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Erosion of Gene Co-expression
Networks Reveal Deregulation of
Immune System Processes in
Late-Onset Alzheimer’s Disease

John Stephen Malamon and Andres Kriete*

Bossone Research Center, School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia,
FA, United States

We have applied a novel and integrative analysis framework for next-generation
sequencing (NGS) data to 503 human subjects provided by the Religious Orders
Study and Memory and Aging Project (ROSMAP) to examine changes in transcriptomic
organization and common variants in association with late-onset Alzheimer’s disease
(LOAD). Our framework identified seven reproducible, co-regulated modules after quality
control (QC), clinical segregation, preservation filtering, and functional ontology analysis.
These modules were specifically enriched in several innate and adaptive immune
system processes, the synaptic vesicle cycle, and Hippo signaling. Topological and
functional erosion of these modules due to shedding of genes and loss of in-module
connectivity was diagnostic of disease progression. Perturbation analysis revealed that
only 1% of eQTLs overlapped genes participating in these co-regulated modules.
Common variants nevertheless identified components of the immune systems like
human leukocyte antigen (HLA) complex and microtubule-associated protein tau (MAPT)
regions in association with LOAD. Our results implicate microglial function, adaptive
immune response, and the structural degeneration of neurons as contributors to
the transcriptional deregulation observed along with common genetic variants in the
progression of LOAD.

Keywords: Alzheimer’s, networks, immune system, synapses, functional, eQTL, WGCNA

INTRODUCTION

Late-onset Alzheimer’s disease (LOAD) is a complex condition involving tau protein aggregates or
tauopathy, amyloid and lipid processing, aging, immune system response, metabolism, lysosomal
processing, and cerebrovascular health (Rogers et al., 1988; Braak et al, 2011; Jevtic et al,
2017; Wang et al., 2017). Progress in understanding and describing this large and diverse set of
biological systems is in part determined by our ability to fully integrate clinical neuropathological
data with comprehensive models that combine several modes of next-generation sequencing
(NGS) data. To this end, we have applied our novel and integrative analysis framework to 503
subjects (305 cases/198 controls) provided by the Religious Orders Study and Memory and Aging
Project (ROSMAP) study (Bennett et al., 2012) to develop a detailed landscape of the genetic
and regulatory systems involved in LOAD, specifically with respect to clinical scores. Our study
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accomplished the following four objectives: (1) identified changes
in transcriptional organization in association with clinical
phenotypes; (2) characterized the systematic transcriptomic
and functional changes accompanying LOAD through clinical
segregation co-expression analysis; (3) identified common
genomic loci involved in LOAD; and (4) tested the relationship
between predicted expression quantitative trait loci (eQTLs) and
systematic changes in gene expression.

One of the core elements of our approach is a weighted gene
co-expression analysis (WGCNA), enabling the classification and
identification of highly correlated and connected modules of
genes grouped by co-expression (Zhang and Horvath, 2005;
Langfelder and Horvath, 2008). Network modules can be
described as series of interrelated nodes and edges. Here, nodes
are messenger RNA (mRNA) transcripts. Edges represent the
correlation coefficients between two or more given nodes, where
degrees are the number of edges shared by nodes. Genes usually
have many regulators, so we chose a hierarchical co-expression
model. Our combined approach increases specificity by reducing
large co-expression networks to only functionally significant
and highly reproducible modules. Functional significance is
defined as the Gene Ontology biological process p-value and
reproducibility is defined as the module preservation Z-score
(Langfelder et al, 2011). Co-expression analysis has been
successfully applied in Alzheimer’s disease (AD), incorporating
clinical scores and differential expression to identify co-regulated
modules changing with disease in an “all-in-one” analytical
design (Miller et al, 2008; Liang et al., 2018; Meng and
Mei, 2019). However, the common approach to co-expression
modeling does not include clinical segregation analysis. Here
we provide clinical segregation for three groups: no cognitive
impairment (NCI), mild cognitive impairment (MCI), and AD
subjects. Additionally, strong genetic associations have been
observed in LOAD (Naj et al., 2011; Lambert et al., 2013; Sims
et al.,, 2017) along with systematic changes in gene expression
profiles and transcriptional organization (Miller et al., 2008,
2010; Zhang et al., 2013; Ramasamy et al., 2014). Therefore,
we hypothesize that genetic variation should account for
changes in gene expression observed in transcriptomic analyses.
We systematically tested the relationship between predicted
eQTLs and transcriptomic organization to show underlying
perturbations in gene networks that can partially account for
changes observed in co-expression analyses.

METHODS

The Accelerating Medicines Partnership (AMP) provides a
variety of multi-platform next-generation sequence (NGS),
clinical, and other —omics data. We selected all subjects from the
ROSMAP study with overlapping clinical, RNA-seq, and DNA-
seq data from the prefrontal cortex from a total of 503 elderly
individuals varying from cognitively healthy to diagnosed AD
(Bennett et al., 2012; De Jager et al., 2018). All subjects reported
race as Caucasian. According to study details, RNA was extracted
from the gray matter of the dorsolateral prefrontal cortex
and quantified using the NanoDrop spectrophotometer.;101-bp

paired-end, Illumina HiSeq reads were aligned to the human
reference genome 19 (hg19). Genotype data were generated using
the Affymetrix GeneChip 6.0 platform and filtered based on the
following quality control (QC) criteria: genotype call rate less
than 99%, minor allele frequency (MAF) less than 2%, and a
Hardy-Weinberg equilibrium threshold below 1%. A total of
619,377 single nucleotide polymorphisms (SNPs) passed QC and
were used in this analysis.

Analysis Framework

Our analytical framework was previously introduced (Malamon
and Kriete, 2018) and extended here to include additional
features, such as clinical segregation, module preservation, gene
set, and functional enrichment analyses (see Supplementary
Figure 1 for workflow diagram and full description of methods).
This workflow consists of four main components: QC, co-
expression modeling, functional enrichment, and eQTL analysis.
We perform a comprehensive, three-tiered QC process to
normalize and reduce the RNA-seq dataset to the 20,000
most informationally dense and connected transcripts. Co-
expression networks are constructed using the WGCNA toolkit
(Langfelder and Horvath, 2008). Next, we apply WGCNA’s
module preservation testing procedure to measure statistical
reproducibility in all modules. We exclude all modules with
preservation Z-scores below 10 standard deviations. Higher
Z-scores signify modules that reoccur despite changing input
conditions. These become candidate modules. Functional term
and enrichment analyses are performed on all candidate modules.
Gene set enrichment analysis (GSEA) (Subramanian et al,
2005) was used to examine larger functional network trends
and reproduce candidate modules and genes. We provide a
novel approach leveraging clinical segregation co-expression
analysis to examine and compare alterations in network and
module structure and organization with disease progression. For
segregation analysis, QC, co-expression modeling, and functional
enrichment were repeated for all clinical subgroups. Finally,
genome-wide association (GWA) and perturbation analyses were
performed. GWA provides all genomic loci (SNPs) predicted
in association with disease status. eQTL analysis provides the
predicted effects of SNPs on gene expression. Perturbation
analysis was performed by overlapping co-expression module
genes with eQTLs.

Clinical Segregation Analysis

Figure 1 outlines our clinical segregation protocol, which
was designed to assess how transcriptomic differences are
presented in clinical subgroups. We segregated samples
by extracting sample data based on COGDX and CERAD
scores and processing each group independently in WGCNA
(see Supplementary Table 1 for clinical definitions and
Supplementary Figure 2 for data plot). COGDX collapses 19
different neuropsychological tests into a single “Global Cognitive
Score” (De Jager et al.,, 2018). The CERAD protocol provides
neuropathological classifications for disease based on a wide
variety of life-style, neuropsychological, and cognitive tests
(Mirra et al., 1991). For COGDX, we segregated samples leaving
167 subjects with NCI, 131 subjects with MCI, and 205 subjects
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Clinical Segregation Co-expression Analysis Based on COGDX

167 subjects (NCI) 131 subjects (MCI) 205 subjects (AD)

COGDX =1 COGDX =2or3 COGDX >3
20k most 20k most 20k most
connected and connected and connected and

variable transcripts variable transcripts variable transcripts

\ |/ v
Network Network Network
Construction Construction Construction
4,542 genes 3,998 genes 2,992 genes
7 modules 7 modules 7 modules
3,344 transcripts 2,786 transcripts 1,155 transcripts

- Topological and Functional Erosion

FIGURE 1 | Overview of clinical segregation co-expression analysis. An outline of our novel approach for independently analyzing and comparing co-expression
networks and module characteristics in regard of clinical disease progression scores. The three vertical lanes represent COGDX segregation for three different
cognitive scores (NCI, MCI, and AD) as defined in Supplementary Table 1. All subgroups were processed independently. First, quality control (QC) was applied to
each set to retain only the 20,000 most informationally dense and variable transcripts. Next, networks were constructed with identical modeling parameters for all
three subgroups. Module preservation (MP) testing was used to filter modules to only those that were highly reproducible (Z-score > 10), leaving seven modules.
Within these modules, we observed a significant loss in the total transcripts classified, within-module connectivity, and functional term enrichment in association with
disease progression. Heatmap tiles in the bottom lane refer to functionally significant GO biological process terms.
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with an Alzheimer’s diagnosis (AD). For CERAD, we segregated
samples leaving 130 subjects with no AD (CERAD_1), 226
subjects with possible or probable AD (CERAD_2), and 147
subjects with confirmed AD (CERAD_3). We independently
processed and analyzed all six clinical subgroups using WGCNA
with the same network parameters for all experiments.

RESULTS

Network Construction

We calculated the transcriptomic network’s total connectivity
using the median-based bi-weight mid-correlation, which is more
accurate than Pearson’s method for gene co-expression modeling
(Zheng et al., 2014). Raising the soft-threshold to a power of 6
produced an overall R? value of 0.895, as seen in Supplementary
Figure 3. Note that the R? value rises sharply and quickly flattens
out with a slope of —1.080 at just six iterations. WGCNA was used
to construct the initial co-expression network (Supplementary
Figure 4) using all 503 subjects. Careful consideration was used
in selecting the criteria for module identification, also known
as branch trimming. We identified 26 distinct modules, totaling
4,429 transcripts with an average of 201 genes per module.
Modules contain directionally signed groups of genes. In other
words, genes in the same module are co-expressed in the same
direction and well correlated with one another. We selected to
lean on the side of specificity by not partitioning around medoids,
leaving a total of 15,571 (77.85%) transcripts out of modules
(unclassified), as indicated in gray (Supplementary Figure 4).
Overall, the dendrogram shows clean, distinct clustering with
sufficient levels of local dissimilarity. WGCNA arbitrarily assigns
module names by color, i.e., gray and magenta. Supplementary
Figure 5 shows all module-to-module and module-to-eigentrait
(eigenvector of clinical metric) correlations for each of the four
clinical NP traits. Supplementary Spreadsheet S1 contains all
co-expressed genes grouped by module.

Clinical Segregation and Module

Preservation Analysis

To investigate network and module characteristics with respect
to disease progression, we segregated samples according to
COGDX and CERAD scores and analyzed each of the six clinical
subgroups independently in WGCNA. Clinical subgroups were
assigned according to Supplementary Table 1. For example,
subjects with COGDX scores of 0 or 1 were assigned to the
NCI group. For COGDX, we uniquely classified 4,542, 3,998, and
2,992 genes for the NCI, MCI, and AD groups, respectively. For
CERAD, we uniquely classified 3,426, 3,957, and 3,991 genes for
the CERAD_1, CERAD_2, and CERAD_3 groups, respectively.
WGCNA's module preservation function allowed us to accurately
measure module reproducibility through permutation testing.
We calculated module preservation Z-statistics using 200
permutations for all six subgroups. See Supplementary Figure 6
for preservation statistics. Modules with Z-scores above 10 are
not obtained by random chance and can be reliably reproduced
(Langfelder et al., 2011; Li et al., 2015). A total of seven candidate
modules (Table 1) survived preservation testing. Segregation

by COGDX showed increased reproducibility and stability
in module preservation over segregation based on CERAD
assessment scores; therefore, we selected COGDX modules for
further analysis.

Functional Enrichment of Co-expression
Modules

Biologically relevant, functional pathways should be reproducible
and overlap known LOAD pathologies. To this end, we queried
the GO database to examine the functional ontologies of
the seven candidate modules. Table 1 provides statistically
significant biological process terms involving known LOAD
pathologies. The “magenta” module, which showed the strongest
functional association, was well-correlated with COGDX and
highly enriched with many immune-related genes including
ABI3, APBBIIP, CD33, CD86, DOCK2, human leukocyte
antigen (HLA)-DRA, HLA-DMB, MS4A4A, MS4A6A, MS4A7A,
TREM2, and TYROBP. Other “magenta” GO terms include
“complement pathway,” “cytokine signaling,” “neutrophil
degranulation,” and “Toll-Like receptor activation.” Additional
modules involving the immune system included the “turquoise”
and “brown” modules, which were both enriched for the
“regulation of complement activation.” A GO “cellular
components” query revealed the “dendrite membrane” as
significant for the “yellow” module (p-value = 3.73E-06).
This observation is consistent with the “biological process”
query results, which provided several synaptic processes
including “neuronal projection,” “vesicle cycle,” and “synaptic
maintenance.” The “blue” module was functionally enriched
for genes in the Hippo signaling pathway, including AMOT,
FAT4, LAT2, TJP1, TJP2, STK3, and YAP1. “Fatty acid oxidation”
was also significant for the “blue” module. Additionally, cell-
specific enrichment was performed on all seven modules (Uhlen
et al., 2015; Kuleshov et al., 2016; Lachmann et al., 2018). See
Supplementary Table 2 for results.

Organizational Changes in Immune
Module

Figure 2 shows the erosion of the “magenta” module by
comparing the network characteristics of the three co-expression
networks segregated by COGDX. “Magenta” contained 191, 145,
and 99 genes for NCI, MCI, and AD, respectively (Figure 2A) and
shared 86 genes across all clinical groups. The mean intramodular
degrees for the NCI, MCI, and AD subgroups provided in
Figure 2B were 47.13, 39.27, and 31.27, respectively. The “blue”
module shared 85 genes in all three subgroups with 859, 693, and
222 genes, respectively. The mean intramodular degrees for each
subgroup were 409.32, 341.86, and 127.42 for the “blue” module.
The “yellow” module shared 27 genes with 859, 693, and 222
genes, respectively. The mean intramodular degrees for “yellow”
were 90.48, 74.69, and 12.66, respectively (p-value = 2.2E-
16). Similar trends were observed in the other four modules.
ANOVA and Bartlett’s test for heteroscedasticity were performed
for all transcripts by COGDX subgroup revealing a significant
(p-value < 0.05) increase in the expression of 22 “magenta,” 31
“yellow,” and 70 “blue” genes. Heteroscedasticity was significant
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FIGURE 2 | Erosion of nodes and edges for top three functional modules by CODGX segregation. (A) Venn diagram of genes in the immune-enriched module
(magenta) for the three COGDX subgroups, NCI, MCI, and AD. (B) Boxplots with the number of intramodular connections (degrees) grouped by COGDX. (C) Venn
diagram for “blue” module (Hippo Signaling). (D) Boxplots of degrees grouped by COGDX for “blue” module. (E) Venn diagram for “yellow” module (synaptic vesicle

cycle). (F) Boxplots of degrees grouped by COGDX for the “yellow” module.
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TABLE 1 | Statistically significant functional terms for seven well-preserved modules sorted by adjusted p-value.

Module name # of genes Highest fold enrichment ontology term Fold Lowest p-value Adjusted
enrichment p-value
NCI MCI AD
Magenta 191 145 99 Regulation of T cell activation via T cell >100 Immune system process 1.80E-40
receptor contact with antigen bound to
MHC molecule on antigen presenting cell
Yellow 291 217 27 Regulation of synaptic vesicle cycle 12.67 Modulation of chemical 1.32E-14
synaptic transmission
Blue 859 693 222 Hippo signaling 9.74 Regulation of cell signaling 2.69E-14
Turquoise 1305 992 429 Regulation of complement activation 6.26 Cellular component 1.47E-08
organization or biogenesis
Green 66 168 54 Phospholipid dephosphorylation 12.64 Cellular protein metabolic 1.67E-07
process
Red 181 65 129 Regulation of synapse organization 5.23 Chemical synaptic transmission 5.11E-05
Brown 451 506 195 Regulation of complement activation 8.86 Humoral immune response 1.60E-04

NCI, MCI, and AD columns provide the number of module genes by COGDX subgroup. GO’s DAVID functional analysis results are provided for seven modules. Highest
fold enrichment and lowest p-value (Bonferroni adjusted) are provided in the fifth and seventh columns with the predicted biological process.

(p-value < 0.001) for 36, 48, and 74 genes, respectively. These
data provide supporting evidence for the deregulation of gene
networks in these three modules. Supplementary Spreadsheet S2
contains all ANOVA and Bartlett’s testing results.

Gene Set Enrichment Analysis

The Broad Institute’s GSEA toolkit was used to identify disease-
associated pathways via the KEGG biological pathway database
(Kanehisa and Goto, 2000; Kanehisa et al., 2016, 2017). We
performed a pre-ranked analysis with 10,000 permutations to
discover differences in functional gene networks with regard to
disease status. Supplementary Figure 7 provides the top and
bottom five KEGG pathways sorted by p-value. The top five most
significant (p-value < 1.5E-03) pathways positively enriched or
under-represented in cases contained several immune-related
genes also observed in co-expression modeling, including HLA-
DRA, HLA-DMB, and CD86. Interestingly, cases exhibited
deregulation in many immune system-related genes, which is
consistent with the shedding of co-expressed genes revealed
in the previous section. Negative enrichment scores denote
an overrepresentation of pathway gene expression in cases.
“Alzheimer’s, Parkinson’s, and Huntington’s disease” pathways
showed high overrepresentation in cases.

Transcription Factor Analysis

Finally, we asked whether transcription factors may be influential
for the observed changes in modules. Transcription factor
binding site interrogation was performed using human single-
site analysis (0POSSUM) (Ho Sui et al., 2005) carried out at
8-bit minimum specificity, 40% conservation cutoff, 5,000 bp
upstream/downstream the transcription start site, 85% matrix
threshold, against a background of 24,752 genes. “Magenta’
genes were highly enriched (p-value < 0.001) for the SPI1
and Interferon Regulatory Factor 8 (IRF8) transcription factor
binding motif. Genes with SP1 binding site were also enriched
in genes lost from “magenta” and included CD4, CYBA, HAMP,
HCST, HLA-DMA, IL18, TLR10, and TREM2. Genes with

PPARG:RXRA binding site included CD4, CYBA, HAMP, HCST,
HLA-DMA, IL18, TLR10, and TREM2.

Expression Quantitative Trait Locus
Analysis

We used MatrixEQTL (Shabalin, 2012) to test the linear
associations between changes in gene expression and genotype
for the same 503 individuals used in co-expression modeling.
Interestingly, 90% of the top 100 eQTLs (sorted by adjusted
p-value) occurred in the microtubule-associated protein tau
(MAPT) region. Several HLA loci were statistically significant,
including HLA-A, HLA-C, HLA-DOB, HLA-DP1, HLA-DRBI,
and HLA-DRBS5. Allele-specific changes in expression were
observed not only on MAPT but also on MAPT-AS1, CRHRI,
KANSL1-AS1, LRRC37A2, MAPKSIP1P1, and MAPKSIP1P2.
Regional association plots for the MAPT and HLA-DPB2
regions were generated using LocusZoom (Pruim et al., 2010),
provided in Figure 3. Linkage data were provided by the
International HapMap Project (The International HapMap
Consortium, 2003). Supplementary Figures 8-10 provide
genome-wide association and box-plots of gene expression
by genotype for four MAPT and four HLA-region SNPs
identified in eQTL analysis. Supplementary Spreadsheet S3
contains all significant eQTLs with SNP (rsID), location,
and p-value.

Perturbation Testing

To determine specific sources of genetic variation and their
effects on the transcriptome, we overlapped all predicted eQTLs
with all genes classified in co-expression modeling. Less than
1% of eQTLs (N = 5,392 gene/SNP pairs) across the 522
genes overlapped genes identified in co-expression network
modules. We observed no discernable pattern in eQTLs and
classified genes. Although observed differences in co-expression
based on segregation are largely unexplained by individual
eQTLs, functional ontology and transcription factor enrichment
analysis provided polymorphisms in multiple genes sharing the
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transcription factor IRF motifs M08887 and M00972, which
regulate many HLA genes.

DISCUSSION

Our analysis revealed several key functional domains and
pathways through which systematic deregulation occurs in
LOAD. Co-expressed transcripts, transcription factors, and
genomic loci were statistically significant contributors to LOAD
progression via deregulation along several immune system
pathways. In segregation co-expression analysis, we observed
a substantial reduction in the organizational structure of
several well-preserved, functional modules, as indicated by fewer
classified genes and lower intramodular connectivity in MCI
and AD subjects as compared to controls. In the course of this
experiment, we improved specificity in detecting functionally
relevant co-expression modules in a complex disease through
rigorous QC protocols and data reduction schemes, namely,
module preservation testing. This is significant because co-
expression analyses produce very large networks with dozens
of modules. This much data can be cumbersome and difficult
to interpret. Network module erosion and gene shedding were
observed in the microglia (“magenta”), synaptic (“yellow”), and
Hippo signaling (“blue”) modules.

We chose to make the “magenta” module the focus of this
discussion based on two statistical facts: (1) it was the most
statistically significant module in functional gene enrichment
analysis (Table 1) and (2) this module has been observed before
in a similar study. Zhang et al. (2013) identified a module (“light
cyan”) containing 537 genes in the human prefrontal cortex
which were highly associated (p-value = 2.1e-87) with the same
immune-related GO terms. Remarkably, 98 “light cyan” genes
overlapped our “magenta” module. Assuming a hypergeometric
distribution, the probability of identifying the same 98 genes from
a total gene pool of 20,000 is 3.54e-129. We initially hypothesized
that co-expression analysis would reveal cell-specific expression
modules. Co-expression segregation analysis allowed us to
compare specific changes in network and module organization.

The “magenta” module contained genes such as ABI3, CD33,
MS4A46, MS4A6S, TREM2, and TYROBP, which have been
previously linked to AD through protein-coding mutations (Naj
et al, 2011; Sims et al., 2017) and are all critical to microglial
activation and response (Satoh et al., 2017). Microglia are the
principal innate immune cells of the brain and ingest and degrade
amyloid plaques (Koenigsknecht-Talboo and Landreth, 2005).
Segregation analysis based on COGDX showed that CD33 and
TREM?2 were co-expressed in NCI and MCI subjects but not in
AD subjects, and CD4 was only co-expressed in the MCI module.
CD33 and CD4 are associated with reactive microglia and have
been linked to AD (Griciuc et al., 2013). TREM2 is activated
by ligand binding and increases Af3 clearance through the
apoptosis-related phosphatidylinositol-3 kinase (PI3K) signaling
pathway, while activating CD33 attenuates the innate immune
response and Af3 clearance. CD33 and TREM2 showed high
heteroskedasticity in AD subjects and have been suggested
as cross-talking Alzheimer’s genes (Chan et al, 2015). Taken

together, our data suggest that CD33 and TREM2 co-regulation
are important to maintaining healthy brain aging. ANOVA
analysis of the “magenta” module showed increased expression
in many genes including ILIORA and CD37. CD37 is activated by
AP and mediates both humoral and cellular immune responses
(van Spriel et al., 2004, 2009). This module also included HLA-
DMA, HLA-DMB, and HLA-DRA.

Since the purpose of this study was to compare normal
brain aging with AD, underlying aging pathways were not
directly assessed. However, we noticed an interesting overlap
with previous findings in a WGCNA study on the aging of the
prefrontal cortex (Hu et al., 2018). Hu et al. reported a module
enriched in the synaptic vesicle cycle function associated with
brain aging progression. This module (“blue”) overlaps with the
enrichment of our “yellow” module defined here. Within the GO
term “synaptic vesicle cycle,” seven genes (AP2M1, ATP6V0D1,
DNMI1, RAB3A, STX1A, UNCI13A, and VAMP2), involved in
vesicle transport, endocytosis, and exocytosis, are shared between
both studies. The difference in platforms and sample sizes makes
this similarity remarkable, suggesting a further manifestation
of synaptic dysfunction and impaired cognition in LOAD. The
“blue” module was significantly enriched for Hippo signaling,
which not only has implications on cell growth and autophagy
but also the immune system (Zhang et al., 2018). A3 has been
shown to initiate nuclear pro-apoptotic transcription factors
in the Hippo signaling pathway, resulting in neuronal death
(Sanphui and Biswas, 2013).

Our second motivation for the study was to examine the
common genetic variants associated with LOAD. LOAD is
likely influenced by the interaction of many polygenic, low-
and moderate-effect variants. In our study, less than 1% of
eQTLs overlapped genes classified in co-expression modeling.
Of course, this did not directly explain changes in coexpression;
however, eQTL analysis provided perturbations in multiple,
functionally related genes (HLA-A, HLA-C, HLA-DOB, HLA-
DP1, HLA-DRBI, and HLA-DRB5), all sharing transcription
factor motif IRF. Interferon-regulatory factors modulate the
interferon system in innate and adaptive immunity, and INF-
y induces differential expression of MHC class II HLA-DR
and HLA-DP genes (Helbig et al., 1991). IFN-y is expressed
by infiltrating Thl cells, resident microglia, and neurons and
has been implicated in the development of AD and systemic
autoimmunity. IFN-y signaling is known to adversely affect AD
pathologies and cognitive function (Mastrangelo et al., 2009;
Monteiro et al., 2016). Activation of microglia by INF-y inhibits
AP clearance (Bate et al., 2006; Browne et al., 2013). HLA region
eQTLs and changes in IFN-y signaling can partially explain
transcriptomic immune deregulation observed in cases.

The high concentration of eQTLs in the MAPT region
highlights the impact of genetic variation on disease risk not
only through MAPT haplotypes but also in several neighboring
genes. MAPT pathologies provide a mechanistic link between
the immune system and neurodegeneration involving microglia
activation (Bhaskar et al., 2010). Splice-variants of MAPT-
AS1 actively suppress MAPT translation (Coupland et al,
2016) and could prove to be a useful therapeutic target by
reducing hyperphosphorylated tau levels. KANSLLI is critical to

Frontiers in Neuroscience | www.frontiersin.org

March 2020 | Volume 14 | Article 228


https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

Malamon and Kriete

Erosion of Co-expression Networks in LOAD

brain development (Koolen et al., 1993) and has been linked
to AD (Jun et al, 2016). Corticotropin Releasing Hormone
Receptor 1 (CRHR1) agonists have been shown to increase Af
production (Futch et al., 2017). Determining the precise nature of
the relationship between genetic variation and the expression of
MAPT region genes will undoubtedly provide additional insights
into tauopathy and thus LOAD risk.

Immune network architectures account for desirable immune
system properties such as inducibility, adaptability, and
robustness (Schrom et al., 2017). Data segregation combined
with co-expression analysis sheds light onto these processes
in LOAD, revealing adaptations during disease onset and
erosion of networks in the later stages. Observed increases
in transcriptional heterogeneity resemble observations in
Parkinson’s disease (Mar et al., 2011), but can only partially
account for module erosion since many highly variable genes
are still present in the AD modules. Taken together, this study
provides insights into a complex and dynamic landscape of
genetic and regulatory processes centered around innate and
adaptive immune system function. Systematic reductions in co-
regulated genes and intramodular connectivity were diagnostic
of increasing variability in several critical LOAD pathologies,
including neuroinflammation, adaptive immunity, synaptic
loss, and apoptosis. We propose that a reduction in regulatory
and compensatory systems could also account for decreased
robustness during disease progression, but the underlying
mechanisms and the combined role of genetic variants are far
from clear. This study highlights the adequacy of combining
multi-omics NGS data types with longitudinal clinical and
other developing, deep-phenotype data to decipher the complex
molecular dynamics underlying complex diseases like LOAD.
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