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Alzheimer’s disease (AD), which most commonly occurs in the elder, is a chronic
neurodegenerative disease with no agreed drugs or treatment protocols at present.
Amnestic mild cognitive impairment (aMCI), earlier than AD onset and later than
subjective cognitive decline (SCD) onset, has a serious probability of converting into
AD. The SCD, which can last for decades, subjectively complains of decline impairment
in memory. Distinct altered patterns of default mode network (DMN) subnetworks
connected to the whole brain are perceived as prominent hallmarks of the early stages
of AD. Nevertheless, the aberrant phase position connectivity (PPC) connected to the
whole brain in DMN subnetworks remains unknown. Here, we hypothesized that there
exist distinct variations of PPC in DMN subnetworks connected to the whole brain for
patients with SCD and aMCI, which might be acted as discriminatory neuroimaging
biomarkers. We recruited 27 healthy controls (HC), 20 SCD and 28 aMCI subjects,
respectively, to explore aberrant patterns of PPC in DMN subnetworks connected to
the whole brain. In anterior DMN (aDMN), SCD group exhibited aberrant PPC in the
regions of right superior cerebellum lobule (SCL), right superior frontal gyrus of medial
part (SFGMP), and left fusiform gyrus (FG) in comparison of HC group, by contrast, no
prominent difference was found in aMCI group. It is important to note that aMCI group
showed increased PPC in the right SFGMP in comparison with SCD group. For posterior
DMN (pDMN), SCD group showed decreased PPC in the left superior parietal lobule
(SPL) and right superior frontal gyrus (SFG) compared to HC group. It is noteworthy
that aMCI group showed decreased PPC in the left middle frontal gyrus of orbital part
(MFGOP) and right SFG compared to HC group, yet increased PPC was found in the left
superior temporal gyrus of temporal pole (STGTP). Additionally, aMCI group exhibited
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decreased PPC in the left MFGOP compared to SCD group. Collectively, our results
have shown that the aberrant regions of PPC observed in DMN are related to cognitive
function, and it might also be served as impressible neuroimaging biomarkers for timely
intervention before AD occurs.

Keywords: subjective cognitive decline, amnestic mild cognitive impairment, default mode network, phase
position connectivity, neuroimaging biomarkers

INTRODUCTION

Alzheimer’s disease (AD), which occurs more commonly in
the elder, is a chronic neurodegenerative disease of impaired
cognitive and memory (Ren et al., 2019; Wessels et al., 2019).
Nevertheless, there are no agreed drugs or treatment protocols for
patients with AD. Therefore, the timely detection and treatment
of the early stages of AD is an urgent and realistic issue, which can
improve symptoms of illness and alleviate the progression of the
disease (Yang et al., 2019). Amnestic mild cognitive impairment
(aMCI), as the phase close to AD, has a 10–15% probability of
converting into AD per annum (Yang et al., 2017). Subjective
cognitive decline (SCD) is referring to the fact that impaired
cognition appealed by patients is entirely subjective without
objective behavior of cognitive decline (Funaki et al., 2019), which
has the certain likelihood of the development into aMCI and AD
stages (Caillaud et al., 2019; Kim et al., 2020). Thus, from the
above, we aim to adopt aMCI and SCD phases which may evolve
into AD to explore the neural mechanism of the early stage of AD.

Resting-state functional magnetic resonance imaging (rs-
fMRI), as one of the neuroimaging techniques, can offer
a noninvasive method for the assessment of the cognitive
mechanism of AD to a certain degree (Ferenci et al., 2002).
Besides, in most studies of the early stage of AD based on rs-fMRI,
the default mode network (DMN) has been emphasized highly
for a long time (Banks et al., 2018). Anatomically, it includes
the anterior DMN (aDMN) which is primarily composed of the
ventromedial prefrontal cortex (vmPFC), and posterior DMN
(pDMN) which mainly focuses on the posterior cingulate cortex
(PCC) (Xu et al., 2016). Notice that the former mainly concerns
memory extinction and self-referential mental idealization, while
the latter is closely related to the function of episodic memory
retrieval (Yang et al., 2017, 2018). Previously, it has been reported
that amyloid deposits are detected with a great probability in the
PCC which served as a primary part of DMN (Wang et al., 2013).
The previous work has also indicated that the regions of DMN
are abnormal and may serve as prominent hallmarks in the early
stage of AD such as mild cognitive impairment (MCI) and SCD
(Huang et al., 2018a; Scherr et al., 2019; Xie et al., 2019). More
specifically, these disconnected areas that are connected from the
DMN to the whole brain are considered to be associated with
cognitive disorder (Huang et al., 2019; Zhao et al., 2020).

Hilbert transform (HT), which is characterized by rapidly
and accurately describing the instantaneous position phase, is
suitable for the analysis of non-stationary signals (Peng et al.,
2005; Qian et al., 2015). A former study has suggested that
frequency domain estimations such as the instantaneous phase
position would provide a higher correlation between two signals

than time-domain signals (Mandel and Atkins, 2016). Previous
studies based on electroencephalography (EEG) have shown that
prominently increased and decreased alpha spectral powers are
found using HT in patients with AD in comparison with healthy
controls (HC) (Babiloni et al., 2006; Fraga et al., 2013; Wang et al.,
2020). Furthermore, it has been reported that time series from
EEG was employed to obtain the altered instantaneous phase
position of DMN using the HT method, which can be served as
biomarkers (Thatcher et al., 2014; Wang et al., 2019). A previous
investigation has also revealed that the brain activation patterns
of DMN measured by HT were altered between the eye open and
the closed eye (Wang et al., 2015). Besides, the former work on
depressive disorder has indicated that the signals, extracted from
the interesting regions of rs-fMRI, can reveal the aberrant brain
regions using the HT method (Yu et al., 2018). Until now no
experiments of HT in AD based on rs-fMRI, especially in DMN
subnetworks, have been reported, which may be a new way to
explore the neural mechanism of the early stage of AD.

Accordingly, our target aims to analyze the altered patterns
of instantaneous phase position connectivity (PPC) in DMN
subnetworks (include aDMN and pDMN networks) connected to
the whole brain, and to explore whether there exists a relationship
between the cognitive function and the aberrant regions. We
hypothesized that there exist distinct variations of PPC in DMN
subnetworks for patients SCD and aMCI, which might act as
discriminatory neuroimaging biomarkers.

MATERIALS AND METHODS

Participant
Our experimental participants in this work are briefly
summarized as follows: All subjects are obtained from the
public database of the second phase of Alzheimer’s Disease
Neuroimaging Initiative (ADNI-2)1. The emphasis of ADNI-2
is to survey neurological biomarkers of cognitive disorder.
Furthermore, it was announced in 2011 which had been lasting
for 5 years to implement. To further explore the gap between
the healthy subjects and patients with MCI, consider joining the
subjects with SCD for the first time in ADNI-2. All recruited
subjects are consist of three parts, HC (n = 28), SCD (n = 23), and
aMCI (n = 29), respectively. It deserves to be further mentioned
that we have precluded three subjects as the result of undue
head movement (cumulative translation or rotation >1.5 mm
or 1.5 degrees were executed in our work, n = 3). At the same
time, we strictly control registration quality relying on artificial

1http://adni.loni.usc.edu/
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visual recognition due to the poor registration of certain subjects
(n = 2). To sum up, we recruited 75 subjects, including 27 HC, 20
SCD, and 28 aMCI participants. The detail data selection process
is shown in Figure 1.

MRI Data Acquisition
The obtained participants underwent rs-fMRI on a clinical
3.0 tesla (T) scanner (Philips Medical Systems). The echo-
plane imaging (EPI) sequence consists of 140 volumes in
which subjects were required to lie flat, close eyes, avoid
conceptual work, and not turn the head during the process of
data acquisition. Here, the specific parameters can be briefly
described as: flip angle (FA) = 80 degree, matrix = 64 × 64,
voxel size = 3.31 mm × 3.31 mm × 3.31 mm, repetition
time (TR) = 3000 ms, echo time (TE) = 30 ms, slice
thickness = 3.3 mm, respectively. T1-weighted structural MRI
were acquired from magnetization-prepared rapid gradient-echo
(MPRAGE) sequence (Chen et al., 2016), likewise, detailed
parameters are represented as: matrix = 256 × 256, layer
thickness = 1.2 mm, voxel size = 1× 1× 1.2 mm3, TR = 6.81 ms,
FA = 9 degree, TE = 3.16 ms, respectively.

Data Preprocessing
The data preprocessing with aspect to the rs-fMRI of this
work adopted Resting-State fMRI Data Analysis Toolkit
plus (RESTplus)2, which is based on MATLAB2012a3 and
Statistical Parametric Mapping (SPM12)4. Briefly steps on
data preprocessing involving as follows: We discarded the first
5 of 140 points in time for each subject as the result of the
instability of MRI signal induced by machine or human. Then,
the remaining volumes were calibrated for controlling the effects
of between slices or between subject volumes. It is stressed
that we have ruled out the data on the condition of cumulative
translation more than 1.5 mm or angular motion more than

2http://restfmri.net/forum/RESTplusV1.2
3http://www.mathworks.com/products/matlab/
4https://www.fil.ion.ucl.ac.uk/spm/

1.5 degrees. Next in the normalization process, registration from
the original space to Montreal Neurological Institute (MNI)
space using T1-weight volumes was implemented to reduce
the diversities between various subjects. To directly circumvent
the subject variations, the images generated above have been
smoothed using a Gaussian kernel of 6 × 6 × 6 of full width
at half maximum (FWHW). Following this, to eliminate the
influence of nuisance variables (Fox et al., 2009; Huang et al.,
2018b), comprising of six head motion parameters, global mean
signal, white matter signal and cerebrospinal fluid signal, were
ruled out, respectively. At last, subject volumes were filtered at
0.01–0.08 Hz due to noise interferences, which may be induced
by heartbeat and breathing.

Statistical Analysis
For this study, the variance (ANOVA) and the chi-square test
within the Statistical Package for the Social Sciences (SPSS)
software version 22.0 were conducted to determine whether
there exist prominent differences (p < 0.05) as to the data
of demographic and neurocognitive between the HC, SCD
and aMCI groups.

To better illustrate the differences of PPC in aDMN and
pDMN networks between HC, SCD, and aMCI groups, one-
way ANOVA, which is integrated into the software of Data
Processing and Analysis for Brain Imaging (DPABI)5, was
adopted after controlling the gender and age. As mentioned in
former literature, multiple comparisons at cluster level using
non-parametric permutation test can availably control the false
positive rate existing in statistics (Winkler et al., 2016), and 1000
permutation times and the prominent cluster size >30 voxels
(810 mm3, p < 0.05) were performed in this work. We have
employed the two-sample T-test for calculating the differences
between two groups (i.e., SCD and HC groups, aMCI and
HC groups, aMCI and SCD groups), and that mask used in
two-sample T-test was derived from ANOVA analysis. Besides,
according to the recent report, there have identified that the

5http://rfmri.org/dpabi
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FIGURE 1 | A flow chart depicting the data selection process. HC, healthy controls; SCD, subjective cognitive decline; aMCI, amnestic mild cognitive impairment.
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non-parametric permutation test with Threshold-Free Cluster
Enhancement (TFCE) can effectively achieve a good balance
between family wise error (FWE) rate and reliability (Chen et al.,
2018). Therefore, permutation test associated with TFCE, all
integrated into PLAM module of DPABI, were employed as the
method of multiple comparisons of this work, and we set cluster
size >10 voxels (270 mm3, p < 0.05) as a prominent cluster
(Xue et al., 2019).

PPC of Two Time Series Using Hilbert
Transform
The HT can analyze nonlinear and non-stationary signals, and it
is fully self-adaptive and suitable for mutation signals. Besides,
it is characterized by rapidly and accurately describing the
instantaneous phase position which was adopted to explore the
altered patterns of PPC of DMN subnetworks in this work
(Martis et al., 2012). Hence, the HT was adopted using complex
demodulation to compute the instantaneous phase position
difference between each pair of the time series. Among them,
one series is extracted from aDMN (or pDMN), the other series
is extracted from the voxel within the whole brain. The HT that
we follow can be briefly described as follows: Given a time series
name as x(t), and the HT later referred to as H(t), is shown in
formula (1).

H(t) =
1
π

∫
+∞

−∞

x(τ)
π(t − τ)

d(τ) = x(t) ∗
1
πt

(1)

We first take two time series which represent aDMN (or
pDMN) signal and the voxel signal of the brain as inputs to the
formula (1) respectively. Next, using analytic signal Z(t) of x(t) to
generate information about the phase position and amplitude, as
shown in formula (2). Therefore, two analytic signals of aDMN
(or pDMN) and the voxel of the brain are obtained.

Z(t) = x(t)+ iH(t) = A(t)e−jφx(t) (2)

where A(t) represents signal amplitude, and φx(t) is the
instantaneous phase position of the signal. Then, we obtain
phase difference D(t) according to phase positions of two signals,
consisting of φx1(t) and φx2(t), and it is shown in formula (3).
Here, we set the phase lock ratio as m = n = 1, and it indicates
that the increase phase of two phase position is consistent.

D(t) = mϕx1(t)− nϕx2(t) (3)

Phase synchronization exponent of two signals can be seen
from the formula (4).

λ =

∣∣∣< eiD(t) >t

∣∣∣ = √< cosD(t) >2
t + < sinD(t) >2

t (4)

Note that < · >t is the average at each time point with
values ranging from 0 to 1. Furthermore, λ = 0 indicates no
phase synchronization of two signals, whereas λ = 1 shows
phase synchronization of two signals. That is, the larger the
value of λ, the stronger the synchronization between two signals.
Moreover, the seed-based method was conducted to analyze the
altered PPC of DMN subnetworks. To identify the seed regions

about aDMN and pDMN, 10-mm spherical regions of interest
in aDMN (MNI space: 0, 52, −6) and pDMN (MNI space:
0, −53, 26) were adopted in our work (Zhang and Raichle,
2010; Xue et al., 2019). Collectively, we applied phase position
synchronization generated by HT to investigate the altered
connectivity between the DMN subnetworks and the whole brain,
and aim to explore the relationship between the aberrant regions
and cognitive function.

RESULTS

Demographic and Neurocognitive
Characteristics
Here, the demographic and neurocognitive characteristics of
experimental participants were described in Table 1. The
prominent differences verified by ANOVA analysis were the Age
(F = 8.248, p = 0.016), the MMSE score (F = 9.129, p < 0.01), and
CDR score (F = 68.98, p < 0.01), respectively, yet no prominent
difference on the Gender (F = 2.026, p > 0.05). The results
showed that the MMSE values of the HC group (29.14 ± 1.49),
SCD group (28.94 ± 0.83) and aMCI group (26.87 ± 2.72)
decreased successively. It is noteworthy that lower MMSE scores
suggest the severe form of cognitive impairment, whereas higher
CDR scores show much more serious for dementia.

The Aberrant PPC of aDMN Network in
Patients With SCD and aMCI
The studies we have performed indicated that eight prominent
clusters, comprising of right superior cerebellum lobule (SCL),
right rectus (REC), left fusiform gyrus (FG), left inferior frontal
gyrus of triangular part (IFGTP), left middle temporal gyrus
(MTG), right middle frontal gyrus (MFG), left MFG and right
superior frontal gyrus of medial part (SFGMP), were revealed
according to one-way ANOVA analysis. Besides, patients with
SCD exhibited aberrant PPC in the clusters of right SCL, right
SFGMP and left FG as compared with HC group, by contrast, no
significant difference was found in patients with aMCI resulted
from two-sample T-test. Notably, aside from decreased PPC
found in the left FG, the clusters of increased PPC were involved
in the right SCL and right SFGMP. It is important to note that
patients with aMCI showed increased PPC in the right SFGMP in
comparison with the SCD group (TFCE-FWE corrected, cluster
size ≥ 10 voxels, p < 0.05). In particular, we emphasize that our

TABLE 1 | Demographics and clinical measures of HC, SCD, and aMCI groups.

Group HC (n = 27) SCD (n = 20) aMCI (n = 28) p-values

Gender 20F/7M 10F/10M 10F/18M 0.139a

Age (years) 72.63 ± 4.50 72.38 ± 5.31 69.71 ± 7.26 0.016b

MMSE scores 29.14 ± 1.49 28.94 ± 0.83 26.87 ± 2.72 <0.01b

CDR scores 0.03 ± 0.11 0.12 ± 0.22 0.52 ± 0.10 <0.01b

Numbers are given as means ± standard deviation (SD) unless otherwise stated.
MMSE, Mini-Mental State Examination; CDR, Clinical Dementia Rating; aThe
p-values were obtained by the chi-square test. bThe p-value was obtained by
one-way ANOVA analysis.
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TABLE 2 | The aberrant PPC in aDMN network.

Region Peak/MNI T-score Cluster
size

x y z

ANOVA

R Superior cerebellum lobule −15 −99 −3 10.0818 323

R Rectus 3 33 −18 10.3223 45

L Fusiform gyrus −30 −72 −12 9.5211 69

L Inferior frontal gyrus of triangular part −48 51 3 9.9487 167

L Middle temporal gyrus −51 −63 6 6.7590 37

R Middle frontal gyrus 54 39 15 10.7230 98

L Middle frontal gyrus −36 27 12 7.8551 102

R Superior frontal gyrus of medial part 12 60 36 8.9812 204

SCD > HC

R Superior cerebellum lobule 21 −93 −27 4.0315 227

R Superior frontal gyrus of medial part 12 48 51 3.9014 10

HC > SCD

L Fusiform gyrus −30 −72 −12 4.369 28

aMCI > SCD

R Superior frontal gyrus of medial part 3 42 39 3.9141 24

The x, y, z coordinates are the primary peak locations in the MNI space. Cluster
size >30 voxels in one-way ANOVA analysis, p < 0.05. Cluster size >10 voxels in
two-sample T-test, p < 0.05, TFCE-FWE corrected; L, left; R, right.

experiments are after controlling the effects of age and gender (see
Table 2 and Figures 2–4).

The Aberrant PPC of pDMN Network in
Patients With SCD and aMCI
For pDMN network, the one-way ANOVA analysis we have done
suggested the prominent differences in four clusters, consisting
of the left superior temporal gyrus of temporal pole (STGTP), left
MFL, left superior parietal lobule (SPL) and right superior frontal
gyrus (SFG). Compared to HC group, patients with SCD showed
decreased PPC in the left SPL and right SFG. It is noteworthy
that aMCI group showed decreased PPC in the left middle frontal
gyrus of orbital part (MFGOP) and right SFG, yet increased
PPC was found in the left STGTP. Additionally, aMCI group
exhibited decreased PPC in the left MFGOP as the comparison
with SCD group (TFCE-FWE corrected, cluster size ≥ 10 voxels,
p < 0.05). The experimental data used in the PPC analysis are
after controlling the influences of gender and age (see Table 3
and Figures 5–8).

FIGURE 3 | Compared to HC group, the SCD group exhibits prominent
differences in PPC of the aDMN network based on two-sample T-test. L, left;
R, right; FG, fusiform gyrus; SCL, superior cerebellum lobule; SFGMP,
superior frontal gyrus of medial part.

FIGURE 4 | Compared to SCD group, the aMCI group exhibits prominent
differences in PPC of the aDMN network based on two-sample T-test. R,
right; SFGMP, superior frontal gyrus of medial part.

DISCUSSION

The work presented in this paper is that it focuses on investigating
aberrant patterns of PPC of the DMN subnetworks connected
to the whole brain between HC, SCD, and aMCI groups, and
analyzing whether the aberrant areas are related with cognitive
function. The result was consistent with the hypothesis that the
SCD and aMCI groups exhibited distinct abnormal PCC in DMN
subnetworks and the alerted regions were related to cognitive
function. Besides, the altered regions in DMN subnetworks might
regard as neuroimaging biomarkers and may be used to better
understand the neural mechanism for the early stages of AD.

For aDMN, patients with SCD have prominently altered
regions of the right SCL, right SFGMP and left FG resulted from
the two-sample T-test. Based on earlier finds, SCL is involved in
articulatory control and non-motor cognitive function (Ferenci
et al., 2002). The left FG plays a critical role in semantic
dementia and is repeatedly reported to be involved in visual word
processing (Peterburs et al., 2019). SFG, which is located on top of
the brain, plays a role in several higher-level cognitive processes

FIGURE 2 | The prominent differences of the brain in PPC of the aDMN network using one-way ANOVA analysis. L, left; R, right; MTG, middle frontal gyrus; REC,
rectus; FG, fusiform gyrus; IFGTP, inferior frontal gyrus of triangular part; SCL, superior cerebellum lobule; MFG, middle frontal gyrus; SFGMP, superior frontal gyrus
of medial part.
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TABLE 3 | The aberrant PPC in pDMN network.

Region Peak/MNI T-score Cluster
size

x y z

ANOVA

L Superior temporal gyrus of temporal pole −48 0 −15 11.6797 40

L Middle frontal lobule −36 63 3 12.6064 94

L Superior parietal lobule −15 −60 69 9.1601 32

R Superior frontal gyrus 18 −12 72 12.0896 52

HC > SCD

L Superior parietal lobule −15 −60 69 3.8077 25

R Superior frontal gyrus 12 −15 75 3.9821 36

aMCI > HC

L Superior temporal gyrus of temporal pole −48 0 −15 4.5391 31

HC > aMCI

L Middle frontal gyrus of orbital part −36 63 3 3.8683 16

R Superior frontal gyrus 18 −12 72 4.4364 18

SCD > aMCI

L Middle frontal gyrus of orbital part −36 63 3 4.7242 90

The x, y, z coordinates are the primary peak locations in the MNI space. Cluster
size > 30 voxels in one-way ANOVA analysis, p < 0.05; Cluster size > 10 voxels in
two-sample T-test, p < 0.05, TFCE-FWE corrected; L, left; R, right.

and working memory according to a previous report (Alagapan
et al., 2019). Combining the altered regions mentioned above,
these regions are related to language and memory, which are
consistent with the manifestation of cognitive function (Samaras
et al., 2014). Interestingly, no prominent regions were found in
aDMN network in aMCI group, while aMCI group exhibited
prominent regions in left STGTP, left MFGOP and right SFG in
pDMN. A former study has reported that STG is anchored in the
auditory association cortex involving spoken word recognition
and MFG is related to working memory (Fegen et al., 2015;
Kajikawa et al., 2015). Hence, the altered regions we found might
involve in language cognitive disorder, and pDMN first appears
abnormal connections compared to aDMN, which might suggest
that the aDMN and pDMN have different manifestations in the
early stages of AD.

We found that both aMCI and SCD groups showed a
prominent region in SFG that is connected to DMN subnetworks,
and according to the previous research that the altered functional
connectivity between the pDMN and the SFG might be a
compensatory response of brain (Xue et al., 2019). We assume
that the aberrant PPC in SFG connected to the DMN may also
be caused by the brain’s compensation. Compared to HC group,

FIGURE 6 | Compared to HC group, the SCD group exhibits prominent
differences in PPC of the pDMN network based on two-sample T-test. L, left;
R, right; SPL, superior parietal lobule; SFG, superior frontal gyrus.

FIGURE 7 | Compared to HC group, the aMCI group exhibits prominent
differences in PPC of the pDMN network based on two-sample T-test. L, left;
R, right; STGTP, superior temporal gyrus of temporal pole; SFG, superior
frontal gyrus; MFGOP, middle frontal gyrus of orbital part.

FIGURE 8 | Compared to SCD group, the aMCI group exhibits prominent
differences in PPC of the pDMN network based on two-sample T-test. L, left;
MFGOP, middle frontal gyrus of orbital part.

aMCI group showed a prominent region in STG which did not
belong to the altered region of SCD group, while SCD group
showed prominent regions in SCL which did not belong to
the altered region of aMCI group. It can be deduced that SCL
and STG, related to articulatory control and working memory,
respectively, are sensitive and might as neuroimaging biomarkers
to distinguish the SCD and aMCI. Interestingly, compared to
patients with SCD, DMN subnetworks in aMCI group showed
obvious differences in right SFGMP and left MFGOP belonging

FIGURE 5 | The prominent differences of the brain in PPC of the pDMN network based on one-way ANOVA analysis. L, left; R, right; STGTP, superior temporal
gyrus of temporal pole; MFL, middle frontal lobule; SPL, superior parietal lobule; SFG, superior frontal gyrus.
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to FG. In previous studies, aMCI group showed more
widespread topological changes involving the frontal lobes
(Barban et al., 2017), and aberrant connectivity was also
found in patients with SCD between DMN and FG due to
cognitive impairment (Xue et al., 2019). Besides, an increasing
trend of values of amplitude of low-frequency fluctuation
(ALFF) and fractional ALFF were detected in FG (Yang
et al., 2018). Therefore, changes in FG may be related to
cognitive dysfunction.

CONCLUSION

Our study mainly shows that the PPC of the DMN
subnetworks which are connected to the whole brain has
different disconnection patterns in SCD and aMCI stages.
Moreover, the significant difference in DMN subnetworks
varies considerably, which might act as neuroimaging
biomarkers of sensitivity for timely detection of the
early stage of AD.
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