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Ensemble classifiers have been proven to result in better classification accuracy than
that of a single strong learner in many machine learning studies. Although many studies
on electroencephalography-brain-computer interface (BCI) used ensemble classifiers
to enhance the BCI performance, ensemble classifiers have hardly been employed
for near-infrared spectroscopy (NIRS)-BCIs. In addition, since there has not been any
systematic and comparative study, the efficacy of ensemble classifiers for NIRS-BCIs
remains unknown. In this study, four NIRS-BCI datasets were employed to evaluate
the efficacy of linear discriminant analysis ensemble classifiers based on the bootstrap
aggregating. From the analysis results, significant (or marginally significant) increases
in the bitrate as well as the classification accuracy were found for all four NIRS-BCI
datasets employed in this study. Moreover, significant bitrate improvements were found
in two of the four datasets.

Keywords: brain-computer interface, bootstrap aggregating, ensemble learning, near-infrared spectroscopy,
pattern classification

INTRODUCTION

In general, brain-computer interface (BCI) systems (1) measure the brain signals in response to
specific stimuli or mental tasks, (2) extract representative features from the acquired brain signals,
(3) translate them by applying pattern recognition algorithms, and (4) control external devices or
communicate with environments (Wolpaw et al., 2002; Schalk et al., 2004). In some cases, feedbacks
are given to BCI users to improve the BCI performance (Lebedev and Nicolelis, 2006; Hwang
et al., 2009; Kanoh et al., 2009; Blankertz et al., 2010). Among the aforementioned procedures,
feature selection and pattern recognition are the most important parts that determine the overall
performance of a BCI system (Nicolas-Alonso and Gomez-Gil, 2012). Particularly in the case
of near-infrared spectroscopy (NIRS)-BCI, many different kinds of features have been tested to
validate their suitability to various NIRS-BCI systems with different experimental paradigms and
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environments (Hwang et al., 2014; Naseer et al., 2016). It
was reported that the temporal mean, maximum, and slope
yielded reasonable BCI performance (Naseer and Hong, 2015);
however, there is no consensus on the most suitable features that
can be generally applied to different NIRS-BCIs. In addition,
various kinds of pattern recognition methods have also been
proposed and tested with the aim to improve the performance
of NIRS-BCI systems. Among them, linear discriminant analysis
(LDA) classifier has been most widely used for NIRS-BCIs
because of its excellent performance reflected by both a fast
learning rate and a good classification performance (Holper and
Wolf, 2011; Power et al., 2011, 2012a,b; Schudlo and Chau,
2014; Hong et al., 2015; Shin et al., 2016, 2018a; Hong and
Khan, 2017). In applying the classifier, dimension reduction
or feature selection methods are generally employed because
the number of NIRS feature vectors is usually larger than
that of training datasets and this might degrade the BCI
performance due to the poor empirical sample covariance
(Hwang et al., 2016; Hong et al., 2018; Sereshkeh et al., 2019).
Regularization with a shrinkage parameter can be another
option to alleviate the adverse effect of the large dimensionality
(Fazli et al., 2012).

Ensemble learning can be considered a good substitute
for further improving the overall BCI performance. Ensemble
classifiers are grounded in the theory that a combination of
multiple weak learners that barely exceed the chance level is
capable of achieving better classification accuracy than that of a
single strong leaner. It has been reported that ensemble classifiers
can improve the performance of electroencephalography-BCIs.
Sun et al. (2007); Ahangi et al. (2013), and Gao et al. (2016)
employed various types of ensemble learning methods, e.g.,
bagging, boosting, and random subspace, etc., to evaluate
the feasibility of ensemble learning for motor imagery EEG
data. Fatourechi et al. (2008) stacked support vector machine
(SVM) classifiers to classify finger flexion movement with a
low false positive rate. Rakotomarnonjy and Guigue (2008)
employed a majority voting system based on SVM for P300
signals by an oddball paradigm. Hassan and Bhuiyan (2017)
demonstrated the automated identification of sleep stages by
means of boosting methods, and Hosseini et al. (2018) exploited
random subspace ensemble and majority voting for seizure
detection. In the case of NIRS-BCIs, there have been a few studies
that employed ensemble classifiers (Schudlo and Chau, 2015;
Gurel et al., 2019), but they did not compare the performance
of ensemble classifiers with that of conventional classifiers.
To the best of our knowledge, no study has systematically
investigated the performance improvement of NIRS-BCIs by
the employment of ensemble classifiers. Specifically, because
regularized linear discriminant of analysis (RLDA) alleviating
the degradation of classification accuracy is generally known
to be appropriate for the high dimensional NIRS dataset,
we employed RLDA as a type of weak learner in the
ensemble method. In the present study, for the first time,
we explore whether the performance of NIRS-BCIs can be
enhanced by using an ensemble of weak learners rather
than a single strong learner through a systematic comparison
of BCI performances with multiple NIRS datasets recorded

with different experimental paradigms and/or under different
recording environments.

MATERIALS AND METHODS

We employed four different NIRS datasets recorded by the first
author of this paper. Datasets denoted by “dataset I” and “dataset
II” can be freely downloaded at: http://doc.ml.tu-berlin.de/hBCI/
(Shin et al., 2017b) and “dataset III” can be downloaded at:
http://dx.doi.org/10.14279/depositonce-5830 (Shin et al., 2018c).
“Dataset IV” is a NIRS dataset used in the study of Shin et al.
(2018b). All data processing was performed using MATLAB
R2018b (Mathworks, MA, United States) and the BBCI toolbox1

(Blankertz et al., 2016). A brief summary of the datasets I–IV is
given in Table 1.

Datasets I and II
Data Recording
Near-infrared spectroscopy data were collected using NIRScout
(NIRx GmbH, Berlin, Germany) at a sampling rate of 12.5 Hz.
Adjacent source-detector distance was fixed to 30 mm. The
locations of nine physical NIRS channels over the prefrontal area
are depicted in Figure 1A.

Two Motor Imagery Tasks (Dataset I)
Twenty-nine participants were seated and performed two
designated motor imagery (MI) tasks (kinesthetic motor imagery
of grasping with either the left or the right hand at a rate of
approximately 1 Hz) during the task period (0–10 s), 30 times
each, in a randomized order.

Mental Arithmetic vs. Idle State (Dataset II)
The same participants who participated in the previously
described MI experiment (dataset I) were asked to perform a
mental arithmetic (MA) task. Starting with an initial problem
of subtraction of a single digit between 6 and 9 from a three-
digit number (e.g., 219 – 7), they continuously subtracted
the given single-digit number from the result of the former

1https://github.com/bbci/bbci_public

TABLE 1 | Summary of the four datasets employed in this study.

Datasets Duration of
task period (s)

Post-task
break (s)

The number
of trials per

task

Types of
mental tasks

Dataset I 10 15–17 30 MI tasks (left-
and right-hand
grasping)

Dataset II 10 15–17 30 MA and IS

Dataset III 10 13–15 30 WG and IS

Dataset IV 10 16–18 30 MI (right-hand
finger tapping),
MA, and IS

MI, MA, WG, and IS represent mental imagery, mental arithmetic, word generation,
and idle state, respectively.
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FIGURE 1 | Location of the NIRS channels for (A) datasets I-II, (B) dataset III,
and (C) dataset IV. These figures were amended from Shin et al. (2017b;
2018b; 2018c). Blue and red crosses are the specific positions of source and
detector, respectively. The specific source and detector positions for dataset II
are not available.

calculation (e.g., 219 – 7 = 212, 212 – 7 = 205, 205 –
7 = 198,. . .) as fast as they could during the task period (0–
10 s). For the idle state (IS), the participants relaxed and
tried not to come up with any distractive thoughts during the

task period (0–10 s). The MA and IS tasks were randomly
repeated 30 times each.

Dataset III
Data Recording
Near-infrared spectroscopy data were acquired with NIRScout
at a sampling rate of 10.4 Hz. Sixteen sources and 16 detectors
were placed over the frontal area (around AFz), and sixteen
NIRS channels with a source-detector separation of 30 mm
were created. The NIRS channel locations are illustrated
in Figure 1B.

Word Generation vs. Idle State
For the word generation (WG) task, twenty-six participants
were seated and kept coming up with words beginning with
a randomly given syllable as quickly as they could during the
given task period (0–10 s). Repetition of the same word was
not allowed for each trial to avoid potential adaptation. For
the IS, the participants took a rest and tried not to think
about anything for 10 s. The WG and IS tasks were randomly
performed 30 times each.

Dataset IV
Data Recording
Near-infrared spectroscopy data were sampled at a sampling
rate of 13.3 Hz using a portable NIRS acquisition system
(LIGHTNIRS, Shimadzu Corp., Kyoto, Japan). Six sources and
six detectors over the prefrontal area created 16 NIRS channels
with a 30-mm source-detector separation. The locations of the 16
physical NIRS channels are illustrated in Figure 1C.

Mental Arithmetic vs. Motor Imagery vs. Idle State
For the MI task, seventeen participants were seated and imagined
complex finger tapping at a rate of approximately 2 Hz for 10 s.
The participants performed the MA task in the same way as with
the dataset II, and for the IS, they relaxed without performing any
specific mental task. The MI, MA, and IS tasks were randomly
performed 30 times each.

Behavioral Data
Available behavioral data are stored in each repository for
the datasets I–IV.

Preprocessing
In the original articles (Shin et al., 2017b, 2018b,c), the four
datasets were preprocessed in different manners. For the sake
of fair performance comparison, all datasets were preprocessed
in the same manner. The hemodynamic changes in reduced
and oxidized hemoglobin (1HbR and 1HbO) were converted
from the raw light intensity changes using the modified Beer–
Lambert law, and were then band-pass filtered using a zero-phase
Butterworth filter with a passband of 0.01–0.09 Hz to eliminate
physiological noises (Matthews et al., 2008). Any trials were not
excluded because the recorded data were minimally affected by
motion artifacts.
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Classification
The classification procedures were performed using the data from
each of the participants separately.

Features
The baseline of the filtered data was corrected by subtracting
the temporal mean of the data within [-1 0] s interval. The
baseline-corrected data were then segmented to epochs ranging
from 0 to 15 s, which contained part of the post-task break
period, considering the hemodynamic delay in the order of
several seconds (approximately 6–8 s) (Cui et al., 2010). Feature
vectors consisted of the temporal mean values of 1HbR and
1HbO within two windows of [5 10] and [10 15] s. The number
of features was [the number of NIRS channels]× [the number of
NIRS chromophores (2)]× [the number of windows (2)].

Single Strong Learner
Three types of classifiers were considered, namely SVM, LDA,
and RLDA. For SVM, the linear kernel was employed and
the feature vectors were standardized by subtracting mean and
dividing by standard deviation. Other parameters were default
options given by MATLAB. For LDA, typical LDA was used.
Normally, typical LDA classifier find the kthclass which maximize
log πk −

1
2µT

k 6−1µk + xT6−1µk, where πk, µk, and 6 are the a
prior probability and the mean of samples in the kthclass, and the
covariance matrix common to all classes, respectively. However,
In the case of NIRS feature vectors, typical LDA is not likely to
be adequate because of the degradation of classification accuracy
due to the high-dimensionality, in other words, the number of
features is greater than the number of samples. That is a reason
why the RLDA classifier with a shrinkage parameter (γ) was
employed to alleviate the adverse effects of large dimensionality
on the BCI performance by replacing the empirical covariance
matrix 6 with (1− γ)6 + γI, where I is the identity matrix.
The optimal γ between 0 and 1 was determined individually
based on the Ledoit and Wolf (2004), Schäfer and Strimmer
(2005), Blankertz et al. (2011), Lemm et al. (2011). For the
ternary classification, linear SVM and LDA with “one-versus-
one” error-correcting output model were used, and the multi-
class RLDA were applied.

Ensemble of Weak Learners
The bootstrap aggregating (Bagging) algorithm subsamplesNlearn
training sets of the same size with replacement (fraction of the
training set to resample for every weak learner: 100% in this
study), then builds Nlearn classification models for each training
set using a weak learner h(·). The final aggregate classification
model based on a majority voting H(x) is given by:

H (x) = sign

Nlearn∑
n=1

sign
(
hn (x)

) (1)

To verify the efficacy of LDA classifier, RLDA classifier was used
as a weak learner and the value of λ was set to 0.1 as a rule of
thumb. Stratified random sampling was applied to split the whole
dataset into ten subsets, and a 10 × 10-fold cross-validation was
performed for both the single strong learner and the ensemble

of weak learners, resulting in the “strong classification accuracy
(accstrong)” and the “Bagging classification accuracy (accbag),”
respectively.

Bitrate
Information transfer rate (ITR) is one of the most popular metrics
to evaluate the performance of communication systems. The ITR
per minute, called bitrate, is utilized to assess the performance of
BCI systems, as follows (Dornhege et al., 2007):

bitrate =
60
T
·

[
log2 (n)+ acc · log2 (acc)+

(1− acc) · log2

(
1− acc
n− 1

)]
(bits/min), (2)

where T, n, and acc are a single trial length (usually the length
of the task period), the number of different types of mental tasks,
and classification accuracy, respectively.

Statistical Test
Normality of data distribution was tested with Anderson–Darling
test, and according to the test decision (p < 0.05), two-tailed
paired t-test was performed to test the hypothesis that the average
of accbag and accstrong are different. The p-values were corrected
by false positive rate (Benjamini and Yekutieli, 2001) unless
otherwise noted.

RESULTS

Classification Accuracy
Figure 2 shows the grand average of the classification
accuracy as a function of Nlearn. As the Nlearn increased, the
classification accuracies improved irrespective of the type of
NIRS datasets. Overall, the rate of increment rapidly decreased
where Nlearn > 10, and then the classification accuracy was
almost converged where Nlearn = 50. Comparisons of individual
accstrongand accbag are presented in Figures 3, 4. In Figure 3,
magenta dashed lines indicate the classification accuracy value
(70%) generally known as a threshold for effective BCI control
(Vidaurre and Blankertz, 2010). Black dashed lines denote
the theoretical chance levels based on binomial distribution
(p < 0.05) (Combrisson and Jerbi, 2015). For Figures 3, 4,
the values of Nlearn to compute accbag are individually different
and the optimal values of Nlearn were chosen in the range of
10 ≤ Nlearn ≤ 50. For the dataset I, the grand average of accbag
(62.6 ± 9.6%) was significantly higher than the averages of all
three accstrong (i.e., accSVM (59.6 ± 9.5%), accLDA (57.9 ± 9.5%),
and accRLDA (59.1 ± 11.6%). For the dataset II, apart from the
accRLDA (86.7± 8.6%), the grand average of accbag (88.5± 7.7%)
was significantly higher than others. The grand average of accbag
(74.8 ± 11.8%) for the dataset III was not significantly higher
apart from the grand average of accRLDA (71.2 ± 12.4%) but the
others. The bagging algorithm yielded the significant difference
of ternary classification accuracy (71.2 ± 12.4%) compared to
the other strong learners. The individual classification accuracies
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FIGURE 2 | Grand average of accbag as a function of Nlearn for dataset I
(cyan), dataset II (magenta), dataset III (blue), and dataset IV (black). The
shaded area represents the standard error of the mean.

are provided in digits in the Supplementary Information. In
Figure 4, symbols above the dashed diagonal line represent that
the Bagging algorithm is more advantageous to improve the
individual classification accuracy (i.e., accbag > accstrong), while
those below the diagonal line represent that accbag < accstrong.
It was revealed that accbag exceeded significantly accstrong in
nine cases out of 12 comparisons (p < 0.05). For the ternary
classification (dataset IV), the improvement of bitrate was
particularly significant in all cases.

Bitrate
Figure 5 shows comparisons of individual bitrates (bits/min),
where the symbols above the dashed diagonal line represent
that the Bagging algorithm resulted in higher bitrates than the
single strong learner, and vice versa. In the case of the dataset I,
significant (or marginally significant) bitrate improvements were
observed and it was observed in over 70% of individual results
in all three cases. The bagging highly significantly improved
bitrates when it comes to the comparisons versus SVM or
LDA (corrected-p < 0.001). For the dataset III, The bagging
was significantly superior to RLDA when it came to bitrates
(corrected-p < 0.001) unlikely the rest two cases. Note that
the bagging always outperformed typical LDA in the ternary
system (dataset IV).

DISCUSSION

Summary
In this study, we explored, for the first time, whether the
performance of binary and ternary NIRS-BCI systems can be
improved by using ensemble classifiers. We created ensembles of
weak learners based on the Bagging algorithm. Four NIRS-BCI
datasets recorded with different experimental paradigms were
used for the quantitative performance comparisons between the

Bagging algorithm and the conventional single stronger learner
approach. Our results demonstrated that the Bagging algorithm
significantly (or marginally significantly) outperformed the single
strong learner in terms of classification accuracy and bitrate in all
the cases of datasets.

Necessity of Using an Appropriate
Ensemble Classifier
To create a better ensemble classifier, it is important to select an
appropriate ensemble aggregation method, that is, a type of weak
learner, and to determine the optimal hyperparameters, such as
the number of ensemble learning cycles (Nlearn in this study).
For the optimization of the hyperparameters, various approaches
can be employed, such as a grid search, random search
(Bergstra and Bengio, 2012), and the Bayesian optimization
(Mockus, 2012); however, since the optimized hyperparameters
are generally dependent on the test set employed in the
optimization, it is practically difficult to derive universally
optimized hyperparameters. This implies that simply using
ensemble classifiers does not always guarantee an enhanced
performance in NIRS-BCIs and that a customized ensemble
classifier appropriate for the given datasets needs to be employed.
If the aggregation method and hyperparameters are not properly
chosen or determined based on subjective assumptions, desired
results might hardly be obtained. For example, when a binary
decision tree was arbitrarily designated as a weak learner in
this study, the classification accuracy was not enhanced at all
compared to accstrong. In addition, as shown in Figure 2, small
values of Nlearn resulted in low accbag, even lower than accstrong
because the small size of ensembles was not able to be trained
sufficiently with various sample sets, causing to deteriorate
classification accuracy. On the other hand, the bagging ensemble
containing enough weak learners reduced effectively variance
of estimates, which is consistent with the bagging ensemble
theoretical background (Mayr et al., 2014). As mentioned above,
the γ value for a weak learner was chosen as a rule of thumb.
By changing the γ value from 0.001 to 0.5, in addition, we
assessed whether the improvement of classification accuracy was
possible. As a result, γ = 0.1 yielded significant difference
in classification accuracies against Nlearn (Bonferroni corrected-
p < 0.001, not shown in the text) except the dataset I. This
fact underpins the importance of proper parameter selection
regarding ensemble learning methods as well. In this study, we
could successfully achieve an enhanced BCI performance by
using RLDA classifier with appropriate hyperparameters (10 ≤
Nlearn ≤ 50 and γ = 0.1).

Limitation: Bitrate and Real Time
Analysis
We improved the bitrate by successfully improving the
classification accuracy in the present study. However, it is very
difficult to reduce the trial length due to the inherent limitations
of fNIRS-BCIs, such as slow response time due to hemodynamic
delay. Recently, steady-state visually evoked potential (SSVEP)-
BCI has shown the average performance of 701 bit/min (Nagel
and Spüler, 2019). Even though many efforts have been devoted
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FIGURE 3 | Comparisons of individual accstrong (blue) and accbag (red) for (A) dataset I, (B) dataset II, (C) dataset III, and (D) dataset IV. The error-bar indicates the
standard deviation. The magenta dashed line represents the effective BCI threshold level (70.0%) indicating (Vidaurre and Blankertz, 2010). AVG represents the
average of the classification accuracies across all participants. ∗Corrected-p < 0.05, ∗∗corrected-p < 0.01, and ∗∗∗corrected-p < 0.001 (false discovery rate
correction).
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FIGURE 4 | Scatter plots comparing individual classification accuracies for (A) dataset I, (B) dataset II, (C) dataset III, and (D) dataset IV. The x- and y-axes
correspond to accstrong and accbag, respectively. Gray dashed lines are points where accstrong = accbag. The corrected-p-values represent the significance of
improvement of the classification accuracy by the bagging method. Pentagram, square, and diamond symbols are for SVM, LDA, and RLDA, respectively. Symbol
color is in accordance with the bar color shown in Figure 3.

to improving the bitrate of fNIRS-BCIs (Cui et al., 2010;
Zafar and Hong, 2017; Hong and Zafar, 2018), it is difficult to
bridge the performance gap between fNIRS-BCIs and EEG-BCIs.
However, for such SSVEP-BCI which is a type of exogenous
BCIs, the need for an external stimulus causing user fatigue easily
could be problematic.

This study dealt with the efficacy of the ensemble learning
methods using the previously released open-access NIRS-BCI
datasets. Since the experimental environment and analysis
techniques for the implementation of real-time NIRS-BCIs are
completely different from those for the implementation of offline

NIRS-BCIs, it does not make sense to verify the feasibility of
ensemble learning for online NIRS-BCIs with the offline NIRS-
BCI datasets. Therefore, the efficacy of ensemble learning for
online NIRS-BCIs should be validated in the future studies.

Efforts to Improve the Performance of
NIRS-BCIs: Future Perspective
There have been many efforts to improve the overall performance
of NIRS-BCIs. Recently, off-the-shelf NIRS systems adopting
novel designs and form factors have been introduced to
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FIGURE 5 | Scatter plots comparing individual bitrates for (A) dataset I, (B) dataset II, (C) dataset III, and (D) dataset IV. The x- and y-axes correspond to
bitratestrong and bitratebag, respectively. Gray dashed lines are points where bitratestrong = bitratebag. The corrected-p-values represent the significance of
improvement of the bitrate by the bagging method. Pentagram, square, and diamond symbols are for SVM, LDA, and RLDA, respectively. Symbol color is in
accordance with the bar color shown in Figure 3.

the market and their usefulness in NIRS-BCIs has been
verified (Shin et al., 2017a; Kim et al., 2018; Kwon et al.,
2018; Lancia et al., 2018). However, most of the new form
factors adopted by the recent NIRS systems do not possess
general applicability because they are designed to record
hemodynamic changes from the prefrontal area only. In
addition, artificial intelligence methods based on deep
learning have demonstrated their potential in enhancing
the performance of BCI systems (Cecotti and Graser, 2011;
Chiarelli et al., 2018; Lawhern et al., 2018; Nicholas et al.,
2018; Sakhavi et al., 2018). Even though some studies have
reported the superiority of the deep learning-based approach

compared to the conventional machine learning methods
(Trakoolwilaiwan et al., 2018), there still exist controversies
regarding the employment of these opinions (Hennrich et al.,
2015). Since deep learning techniques generally depend on
human factors, such as how well the deep learning model
structure is designed, objective and thorough investigations
of deep learning models that can enhance the performance
of NIRS-BCIs are necessary. Conversely, some recent studies
showed the potential of the incorporated use of ensemble
learning concepts with deep learning approaches (Xiao
et al., 2018). The development of a novel ensemble classifier
incorporated with deep learning techniques and its application
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to NIRS-BCIs would be a promising topic, which we would like
to pursue in future studies.

CONCLUSION

In this study, we demonstrated the effect of performance
enhancement of NIRS-BCIs by the employment of a proper
ensemble classifier, the RLDA ensemble classifier is based on
the Bagging algorithm in this study, which has never been
investigated before. As a result, the ensemble learning method
employed was beneficial to improve the classification accuracies
of all four datasets considered in this study. In our future studies,
the ensemble classifier introduced in this study would be applied
to new NIRS-BCI datasets to confirm its general availability, and
new types of ensemble classifiers that can further enhance the
performance of NIRS-BCI would also be tested.
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