified at that sample point. The performance
of each closed-loop controller was then investigated in ten
30 s simulations where network beta activity was modulated
as described in section 2.5. Ten independent beta modulation
signals were generated, with each controller simulated for each
modulation signal.

Controller performance was quantified in terms of the mean
error of the half-wave rectified error signal, the mean power
consumed by the controller and the controller suppression
efficiency in each simulation. The mean power consumed by the
controller was calculated as

Power Consumed =
ZE ∫

Tsim
0 I2

DBS (t) dt
Tsim

(13)

where ZE is the electrode impedance, assumed to be 0.5 K�,
Tsim is the simulation duration and IDBS is the DBS current.
The suppression efficiency of the controller was quantified as the
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percentage beta suppression per unit power consumed, with units
%/µW. The controller suppression efficiency was thus defined as

Suppression Efficiency

= 100×

(
1− 1

Tsim
∫

Tsim
0

bDBSOff (t)−bController(t)
bDBS Off (t)

dt
)

Power Consumed
(14)

where bDBS Off is the beta ARV signal measured in the simulation
when DBS was off, bController is the beta ARV signal measured
from each controller simulation, and power consumed is the
power consumed by the controller in the simulation, as defined
in (13). The performance of the controllers was averaged over
ten controller simulations, where each simulation utilized an
independent cortical beta modulation signal.

A parameter sweep of the PI amplitude controller parameters
was also conducted to investigate the effect of each parameter on
the controller behavior. The sweep was conducted for Kp values
linearly spaced between (0,6) and Ti values logarithmically spaced
between (0,6). All simulations were run from the model steady
state, where an initial model simulation was run for 6 s to allow
the network behavior to reach steady state, before the controller
performance was then evaluated on the following 10 s. The initial
model parameters in steady state were saved and used as the
starting point for all subsequent simulations.

The model was simulated in the NEURON simulation
environment (Hines and Carnevale, 1997) and implemented in
Python using the PyNN API package (Davison, 2008). The model
was numerically integrated using the Crank-Nicholson method
with a 0.01 ms timestep for all simulations. Simulations were
run on the UCD Sonic high-performance computing cluster.
Post-processing and signal analysis were done using custom
scripts developed in MATLAB (The MathWorks, Inc., Natick,
MA, United States).

RESULTS

The behavior of the model was first examined and compared with
key features of the network behavior identified in experimental
data from animal and human studies. Beta activity within
the STN LFP, antidromic activation of cortical neurons and
STN neural firing rates during continuous DBS with constant
stimulation parameters were investigated. The firing rates of the
cortical neurons were then modulated to simulate bursts of beta
activity within the network and the performance of closed-loop
DBS controllers to modulate either the DBS pulse amplitude or
frequency were evaluated.

Network Behavior During Open-Loop
DBS
Cortical desynchronization and GPe entrainment were observed
in the model during open-loop stimulation, after 0 s in
Figures 2D,F, where this behavior was qualitatively similar
to these DBS effects reported in experimental studies of the
parkinsonian rat model (Li et al., 2012; McConnell et al., 2012).
Cortical antidromic firing rates matched well the observations

of Li et al. (2012) where the rate of cortical antidromic spiking
increased with increasing stimulation frequency to a maximum
antidromic spike rate of 36.8± 0.6 Hz at a stimulation frequency
of approximately 130 Hz, Figure 2A. Antidromic firing rate
was defined as the number of successful stimulation-evoked
antidromic activations detected at the soma of reliably stimulated
cortical neurons where cortical collaterals were deemed to be
“reliably” stimulated when they were activated by at least 90% of
DBS pulses at the stimulation frequency. Further increasing the
stimulation frequency resulted in a reduction in antidromic spike
rate (Li et al., 2012), Figure 2A. In the model, DBS influenced
the cortical interneurons as the antidromic activation spread
through the cortical network through branching collaterals. This
altered activation of inhibitory interneurons through antidromic
activation of the cortical neurons is consistent with the hypothesis
proposed by Li et al., where this behavior was suggested as a
potential mechanism for the failure of frequency following at
higher frequencies (Li et al., 2012).

Increasing the frequency of DBS resulted in a gradual
reduction of the average STN neuron firing rate, Figure 2B.
Complete suppression of STN neurons was observed in the
model at 100 Hz and is consistent with STN firing rate behavior
reported by Milosevic et al. (2018) during DBS in parkinsonian
patients, Figures 2B,E. In the model, differences in the properties
of excitatory, AMPAergic, and inhibitory, GABAergic, synapses
leads to a net inhibition of STN neurons at higher frequencies.
In experimental studies, it has been suggested that inhibitory
GABAergic afferents comprising the majority of terminals on
the STN soma, in combination with differing rates of synaptic
depletion, may explain observations of a reduction in STN firing
rates during high frequency stimulation (Milosevic et al., 2018).

The beta-band power in the LFP power spectrum decreased
non-linearly with increasing DBS amplitude, Figure 2C. This
relationship is similar to the reduction in LFP beta-band
activity with increasing amplitude observed in clinical data
from parkinsonian patients which can be well-described by
higher order models (Davidson et al., 2016). Low stimulation
amplitudes had little influence on LFP beta-band activity with
amplitudes less than 1.1 mA unable to suppress beta-band
power in the LFP power spectrum regardless of the stimulation
frequency. Suitable stimulation amplitude and frequency values
reduced the amplitude of LFP beta-band oscillations during
DBS, Figure 2G, with the corresponding variation in the
LFP power illustrated in Figure 2H. Prior to the application
of DBS, there exists a narrowband peak in the LFP power
spectrum at 25 Hz. During stimulation, the 25 Hz peak
is suppressed, whilst a peak emerges in the LFP power
spectrum at the 130 Hz stimulation frequency, Figure 2H.
The sensitivity of the amplitude of beta-band oscillations to
the stimulation parameters is presented in Figure 3, where
stimulation amplitudes above 1.1 mA reduced the beta-band
power in the LFP power spectrum by at least 50% for a
broad range of stimulation frequencies above 40 Hz. This
behavior is comparable with experimental data where Blumenfeld
et al. reported the improvement of bradykinetic symptoms in
freely moving parkinsonian patients during 60 Hz stimulation
(Blumenfeld et al., 2016). Stimulation frequencies below 20 Hz
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FIGURE 2 | Cortico-basal ganglia network behavior during open-loop DBS. (A) Antidromic cortical spike rate during DBS with 2 mA amplitude, 60 µs pulse duration
and varying frequency. (B) Normalized STN firing rate during DBS with 3 mA amplitude, 60 µs pulse duration, and varying DBS frequency. (C) Normalized STN LFP
beta-band (22 – 30 Hz) power during DBS with 130 Hz frequency, 60 µs pulse duration, and varying DBS amplitude. (D–F) Cortical soma, STN and GPe population
raster plots when DBS is off and during open-loop DBS with 2.5 mA amplitude, 130 Hz and 60 µs pulse. At time 0 s, DBS is applied to the network causing
desynchronization of cortical somas, STN suppression and GPe entrainment (G) Simulated beta-band filtered LFP before and during stimulation with 2.5 mA
amplitude, 130 Hz frequency and 60 µs pulse duration. DBS is turned off prior to time 0 s and switched on at 0 s. (H) STN LFP power spectral densities when DBS
is off (gray line) and during DBS with 2.5 mA amplitude, 130 Hz frequency and 60 µs pulse duration (black line). When DBS is off the LFP has a peak at 26 Hz in the
beta frequency band. When DBS is applied to the network the 26 Hz beta-band peak is suppressed and a peak appears in the LFP power spectrum at the
stimulation frequency, 130 Hz.

resulted in less than 30% reductions in beta-band power in the
LFP power spectrum, indicating that low frequency stimulation
is not effective at suppressing beta-band activity in the model,
Figure 3A. Similar behavior was observed in Eusebio et al.
(2008) where low frequency stimulation led to small performance
improvements in a finger tapping task in PD patients if their
baseline performance was below normal limits. Eusebio et al.
(2008) also reported that when baseline performance was within
normal limits low frequency stimulation resulted in worsened
performance. This suggests that when beta-band activity is high,

low frequency stimulation may not lead to a worsening of
motor performance.

Closed-Loop Control of LFP Beta-Band
Activity
Open-Loop DBS
Model simulations with DBS off demonstrated modulation of the
STN LFP beta-band activity, with varying periods of short and
prolonged beta, Figure 4A. The simulations without DBS were
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FIGURE 3 | Effect of open-loop DBS parameters on STN LFP beta-band power. (A) The STN LFP beta-band power was calculated during DBS with fixed 60 µs
pulse duration and varying stimulation amplitude and frequency. The LFP beta-band power was normalized against the LFP beta-band power recorded when was
DBS off. Stimulation amplitude and frequency values of 0 corresponded to the condition where DBS is off, resulting in an LFP beta-band power value of 1. (B–E)
Examples of the STN LFP for varying stimulation amplitude and frequency values.

used to set a reference performance mean error value of 100% for
the controller. Reference values for the mean power consumption
and the suppression efficiency of the controllers were obtained
from simulations with open-loop, constant DBS at 2.5 mA,
130 Hz, and 60 µs pulse duration. The mean power consumption
value was used to set a reference mean power consumption value
of 100%, with a corresponding mean error value of approximately
zero (0.4%) and a suppression efficiency of 1.7%/µW, Figure 4B.
These baseline performance values were used to compare the
closed-loop DBS control strategies for keeping the beta ARV
below the target ARV value.

Amplitude Modulation Controllers
The on-off controller resulted in a suppression efficiency of
8.3%/µW, a 63% reduction in mean error compared to the
DBS off condition, and a 60% reduction in mean power
consumed when compared with constant DBS. The dual-
threshold controller resulted in a 5.9%/µW suppression efficiency
and showed greater reduction in mean error, with a 70% decrease,
but had a smaller mean power consumed reduction, with a 50%
decrease, Figures 5, 8.

The P controller displayed a 7.1%/µW suppression efficiency
with 62% and 53% reductions in the mean error and mean
power consumed, while the PI controller showed a 9.8%/µW
suppression efficiency with 79% and 68% decreases in the mean
error and mean power consumed respectively, Figures 6, 8.

Frequency Modulation Controllers
The P controller showed a 3.5%/µW suppression efficiency, with
72% reduction in the mean error, but only a 1% decrease in
the mean power consumed when compared with continuous
DBS. Better performance was obtained using the PI controller
with a 12.5%/µW suppression efficiency, and reductions in
the mean error and mean power consumed of 83% and 75%,
respectively, Figures 7, 8.

The controller performances are summarized in Figure 8.

Effect of Varying PI Parameter Values
Having examined the PI controller using the derived parameters
from the rule-tuning method, a sensitivity analysis was conducted
to explore the parameters effect on controller performance.
All the PI parameter value combinations tested as part of
the controller parameter sensitivity analysis resulted in an
approximately 55% reduction in the mean error compared to
DBS off. The mean power consumed showed a reduction of
at least of 40% for all combinations. A region of parameter
space between Kp = (0.25, 1) and Ti = (0.02, 0.8) showed the
greatest reduction in the mean error of 96% and a 60% reduction
in power consumed at Kp = 0.75 and Ti = 0.19, Figure 9.
A controller with relatively long Ti and low Kp resulted in
slow performance, where the integral term slowly accumulated
the error history and the modulated parameter varies slowly
through the proportional term, Figure 9C. In comparison, a
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FIGURE 4 | DBS off and open-loop DBS. (A) Example of a 30 s simulation with DBS off. The cortical bias current signal, top panel, represents the temporal
modulation of the intracellular cortical bias current applied to the cortical neuron somas to generate activity in the beta frequency band. The raw LFP, beta-band
filtered LFP and beta ARV are displayed in the next three panels. The target level for the beta ARV is represented by the red dotted line in the beta ARV figure panel.
(B) 10 s simulation period of DBS off and open-loop DBS with 2.5 mA amplitude, 130 Hz frequency and 60 µs pulse duration. The panels correspond to the 10 –
20 s simulation period from the panel (A). DBS off is represented as the gray lines in the filtered LFP and beta ARV panels, while open-loop DBS is displayed in black.

controller with short Ti and relatively large Kp resulted in a
fast controller response, where the error history accumulated
quickly and the modulated parameter varied quickly between
minimum and maximum values, Figure 9E. PI parameter values
selected using the tuning rule presented in this study resulted
in a controller response which maintained the beta activity at
the target level while adhering to rate constraints on the DBS
amplitude, Figure 9D.

DISCUSSION

A computational model is presented as an in silico testbed
for developing and testing closed-loop DBS controllers
designed to control LFP beta activity in PD. The model
developed extends previous models by (i) incorporating the
extracellular DBS electric field, (ii) captures both antidromic
and orthodromic activation of afferent STN projections,
(iii) simulates the synaptically generated STN LFPs and (iv)
mimics temporal variation of network beta activity within the

thalamo-cortico-basal ganglia loop. The model was first used
to validate the performance of on-off and dual-threshold DBS
amplitude closed-loop control schemes which have been tested
clinically. P and PI controllers for modulating either the DBS
amplitude or frequency were then investigated. PI controllers
were found to outperform current clinically tested closed-loop
controllers, displaying the greatest reductions in the controller
mean error and power consumed during closed-loop DBS of the
controllers examined.

Closed-Loop Control of DBS
The observed reduction in power during on-off control within
the model is consistent with clinical studies which have reported
a 50% reduction in mean power when compared with open-
loop DBS (Little et al., 2013, 2016). This corresponded to a
6.6%/µW greater suppression efficiency value than open-loop
DBS. In terms of the mean error, the dual-threshold controller
performed better than on-off control, reducing the mean error
by a further 7%, Figure 8. This resulted in a 50% reduction in
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FIGURE 5 | On-off and dual-threshold amplitude control, fixed 130 Hz frequency and 60 µs pulse duration. (A) On-off DBS amplitude controller. During simulation,
the on-off controller increases or decreases the DBS amplitude by a fixed amount at each controller call, toward its upper or lower amplitude bounds, if the beta ARV
is measured above or below the target value, the dotted red line in the beta ARV panel. (B) Dual-threshold amplitude controller. The dual-threshold controller uses a
target beta ARV range, represented by the two dotted red lines. If the beta ARV is measured above the upper target range value or below the lower target range
value the stimulation amplitude is increased or decreased, respectively, by a fixed amount toward the upper or lower bounds of the stimulation amplitude. If the beta
ARV lies in the target range the stimulation amplitude remains constant.

the mean power consumed compared to open-loop DBS which
is again in-line with the clinically reported 56.86% reduction in
energy delivered (Velisar et al., 2019). The improved performance
maintaining the target beta level, at the cost of greater power
consumption, resulted in a smaller suppression efficiency than
on-off control and was due to the dual-threshold controller’s
ability to maintain a fixed stimulation amplitude when the beta
ARV remained within its target bounds, Figure 5B. Without this,
the on-off controller results in a higher error but consumes less
power during stimulation, Figures 5, 8.

The mean error of P amplitude control was comparable to on-
off control, while its mean power consumed was comparable to
that of dual-threshold control, with an intermediate suppression
efficiency value between both on-off and dual threshold control,
Figures 6A, 8. However, to achieve this performance, the P
controller exceeded the prespecified rate limit of 0.012 A/s with
a maximum rate observed of 0.150 A/s, exceeding clinically
recommended limits to avoid side-effects. The P controller
behaved similar to on-off control without rate limiting, or “bang-
bang” control, switching between its maximum and minimum
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FIGURE 6 | P and PI amplitude control, fixed 130 Hz frequency and 60 µs pulse duration. (A) P amplitude controller. At each controller call, the stimulation
amplitude is calculated as the current measured error value scaled by the controller gain, Kp. The controller stimulation amplitude is bounded between 0 – 3 mA,
thus, negative error values correspond to turning DBS off. (B) PI amplitude controller. At each controller call, the stimulation amplitude is calculated as the
summation of an integral term, i.e., the integration of the measured errors at previous controller calls, and the current measured error value, scaled by the integral
time constant, Ti , and the proportional gain, Kp, respectively.

values when the beta ARV was above or below the target. If a rate
limiter is implemented on the P controller, it will behave similar
to the on-off controller presented in this study, where deviations
of the control variable from the target result in the amplitude
varying by the maximum tolerable rate at each controller call.
Rosa et al. (2015) and Arlotti et al. (2018) varied the stimulation
voltage linearly, or proportionally, in response to slow variations
in LFP beta-band power, rather than with respect to the error
between the instantaneous beta activity and a target as examined
here. In that study, the control signal will not fall below zero,
while the control signal in this study is negative when beta activity

is below the target. Due to the controller output bound at zero,
DBS switches off when the control signal is negative here, while
this behavior would not be observed when directly measuring
the LFP beta-band power as the control signal. This distinction
between using slow variations in beta activity or the error of the
instantaneous beta activity to a target is important to consider for
clinical implementations of P controllers as this subtlety leads to
disparate performances of the P controller.

The behavior of the P frequency controller was qualitatively
similar to its amplitude counterpart, with the P frequency
controller rapidly switching between its maximum and minimum
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FIGURE 7 | P and PI frequency control, fixed 1.5 mA amplitude and 60 µs pulse duration. (A) P frequency controller. At each controller call, the stimulation
frequency is calculated as the current measured error value scaled by the controller gain, Kp. The controller stimulation frequency is bounded between 0 – 250 Hz,
thus, negative error values correspond to turning DBS off. (B) PI frequency controller. At each controller call, the stimulation frequency is calculated as the
summation of an integral term, i.e., the integration of the measured errors at previous controller calls, and the current measured error value, scaled by the integral
time constant, Ti , and the proportional gain, Kp, respectively.

values, Figures 7A, 8. Although the P frequency controller
reduced the mean error by 72%, the mean power consumed
during stimulation was reduced by just 1% with only a 1.8%/µW
increase in suppression efficiency when compared to open-loop
DBS. The negligible change in mean power consumption was
due to periods where the controller modulated the stimulation
frequency between the minimum and maximum values of
0 Hz and 250 Hz. During these periods, the stimulation was
either switched off or delivered close to double the number
of stimulation pulses as during open-loop DBS or amplitude
modulation, where the stimulation frequency was fixed at 130 Hz.
With the stimulation amplitude fixed at 1.5 mA during frequency
control this results in the same mean power consumed as

open-loop DBS, Figure 8. The stimulation amplitude value
selected for frequency control was chosen to allow use of
the full span of stimulation frequencies, however it should be
emphasized that by simply reducing this amplitude value or the
controller’s upper frequency bound would result in the controller
consuming less power.

The PI controllers for amplitude and frequency performed
with 79% and 83% reductions in mean error, and a 68 and 75%
decrease in mean power consumed for amplitude and frequency
modulation, respectively, Figures 6B, 7B, 8. The behaviors of
both PI controllers were qualitatively similar, with the integral
term increasing the modulated stimulation parameter to a value
where it was effective at maintaining the beta ARV around
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FIGURE 8 | Summary of performance of closed-loop controllers. The normalized mean error (±std), normalized mean power consumed (±std) and suppression
efficiency (±std), averaged across ten 30 s simulations with ten independent beta modulation signals, of each closed-loop controller is presented. The mean error
and mean power consumed are normalized against the mean error and mean power consumed when DBS is off or applied in open-loop with 2.5 mA amplitude,
130 Hz frequency and 60 µs pulse duration for each cortical beta modulation signal. The PI frequency controller performed best overall with a suppression efficiency
of 12.5%/µW, reducing the mean error by 83% and the mean power consumed during stimulation by 75%.

FIGURE 9 | Effect of PI parameters on amplitude controller performance. (A) Normalized PI controller error vs. PI parameters. (B) Normalized PI controller power
consumed vs. PI parameters. (C–E) Beta ARV and DBS amplitude due to varying Ti and Kp controller parameter values.

the target level with 9.8%/µW and 12.5%/µW suppression
efficiency values for the amplitude and frequency controllers
respectively, Figures 6B, 7B. Once at this value, fluctuations
in the beta ARV resulted in proportional variation of the
stimulation parameter to maintain the beta level. The integral
term essentially overcomes the initial non-linearity between the
DBS parameter and the beta ARV, where a minimal value must
be reached before the stimulation becomes effective. This is
achieved by increasing the stimulation parameter to a region
of parameter space where its relationship with the beta ARV
is approximately linear, Figures 2C, 3A. The integral term
varies the modulated stimulation parameter based on the error
history in the system, whereas the on-off, dual-threshold and P

controllers act only on the current error of the system at each
controller call and thus have no memory of previous errors.
For the on-off and dual-threshold controllers this can result in
slow performance when the beta ARV exceeds the target and
DBS is off. When this occurs, the DBS parameter must increase
beyond the non-linear region of its parameter space before
stimulation becomes effective, which may take several controller
calls. The gain of each P controller was selected as the gain
value which minimized the mean error in a parameter sweep
over the proportional gain values. The resulting P controllers
were fast and essentially avoided the non-linear region of the
stimulation parameter space by quickly switching the stimulation
parameter between its maximum and minimum values but did
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so at a rate that may be greater than is clinically desirable,
Figures 6A, 7A.

Overall, the PI frequency controller performed best, yielding
superior suppression efficiency and the greatest reductions in
mean error and mean power consumed of the controllers
examined. Interestingly, the controller settled around a mean
stimulation frequency of 125 Hz, which is in line with
high frequency stimulation values utilized clinically. When
modulating about this point the stimulation frequency varied
between 80 – 160 Hz over the course of the simulation, with
DBS remaining effective throughout the simulation, Figure 7B.
Clinical research has observed similar behavior where a 60 Hz
DBS frequency was able to improve bradykinesia in PD
patients (Blumenfeld et al., 2016). The authors hypothesized that
140 Hz high frequency stimulation and the lower frequency
60 Hz stimulation signals effectively decoupled the cortico-
STN hyperdirect pathway during stimulation. The model
presented in this study supports this hypothesis, with cortical
desynchronization and STN firing rate suppression occurring
during effective DBS, Figures 2D,E. It is again important to
note however, that due to the non-linear relationship between
DBS parameters and network beta activity there is a threshold
stimulation amplitude value which must be reached before
DBS frequency modulation becomes effective, in the model at
approximately 1.1 mA, Figure 2C.

All closed-loop controllers tested yielded greater beta
suppression efficiency values than open-loop DBS in this study.
This metric suggests that closed-loop DBS provides better
performance than open-loop DBS for maintaining beta-band
activity in the STN LFP. However, how well this metric
corresponds to actual symptom suppression would need to be
examined further in vivo as suppression of beta-band activity
in the model may not directly relate to in vivo symptom
suppression. Another point of consideration for the controller
results presented is that although the duration of LFP beta
activity has been tested as a control variable for the on-off
controller (Tinkhauser et al., 2017a), it has not been tested for
either the dual-threshold or proportional controllers to date.
Clinical studies investigating the dual-threshold and proportional
controllers were limited to utilizing LFP beta band power as
their control variables due to delays in the neurostimulator used
during their studies (Arlotti et al., 2018; Velisar et al., 2019). This
limitation is anticipated to be overcome in the next generation
of neurostimulator devices and thus it will be feasible to utilize
the duration of LFP beta activity as a control variable in the
future (Velisar et al., 2019). With this in mind, the sampling
frequency of controllers used in this study was selected so that
fluctuations in the network beta band activity could be observed,
with the controllers attempting to target only prolonged duration
network beta activity.

PI Controller Parameters
Suitable control parameters were identified using a rule-tuning
approach which takes advantage of features of the biomarker that
can be readily estimated clinically to derive suitable PI controller
parameters, i.e., the threshold duration of pathological beta-band
activity and constraints on the rate-of-change of stimulation

parameters. When clinically tuning a PI controller for closed-
loop DBS, the presented tuning rule could be used initially to
coarsely tune the controller, before further fine-tuning is achieved
by varying the controller parameters using visual feedback of
the modulated stimulation parameter. The intention here is to
allow the clinician to further fine-tune the controller response
if necessary, for example slowly increasing Kp to increase the
speed of the controller. Identifying suitable controller parameters
could also be achieved in the model by utilizing an optimization
technique and a suitable objective function, where the objective
function captures the clinical considerations of the system. This
approach, however, would require sampling multiple points in
the parameter space which may not be practical clinically. An
alternative controller design approach is to linearize the input-
output relationship of the system using a model and subsequently
design a controller which meets the required closed-loop system
response (Santaniello et al., 2011; Liu et al., 2017a; Yang et al.,
2018; Su et al., 2019). This approach was used by Santaniello et al.
(2011), Liu et al. (2017a), and Su et al. (2019) where autoregressive
models were derived from spiking neuron models. To normalize
aberrant neural activity during parkinsonian tremor, Santaniello
et al. (2011) designed a minimum variance controller, while
Liu et al. (2017a) implemented a generalized predictive control
algorithm. In contrast, Su et al. (2019) optimized the parameters
of a discrete PI controller to track a dynamic target of beta-
band power which may be associated with fluctuations of the
oscillatory activity during voluntary movement. Haddock et al.
(2017) illustrated the potential of the approach by deriving an
autoregressive model of the relationship between DBS amplitude
and parkinsonian tremor from patient data, using the identified
model as part of a model predictive controller for parkinsonian
tremor (Haddock et al., 2017). The benefit of the autoregressive
model approach is that derived models can be simulated
in real-time and thus facilitate the use of advanced control
techniques which require use of an internal model (Francis
and Wonham, 1976). The disadvantage, however, is that it does
not provide insight into the underlying physiological behavior
of the system or its dynamics. Another drawback is that the
identified model is valid only for the system operating region at
which it was identified. Due to the dynamic, non-linear nature
of the parkinsonian neuromuscular system, identified models
or controller parameters which were initially suitable during
controller tuning may become unsuitable or provide suboptimal
performance during different tasks, times throughout the day
or as the disease progresses. Advanced adaptive techniques
which automatically update autoregressive model coefficients or
controller gains may be required to overcome this limitation
(Cameron and Seborg, 1984; Santaniello et al., 2011; Chaillet
et al., 2017). Nevertheless, the PI parameter rule-tuning approach
presented in this study provides improved performance over
currently tested closed-loop controllers, is simple to implement
in a clinical setting and adheres to clinical considerations.

Model Considerations
Previous modeling studies of closed-loop DBS have investigated
LFP derived measures of network beta-band activity
(Daneshzand et al., 2018; Popovych and Tass, 2019). However,
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only a small number of models have simulated the coupled
DBS electric field and network model during stimulation
(Santaniello et al., 2011; Grant and Lowery, 2013). In the
absence of a description of the electric field in the surrounding
tissue during DBS, modeling studies are limited to simulating
frequency modulation where the DBS waveform is injected as
an intracellular current (Kang and Lowery, 2013; Holt et al.,
2016; Popovych and Tass, 2019; Su et al., 2019). To develop
clinically relevant closed-loop algorithms requires a model which
captures modulation of the targeted networks behavior due to
variations in both stimulation amplitude and frequency. The
thalamocortical population model presented by Santaniello
et al. (2011) incorporates both the DBS electric field and LFP
simulation for investigating aberrant neural activity during
parkinsonian tremor, but does not incorporate synaptic coupling
between the neuron population, injecting a suprathreshold
intracellular stimulus to neurons to drive spiking activity. As
this modeling approach does not capture network interactions
due to DBS it would, therefore, be unsuitable for modeling
the full cortico-basal ganglia loop included here. Previous
modeling studies of the cortico-basal ganglia during DBS
have investigated network and DBS effects separately. Kang and
Lowery (2013) and Kumaravelu et al. (2016) modeled the cortico-
basal ganglia using networks of single compartment neuron
models, however, these models did not include simulation of
extracellular DBS, the LFP or antidromic stimulation of afferent
STN inputs. Grant and Lowery (2013) simulated extracellular
DBS and the STN LFP, where the cortico-basal ganglia was
modeled using a single compartment neuron model for the
STN population and neural mass type models for the remaining
network neuron populations. The model thus, does not capture
complex network interactions such as antidromic activation of
afferent STN inputs during stimulation. Antidromic activation
of cortical afferent STN inputs and extracellular DBS was
captured in a network model in Kang and Lowery (2014),
however, the model did not capture antidromic activation of
GPe neurons during stimulation or simulation of the LFP.
The model presented in this study builds on these previous
modeling studies by incorporating extracellular DBS, STN
LFP simulation, antidromic and orthodromic DBS effects and
temporal variation of beta-band activity in a network model of
the cortico-basal ganglia.

The controllers examined in this study represent the current
landscape of clinically tested closed-loop DBS algorithms. The
PI controller investigated is a natural extension of current state
of the art closed-loop DBS research, and is the most commonly
used control algorithm in industrial applications due to its robust
performance in a wide range of operating conditions and its
functional simplicity. PID-type controllers have been investigated
in previous modeling studies of closed-loop DBS for PD (Gorzelic
et al., 2013; Su et al., 2019). However, these studies utilized
control variables which are not readily accessible during clinical
studies, where Gorzelic et al. (2013) investigated using both
thalamic reliability and GPi synaptic conductance as control
variables and Su et al. (2019) used the beta-band power of GPi
neuron spike times. Thus, direct comparisons between these
studies and clinical research is difficult. The model presented here

utilizes an LFP derived measure of network beta-band oscillatory
activity analogous to that employed during clinical closed-loop
DBS research, and thus facilitates a direct comparison between
the performance of controllers tested in the model and in
clinical research.

The purpose of the model is to provide an in silico testbed
for developing and testing closed-loop DBS strategies which
can be directly related to clinical closed-loop DBS research.
Although this study focused on using an LFP derived measure
of network beta-band activity for closed-loop DBS there is
extensive research in identifying alternative biomarkers for PD
symptoms and stimulation side-effects, such as entropy (Dorval
et al., 2010; Dorval and Grill, 2014; Anderson et al., 2015;
Syrkin-Nikolau et al., 2017; Fleming and Lowery, 2019), phase-
amplitude coupling (de Hemptinne et al., 2013; De Hemptinne
et al., 2015), coherence (Al-Fatly, 2019) and gamma-band activity
(Swann et al., 2016, 2018) based measures. A restriction of
the presented model is that it does not capture the neural
mechanisms which lead to parkinsonian tremor, a hallmark
symptom of PD, and is thus unsuited for investigating tremor-
based closed-loop DBS (Hirschmann et al., 2017; Helmich,
2018). However, with this in mind, it is anticipated that future
controllers which employ alternative methods or advanced
techniques, such as low frequency stimulation (Fasano and
Lozano, 2014; Blumenfeld et al., 2016) or phase-based (Tass,
2003; Tass et al., 2012; Holt et al., 2016, 2019), linear-
delayed feedback (Popovych and Tass, 2019) and optogenetic
stimulation methods (Detorakis et al., 2015), may still be
applicable when alternative biomarkers are implemented as
control variables.

Limitations
While the model captures several key features of the parkinsonian
cortico-basal ganglia during DBS, it remains an approximation
of the true system. Due to the limited access to the cortico-basal
ganglia structures and data available in literature, the individual
neuron models and their overall network behavior was based on
parameters and observations recorded from both parkinsonian
animal models and human patients from separate studies.
Antidromic activation of cortical neurons and GPe neuron
entrainment during DBS were fitted to data from experiments
using parkinsonian rat models (Li et al., 2012; McConnell
et al., 2012). Indirect evidence of antidromic activation and
desynchronization of cortical neurons has also been observed
in PD patients during STN DBS (Kuriakose et al., 2010; Weiss
et al., 2015). The STN firing rate suppression and LFP beta-band
power reduction during DBS were based observations in patient
data (Davidson et al., 2016; Milosevic et al., 2018. In the model,
antidromic propagation of cortical neurons was simulated and
an equivalent proportion of GPe neurons were antidromically
activated by the injection of an intracellular current. In practice,
the level of antidromic activation of cortical and GPe neurons
may differ, potentially altering DBS efficacy. In contrast to the
model presented, Kumaravelu et al. (2016) used experimental
data from 6-OHDA lesioned rats to parameterize their network
model. In the presented model, synaptic coupling was tuned,
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and the cortical population was biased to induce increased beta-
band oscillatory activity within the network, with striatal input
to the basal ganglia network being simplified as a population
of poisson-distributed spike trains. Omission of a physiological
model of the indirect pathway, and thus striatal input to the
basal ganglia network, is a limitation of the presented model
with research suggesting that the striatum may also play a key
role in the development of pathological oscillations in the basal
ganglia network during PD (McCarthy et al., 2011; Feingold
et al., 2015; Corbit et al., 2016). As the primary focus of
this study, however, was not the role of the striatum in the
generation of network pathological oscillations, its contribution
to the network was simplified. A recent study investigating
the role of exogenous cortical and striatal beta inputs to the
STN-GPe network using detailed multi-compartment models
of STN and GPe showed that resonant beta-band oscillatory
activity within the STN-GPe loop becomes phase-locked to
exogenous cortical beta inputs and that this behavior can be
further promoted by striatal input to the loop with the correct
phase (Koelman and Lowery, 2019). The network presented
here captures the exogenous cortical patterning of the STN-GPe
loop but omits possible further amplification of the beta-band
oscillatory activity due to the striatum. This behavior could
be incorporated into the model through the inclusion of the
indirect pathway.

Two consequences of the simplification of the cortical
and cortico-striatal networks, and the inability to accurately
capture all of the complex network interactions which lead
to elevated beta-band activity in PD is that the oscillatory
activity does not fully represent the activity observed in clinical
studies, with this activity also reemerging relatively quickly
post-stimulation in the model. In clinical studies, elevated STN
beta-band power is observed as a broad peak which shows long-
lasting attenuation post-stimulation, with attenuation dependent
on the stimulation duration (Temperli et al., 2003; Bronte-
Stewart et al., 2009). This behavior is not captured by the
model, where beta-band activity appears as a narrow-band
peak in the LFP power spectrum, Figure 2H, which reemerges
quickly when DBS is off or ineffective. Finally, the electrode
was simulated as a point source electrode within an ideal
homogeneous resistive volume conducting medium of infinite
extent. Computational studies have previously utilized the
quasi-static approximation and demonstrated the point source
approximation to be a valid prediction of the activation of
a population of neurons during DBS when calculating the
number and spatial distribution of neurons activated around
the electrode (Zhang and Grill, 2010). However, in reality, the
electrode geometry, its encapsulation tissue, and the capacitive
and dispersive electrical properties of the tissue can have a
substantial effect on the electric field distribution, on the DBS
waveform shape in the surrounding tissue and the activation
thresholds of target neurons during DBS (McIntyre et al., 2004;
Grant and Lowery, 2010). These limitations may be mitigated
by incorporating more realistic geometrical, anatomical and
electrical properties of the tissues through coupling of the
model to anatomically realistic finite element models. In keeping
with studies regarding the spatial reach of the LFP, it was

assumed that the LFP signal was dominated by synaptic currents
from neurons in a plane in the vicinity of the recording
electrode (Lindén et al., 2011), however, in reality these synaptic
currents would be distributed as a three-dimensional cloud
around the recording electrode (Lempka and McIntyre, 2013),
with a contribution from more distal neurons outside of the
STN network also being possible. The spatial distribution of
synapses within the dendritic structures and neuron morphology
can further influence the LFP, however, these were not
considered here.

CONCLUSION

A computational model of closed-loop control of DBS for PD
is presented that simulates (i) the extracellular DBS electric
field, (ii) antidromic and orthodromic activation of STN afferent
fibers, (iii) the LFP detected at non-stimulating contacts on
the DBS electrode and (iv) temporal variation of beta-band
activity within the cortico-basal ganglia network. The model
captures experimentally reported network behavior during open-
loop DBS and provides an in silico testbed for developing
novel, clinically relevant closed-loop control strategies for
updating either the amplitude or frequency of DBS. Clinically
tested on-off and dual-threshold amplitude controllers were
examined and exhibited reductions in power consumption
comparable with their clinically reported performance. A new
rule-tuning method for selecting PI controller parameters to
target prolonged, pathological duration beta-band oscillatory
activity whilst adhering to clinical constraints was developed.
The resulting performance of both amplitude and frequency PI
controllers outperformed the current clinically investigated on-
off and dual-threshold closed-loop amplitude control strategies
in terms of both power consumption and their ability
to maintain the LFP derived measure of network beta-
band activity at a target value. As the available technology
progresses toward a new generation of closed-loop or adaptive
stimulators, it is likely that testing novel control algorithms
in computational models, such as those presented here,
will become a valuable first step prior to clinical testing
in patients.
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