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Recent advances in deep learning have improved the segmentation accuracy of

subcortical brain structures, which would be useful in neuroimaging studies of many

neurological disorders. However, most existing deep learning based approaches in

neuroimaging do not investigate the specific difficulties that exist in segmenting extremely

small but important brain regions such as the subnuclei of the amygdala. To tackle this

challenging task, we developed a dual-branch dilated residual 3D fully convolutional

network with parallel convolutions to extract more global context and alleviate the

class imbalance issue by maintaining a small receptive field that is just the size of the

regions of interest (ROIs). We also conduct multi-scale feature fusion in both parallel

and series to compensate the potential information loss during convolutions, which

has been shown to be important for small objects. The serial feature fusion enabled

by residual connections is further enhanced by a proposed top-down attention-guided

refinement unit, where the high-resolution low-level spatial details are selectively

integrated to complement the high-level but coarse semantic information, enriching

the final feature representations. As a result, the segmentations resulting from our

method are more accurate both volumetrically and morphologically, compared with other

deep learning based approaches. To the best of our knowledge, this work is the first

deep learning-based approach that targets the subregions of the amygdala. We also

demonstrated the feasibility of using a cycle-consistent generative adversarial network

(CycleGAN) to harmonize multi-site MRI data, and show that our method generalizes well

to challenging traumatic brain injury (TBI) datasets collected from multiple centers. This

appears to be a promising strategy for image segmentation for multiple site studies and

increased morphological variability from significant brain pathology.
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1. INTRODUCTION

The amygdala is a key regulator of emotional arousal and
is thought to regulate generalization or habituation of fear
responses in normal and abnormal development (Adolphs
et al., 2005; Knight et al., 2005; Öhman, 2005). Animal
models have been used to differentiate subregions of the
amygdala, identifying structural bases of fear generalization
in basal and lateral nuclei distinct from output projections
from centromedial regions (Amaral et al., 1992; LeDoux, 2007;
Hrybouski et al., 2016; Kwapis et al., 2017), and reliable
quantification of these substructures would be extremely useful.
Accurate segmentation of the amygdala and specific subregions
for quantitative analyses may provide better insights into fear
and emotion processing and the role of the amygdala in
traumatic brain injury and neuropsychiatric diseases. However,
as a deep heterogeneous cluster of subregions, surrounded by
vasculature, it remains an extremely difficult region to quantify.
Compared with conventional automated software (Freesurfer,
FSL), hand drawn amygdala boundaries can better capture
cumulative contributions of biological and environmental stress,
including autistic social impairment, physical abuse, institutional
neglect and poverty (Nacewicz et al., 2006; Hanson et al., 2015).
However, manual segmentation is extremely time-consuming
and is prone to biases (Maltbie et al., 2012), highlighting the
need for highly accurate automated segmentation methods.
Currently, there are no reliable segmentation tools for subnuclei
regions of the amygdala. Furthermore, the effects of image and
subject variability from scanner, protocol and brain pathology on
amygdala segmentation have not been previously investigated.

Segmentation methods for the amygdala can largely be
classified into atlas-based and learning-based categories. A high
resolution MRI atlas of the amygdala with defined subregions
was recently described (Tyszka and Pauli, 2016); however, the
utilization of this atlas to individual brain images is limited
by the ability to anatomically spatially align the atlas. A
promising strategy is the multi-atlas based method in which
the segmentation of a target image is estimated by aligning it
with one or more labeled atlases through registration (Babalola
et al., 2009; Leung et al., 2010; Hanson et al., 2012). There
is, however, a considerable computational cost associated with
multi-atlas approaches since all of the atlases need to be
deformably registered to each target image case using non-linear
deformable transformations (Hanson et al., 2012). Additionally,
the segmentation quality in multi-atlas approaches highly
depends on the selection of the atlases and the fusion algorithm
(Rohlfing et al., 2004; Aljabar et al., 2009). Other automatic
population atlas-based segmentation packages are FreeSurfer
and FSL, but overall their segmentation performances remain
not optimal (Morey et al., 2009; Schoemaker et al., 2016)
due to insensitivity to biologically-relevant variance (Hanson
et al., 2015) and failure to capture subtle boundaries of
centromedial nuclei when applied to single subjects (Saygin
et al., 2017). Furthermore, neither Freesufer nor FSL support
the segmentation of the subregions of the amygdala.Therefore,
neither Freesurfer nor FSL performance are evaluated in this
paper. A significant limitation with existing tools and prior work

in this domain is that the effects of variability across scanners and
protocols have not been investigated, nor have the effects of brain
injuries on amygdala segmentation.

Recently, convolutional neural networks (CNN) have brought
tremendous improvements in various computer vision tasks
such as image classification and segmentation (Krizhevsky
et al., 2012; Simonyan and Zisserman, 2014; He et al., 2016).
Unlike traditional machine learning, CNN as a learning based
approach can autonomously learn representations of data with
increasing levels of abstraction via multiple convolutional layers
without feature engineering. In CNNs, weights are shared
and locally connected among convolutional layers, which
significantly reduces the number of parameters compared with
fully connected layers, making CNNs especially suitable for
imaging tasks. Naturally, CNNs have been gradually becoming
the tool of choice for medical imaging tasks. In medical image
segmentation, a classification network was previously proposed
using a sliding window scheme to predict the class probability of
the center pixels of over-lapping patches (Ciresan et al., 2011).
Since such a classification makes predictions for a single pixel
at a time, this approach suffers from redundant computations
and does not benefit from correlations across pixels. Long et al.
(2015) first proposed then fully convolutional neural networks
(FCNN) in which the fully connected layers are replaced with 1x1
convolution so that the network consists of convolutional layers
only. This strategy allows dense predictions for multiple pixels
in a single forward pass, and eliminates the limitation posed by
fully connected layers on the size of the input image size. FCNN
therefore serves as an effective general purpose engine for tasks
of semantic image segmentation.

A widely-used FCNN architecture is “encoder-decoder,”
which are popularized by U-Net (Ronneberger et al., 2015),
3D U-Net (Çiçek et al., 2016), V-Net (Milletari et al., 2016),
and SegNet (Badrinarayanan et al., 2017). The encoder part
compresses the input images into lower-resolution feature maps
via downsampling or pooling layers, and the decoder part aims
to recover the full-resolution label map from these feature maps
for pixel-to-pixel semantic classification. These networks have
similar encoders—a VGG-like (Simonyan and Zisserman, 2014)
architecture is typically adopted, while they vary with respect
to their decoder strategies. Multiple up-sampling strategies have
been proposed for decoders, including deconvolution (Noh
et al., 2015), bilinear upsampling and unpooling (Badrinarayanan
et al., 2017). However, such design could pose a few problems
when segmenting structures with small spatial extent. First,
although consecutive strided convolutions or pooling operations
employed in these networks enable a large receptive field, fine
details may be lost and are difficult to remedy via simple
non-learnable upsampling strategies or skip connections. For
example, if a network has a downsample rate of 1/8 (as it
employs three max-pooling layers with 2 × 2 filters with stride
2), an object with less than 8 voxels (such as the amygdala’s
subregions) in each dimension may not be well recovered later.
Second, since down-sampling operations typically lead to great
dimension reduction, the input images of these networks need
to be large enough so as to preserve sufficient dimension after
the compression of the encoder, for being further processed
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by the decoder. But larger image patches are more likely to
be dominated by background voxels compared with smaller
ones, leading to severe class imbalance problem. This makes
the predictions more favorable to the background, which is
particularly of concern for small objects. Although a weighted
cross entropy loss function has been suggested to alleviate this
problem (Ronneberger et al., 2015; Çiçek et al., 2016), choosing
a proper weight map for all the classes is non-trivial. Another
solution could be the Dice loss function (Milletari et al., 2016)
which avoids tuning any extra hyperparameter and weighs false
negatives and false positives equally. Hence, although these
networks have plenty of success in segmentation tasks of large
structures such as brain extraction (Zhao et al., 2018), lung
(Negahdar et al., 2018), and breast segmentation (Dalmış, 2017),
specific strategies for small structures are necessary.

Compared with larger structures, smaller ones like the
amygdala and its subregions provide fewer signals to exploit,
which makes the learning of discriminative features more
challenging. Hu and Ramanan (2017) suggested that modeling
context is particularly helpful for CNNs to recognize small
objects, based on a key observation that humans can only
accurately classify small faces with evidence beyond the object
itself. In general, context can provide knowledge of a structure
with respect to its surroundings and disambiguate objects with
similar local visual appearances. Thus, incorporating context
can critically improve recognition accuracy (Galleguillos and
Belongie, 2010). In medical imaging, many studies have explored
the idea of using input patches with various sizes for modeling
multi-scale contextual information (de Brebisson and Montana,
2015; Moeskops et al., 2016; Ghafoorian et al., 2017; Kamnitsas
et al., 2017). Most of these networks are organized in a multi-
branch manner, where each branch independently processes
patches of a certain type. In other patch-based CNN approaches,
explicit spatial features obtained from a structural probabilistic
atlas are combined with CNN features to provide additional
spatial information (Kushibar et al., 2018). Another line of
efforts focuses on enlarging kernels via dilated convolutions
to integrate larger contextual information (Chen et al., 2018).
Segmenting small structures with high accuracy is therefore
reduced to the problem of finding the optimal trade-off between
capturing sufficiently large context and retaining fine details,
while alleviating the imbalanced class issue.

In light of the limitations of previous works, we present a dual-
branch dilated residual FCNN with two parallel convolutions to
extract both local context for alleviating the class imbalance issue
and more global context. Residual connections (He et al., 2016)
are added to facilitate the gradient flow and more importantly,
feature reuse from earlier layers. In order to enhance such feature
fusion, we additionally develop a top-down attention-guided
(AG) refinement unit resided on residual connections to select
useful low-level details from earlier layers to better complement
the highly semantic feature maps from deep layers, which
we believe can benefit the segmentation of small regions like
the amygdala and subnuclei on structural T1-weighted images.
In general, attention mechanisms can emphasize important
features and suppress the irrelevant ones, mimicking human
visual system, which has been broadly applied to various vision

and natural language processing tasks (Bahdanau et al., 2014).
A popular attention mechanism, “Squeeze & Excitation” (SE)
module (Hu et al., 2018) which recalibrates channels by modeling
channel interdependencies, has been shown to be effective in
some medical images segmentation tasks (Roy et al., 2018).
Different from SE, we utilize higher-level information as priors
to recalibrate lower-level channels.

This study focused on two critical areas of brain image
segmentation—(1) the parcellation of very small structures like
the subnuclei of the amygdala, and (2) the application of whole
amygdala segmentation across multiple scanners and variable
brain injuries. For the parcellation of amygdala subnuclei,
we evaluated the accuracy of our segmentation method by
comparing it to other automated methods including two deep
learning based and a multi-atlas based method. A preliminary
version of the presented work appeared in Liu et al. (2018).
We further demonstrate the benefits of the dual-branch design
by analyzing the influence of each branch on final performance
and compare the two design choices of our attention-guided
refinement unit to SE module (Hu et al., 2018), showing that
the top-down AG refinement unit is more suitable than SE
in this application, and potentially in segmentation tasks of
other small structures. Finally, we investigated a strategy to
generalize the FCNN amygdala segmentation approach to a
challenging Traumatic Brain Injury (TBI) dataset collected from
multiple sites, despite the variability of contrast and image
sensitivity across MRI scanner hardware (RF coils, in particular)
and software (pulse sequences and protocols) and increased
image heterogeneity associated with pathology, demonstrating its
robustness to real-world practice.

2. MATERIALS AND METHODS

2.1. Dataset
T1-weighted MRI data from 14 subjects (age mean (standard
deviation) 28.9 years (6.5 years); range 18.5–43.4 years), each
imaged in bothmorning and evening sessions on 2 days separated
by 1 week (four total imaging sessions) on a GE MR750 3.0
T MRI scanner with the product 8-channel head coil. All
participants provided written consent or assent as part of a
procedure approved by the Human Subjects Institutional Review
Board of the University of Wisconsin School of Medicine and
Public Health. A whole-brain 3D inversion-recovery prepared
fast gradient-echo T1- weighted sequence (inversion time TI =
600 ms; fast gradient echo readout TR/TE = 9.4/3.1 ms; 256 ×
192 matrix, resampled to 256 × 256, over 240 mm field of view
with 128 slices 1-mm thick) was prescribed as axial oblique slices
angled so that the midpoint and splenium of the corpus callosum
occupied the same plane (Nacewicz et al., 2012).

An iterative pre-processing pipeline used 3DSkullStrip
(AFNI) (Cox, 1996) to output a roughly skull-stripped image,
which was then coregistered to the MNI152 template by affine
transform in FLIRT (FSL) (Jenkinson et al., 2012), and tissue
priors reverse warped to native space for segmentation-based
bias-field correction in FAST (FSL), the dilated bias field was
applied to the original image, which was then more effectively
skull-stripped, contrast-adjusted and squared to exaggerate gray
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matter-CSF differences, re-coregistered to the MNI template for
better alignment of tissue priors and a final bias correction
with FAST. This method was developed to preserve tissue
in the lateral nucleus of the amygdala, which is otherwise
frequently misclassified as CSF and erroneously darkened by bias
corrections. The resultant images from each of the 4 sessions were
coregistered in FLIRT to an individual-subject averaged space (1
mm isotropic) representing an affine transform equidistant to all
4 session images and averaged (Nacewicz et al., 2012), followed by
landmark-based AC-PC alignment with concomitant cropping to
191 × 236 × 171 (Cox, 1996), and rotation to the “pathological
plane” to match post-mortem atlases (Nacewicz et al., 2006).

Both the left and the right amygdala were manually divided
on the 4-session averaged 1 mm isotropic T1-weighted images
into four subnuclear groups on each side—lateral, basal, cortico-
superficial (olfactory) and centromedial subregions—by an
amygdala anatomy expert (BN) based on visible landmarks
largely matching those described by Amaral et al. (1992). Details
of how subregions are defined are provided in Figure 1. We note
that the slight in-plane downsampling to 1mm and the spatial
normalization did not impair the manual labeling. Specifically,
in the coronal plane the lateral nucleus was easily isolated
due to its darker intensity. The combined basal nuclei went
from the thin white matter capsule of the cortical nucleus
medially to the intense, linear lateral border formed by the
fibers passing through the plane along this edge and with careful
effort to include the magnocellular “dogleg” portion and its
white matter capsule; and the dorsomedial boundary of the
basomedial region was formed by a straight line from the most
ventromedial extent of the visible white matter around the
“dogleg” down to the most ventromedial tip of the amygdala
clearly visible above the hippocampal head. The combined
cortico-superficial nuclei included all tissue bordering on the
ambient cistern above the semiannular sulcus ventrally up to the
more lateral of either the rhinal sulcus or lateral extent of the
optic tract, with the lateral boundary defined by the white matter
capsule of the cortical nucleus or the straight line boundary
described above for the basal group. The combined centromedial
group was bounded by white matter dorsally including a thin
boundary between the central nucleus and putamen, extended
ventromedially along the white matter forming the dorsomedial
boundary of the “dogleg” of the basolateral nucleus, then a
straight line extended dorsomedially to the more lateral of
the rhinal sulcus or optic tract. The manual labeling of 10
ROIs per individual on 14 brains with two blinded repeats
(four amygdalae) yielded intra-rater Dice overlap coefficients:
Lateral = 0.89, Basal = 0.82, Centromedial = 0.77, Superficial
= 0.75 and total amygdala using our previously published
technique yielded excellent agreement (dice = 0.94). Manual
tracing is, however, quite tedious and time-intensive, requiring
10–20 person-hours per brain, which limits application to larger
data sets. Overall, the right and the left amygdala jointly
account for about 0.05% of the whole brain volume of a
single subject. Training and evaluation of the segmentation
methods as described below were performed on single session
(non-averaged) data using the segmentation labeling from the
averaged data.

FIGURE 1 | Segmentation of subnuclear groups by landmarks visible on

single subject images. Unlabeled (left) and labeled (right) images at more

posterior (top) and anterior (middle) coronal sections with representative

histology and subdivisions from Mai et al. (3rd ed) (Mai et al., 2015). Tracing

began in the coronal section with the “dogleg” of the basolateral nucleus

(asterisk). The lateral nucleus (teal) was easily identifiable by the lower T1

intensity lateral to a linear border with the basolateral nucleus. The combined

basal nuclei (pink) was defined starting in the plane of the dogleg, with the

dorsal boundary following the thin white matter angling inferomedially along

the central nucleus. The medial boundary of the basal group extends up to but

not including the white matter encircling the cortical nucleus. A key landmark

anterior to the dogleg is a spider-like white matter formation (middle, X)

dividing all subdivisions and discernible in all single-subject images. When the

white matter of the cortical nucleus was not visible, a spot of white matter at

the triple junction with the medial nucleus (arrowhead in top and middle) or the

most medial tip of white matter between basolateral and central nucleus was

connected with the most medial extent of the subventricular/uncal white

matter (dotted line). The cortico-superficial grouping (orange) extends

superiorly to a line from the triple junction in posterior sections or the tip of

white matter above basolateral nucleus on anterior sections to the more

superolateral of the endorhinal sulcus or optic tract. The centromedial group

(blue), includes all darker tissue above these boundaries. All nuclei were then

refined to achieve smooth agreement in sagittal and axial views (bottom).

2.2. Network Backbone
To incorporate larger contexts while alleviating class imbalance,
we present a dual-branch model design (Figure 2), with one
specializing in capturing multi-scale contexts and the other
maintaining a small receptive field which helps the model focus
on the ROIs. For any given feature map U ∈ R

H×W×D,
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kernels of two different sizes are applied in parallel to perform
two transformations � :U → F̂ ∈ R

H′×W′×D′
and ψ :U →

F̃ ∈ R
H′×W′×D′

, forming two branches. In order to more
efficiently preserve information, dilated convolutions (Yu and
Koltun, 2015) in place of down-sampling layers are adopted
throughout the network, i.e., kernels are up-sampled with zeros
inserted between weights so that the receptive field of the kernels
can be expanded without incurring extra computational costs.
The gap between elements in a kernel isDk−1, whereDk denotes
the dilation rate, with standard convolution as a special case when
Dk is 1. Therefore, the two branches are composed of 33 kernels
with Dk1 ≥ 1 (dilated branch) and Dk2 = 1 (standard branch),
respectively. For example, a 53 kernel for the dilated branch is a
33 kernel with Dk = 2. Batch Normalization (Ioffe and Szegedy,
2015) and ReLU non-linearity (Glorot et al., 2011) are applied in
sequence after convolutions. Information from both branches are
then fused via element-wise summations before being fed into the
next layer (Figure 3, left):

Fl = F̂ldilated + F̃lnormal,

where Fl denotes the fused feature maps (FMs) for each layer
l. The small dilation rates designed for standard branch are to

ensure that it has a small receptive field of size 19×19×19 which
can just enclose the whole amygdala. This allows for a detailed
analysis of the ROIs and alleviates the class imbalance problem,
since the receptive field determines the number of voxels that
can influence model predictions per optimization step. For the
dilated branch, the dilation rates are empirically set to be Dk1 =
{

1, 2, 4, 2, 8, 2, 4, 2, 1
}

, resulting in a receptive field of size 53 ×
53×53, which can capture large contexts. The number of kernels
for each branch is as follows: 30, 30, 40, 40, 40, 40, 50, 50, 50. In
addition to such parallel feature fusion, residual connections
(He et al., 2016) are also integrated into the network mainly
for feature reuse (Chen et al., 2017) in series, which adds the
features from a lower layer to those from a higher layer via skip
connections (Figure 3, right). Both the parallel and serial feature
fusion are shown in Figure 3. They are further enhanced by a
top-down attention mechanism described in section 2.3.

2.3. Top-Down Attention-Guided
Refinement Unit
CNNs are known to have an inherent feature hierarchy, where
layers that are close to the inputs extract high-resolution spatial
details and deeper layers form highly semantic but coarser

FIGURE 2 | Architecture of the proposed model. “RX”s represent residual blocks (the residual connections are omitted here). The rectangles with two kernel sizes

represent parallel convolutions, as illustrated in Figure 3. The attention weights generated using higher-level feature priors, denoted as blue arrows, are multiplied with

the lower-level channels; then, the reweighted lower-level features are used to refine the next layers, as shown by gray arrow. Each layer except for the final

classification layer (orange) is followed by batch normalization and ReLU.

FIGURE 3 | Feature fusion in parallel (Left) and series (Right): kernels of two different sizes are applied in parallel, and the resultant feature maps are fused via

element-wise summation; standard residual connections are adopted for serial feature fusion, where features from earlier layers are incorporated into deeper layers.
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features. A number of deep learning studies have explored to
fuse multi-level features from different layers to enrich the
feature representation (Hariharan et al., 2015; Long et al., 2015;
Ronneberger et al., 2015; Lin et al., 2017; Zhang et al., 2018).
Especially, segmentation of small objects is found to benefit from
such feature reuse from earlier layers where fine-grained low-
level details are abundant (Shrivastava et al., 2016; Lin et al.,
2017). Nevertheless, indiscriminately fusing the different levels
of features may not always be effective due to the semantic
dissimilarity empirically found by Zhang et al. (2018). Motivated
by their observation, we propose a top-down attention-guided
refinement unit based on residual connections to supplement
the typical feed-forward, bottom-up CNN, where the abundant
semantic information from the higher layers can highlight and
select the low-level details from lower layers, as shown in
Figure 4. Given a set of features maps from earlier layers Flow ∈
R
C′×H×W×D, a set from higher layers Fhigh ∈ R

C′′×H×W×D, and

the attention coefficients α ∈ R
1×1×1×C′

the refined feature maps
from higher layers can be defined as:

F′high = Fhigh + d(α ⊗ Flow),

FIGURE 4 | Top-down attention-guided refinement unit on residual

connections, where lower-level features are recalibrated by higher-level

information and incorporated into deeper layers. “FMs” denotes as feature

maps. Channel-wise statistics of higher-level information are first extracted by

global average pooling, and the interdependencies among channels are

modeled by a 1× 1× 1 convolution followed by the sigmoid activation. The

reweighted lower-level features are then added to the higher-level features.

where ⊗ denotes element-wise multiplication, F = Fdilated +
Fnormal for all layers,and d(·) represent 1 × 1 × 1 convolutions
for aligning the dimensionality of that of the higher-level feature
maps. α is formulated as the following:

α = [α1,α2, ...,αc],

αc = σ (Z(B(Conv1×1×1(AvgPool(Fhigh))))),

where Z represents the rectified linear unit (ReLU) function,
which provides non-linearity by setting negative values as
zeros and keeping positive ones constant; B denotes the batch
normalization (Ioffe and Szegedy, 2015) , which can accelerate
and stabilize network training by standardizing each training
batch; and σ denotes the sigmoid function for rescaling the
attention coefficients to [0, 1].

2.4. Evaluation in a Multi-Site Data Set With
Brain Pathology
Amygdala segmentation strategies with CNN methods were also
evaluated in a T1-weighted structural imaging study of children
ages 9–18 years with severe traumatic brain injury (TBI) scanned
1–2 years after the injury. Twenty-one children (13F/8M) ages 9–
18 years were scanned with T1w imaging at 13 sites with differing
3T MRI scanner systems, RF coils and pulse sequences. Among
the TBI scans, 9 sites scanned one subject, 3 sites scanned two
subjects and 1 site scanned six subjects. Representative images
are shown in Figure 5. The data collection was approved by the
Institutional Review Boards for each site and parental assent and
informed consent was obtained for all subjects. Similar imaging
protocols were employed across sites (3D T1w MP-RAGE (TI =
900 ms on Siemens and Philips) or BRAVO IR-fSPGR (TI = 450
ms on GE) with 1 mm isotropic spatial resolution (256 mm FOV
with 256 × 256 matrix and 192 sagittal slices at 1 mm thick);
however, there was variability between sites in terms of scanner
manufacturers and models, RF coils, and pulse sequences, which
affected spatial sensitivity, contrast, and image quality. Further,
the severity, type and localization of injuries was extremely
heterogeneous across sites. All these issues pose challenges on
the applicability of CNNs, which typically do not generalize well
to data whose distribution is different from that of the training
data (Gibson et al., 2018a). Prior studies onmulti-site generalized
segmentation either retrains the model directly on multi-site
data (Gibson et al., 2018a) or fine-tunes the domain-specific

FIGURE 5 | Representative images at similar anatomic levels from the source domain (a healthy subject, the leftmost) and target domains (3 TBI patients in the 3

rightmost frames). The slices were selected to highlight the lesion pathology and not the amygdala.
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parameters (Karani et al., 2018) of the model, both requiring a
few labeled target images from the new sites. In this study, we
instead resort to pixel-level image adaptation, aiming to directly
segment the full amygdala volumes from the multi-site images
without the corresponding labels. We did not attempt to evaluate
the segmentation of amygdala subregions for this multi-site study
because manual labeling was deemed impractical for these data
due to insufficient data quality for reliable identification.

As there was considerable site-to-site variability, we
investigated the utility of a cycle-consistent generative adversarial
network approach (CycleGAN) (Zhu et al., 2017) to harmonize
the image contrast with the training data. CycleGANhas not been
applied to multi-site data harmonization before, to the best of our
knowledge. Specifically, the distribution of multi-site target data
is transformed into source-like distribution while the appearance
of the target images are preserved. In this way, a pre-trained
segmentation model can be directly applied to the adapted
target images without prior assumptions on scanner/protocol
deviations. CycleGAN consists of two generators that learn two
mappings, respectively, G1 : S → T and G2 :T → S, and two
discriminatorsD1,D2 that distinguish the generated images from
the real ones for each domain. In particular, we are interested in
the generator G2 that transforms the target images into realistic
source-like images, i.e., G2(xt) = xt→s. The distribution of the
target and source images are aligned by applying adversarial
losses (Goodfellow et al., 2014) where G tries to confuse D by
producing realistic source-like images. Cycle-consistent losses
(Zhu et al., 2017) computed by l1 distance are also applied to
ensure that the generated target images are similar to the original
ones. The transformed target images eventually obtained from
the CycleGAN will be rendered as if they are drawn from the
source domain, with the contents preserved. The total loss is
defined as:

Ltotal(G1,G2,D1,D2) = Ladv(G1,D2)+ Ladv(G2,D1)

+λLcyc(G1,G2),

where λ is used to modulate the strength of the cycle consistency.

2.5. Implementation Details
The proposed segmentation method was implemented in
PyTorch, using one Titan Xp GPU for training. Categorical cross
entropy was employed as the cost function, optimized via the
Adam solver with an initial learning rate of 0.001, scheduled to

decay as lr = lrinitial ∗
(

1− itern
totaliter

)power
, where power was set to

0.9. Weights in each layer were initially drawn from a zero-based
Gaussian distribution with standard deviation of

√
2/ni, where n

denotes the number of units in a kernel of the layer l (He et al.,
2016). Bias were initialized at zero. Training was performed in
batches of 14 image patches. In each iteration, 11 patches of size
59× 59× 59 were sampled from the whole brain and fed into the
model. During inference, 105×105×105 patches were used. For
comparison, training of the other deep learning based methods,
i.e., HighRes3DNet (Li et al., 2017), DeepMedic (Kamnitsas et al.,
2017) were implemented in Tensorflow (Gibson et al., 2018b)
following their original settings in the respective papers, i.e.,

Dice loss (Milletari et al., 2016) was used in HighRes3DNet
and categorical cross entropy in DeepMedic. An existing multi-
atlas based method (Wang et al., 2014) was also evaluated for
comparison in a leave-one-out fashion: 13 atlases were used
for training and one atlas for evaluation. For all the deep
learning based methods evaluated, a 7-fold cross validation was
performed. In each fold, 10 subjects were used for training, 2
for validation and 2 for testing. The models were trained with
a fixed number of epochs. The model parameters in the epoch
that resulted in best performance (i.e., highest average dice) on
the validation set were used to segment the test set. Performance
of all methods on the test set was reported.

For multi-site MR image harmonization, we trained the
CycleGAN on the coronal view of all the images from all
domains. For the architecture choices, we followed the original
settings: two convolutions with stride of 2, 9 residual blocks, two
fractionally strided convolutions with stride 1

2 are employed as
the generator (Johnson et al., 2016), and 70 × 70 PatchGAN
(Isola et al., 2017) is employed as the discriminator which aims
to detect 70 × 70 image patches as real or fake. In total 3,304
slices from the source data and 5,900 slices from the TBI data are
used for training. Each slice is randomly cropped to 128 × 128
before being fed into the CycleGAN. Data augmentation includes
random rotation with angles of γ · 90◦, where γ ∈ [0, 1, 2, 3],
and scaling with factors 0.8, 1, 1.2. For comparison only, we also
conducted supervised training by training a model using the
labeled TBI data in a 7-fold cross validation scheme, and the
above-mentionedmulti-atlas basedmethod which was trained on
the source data in a leave-one-out cross validation scheme and
then directly applied to the TBI data. Results are summarized and
analyzed in section 3.4.

2.6. Evaluation Metrics
The pair-wise similarity and discrepancy of our automatic
(A) and manual segmentation (M) were evaluated using the
commonly employed Dice Similarity Coefficient (DSC):

DSC = 2|A ∩M|
|A| + |M| ,

whose value ranges from zero to 1, where 1 indicates 100%
with the ground truth, and 0 indicates no overlap. However,
volumetric overlap measures are not sensitive to the contour of
the segmentation output, while the latter is important in many
medical applications such as disease diagnosis and treatment
planning, as is also the case for the amygdala (Shenton et al.,
2002; Tang et al., 2015; Yoon et al., 2016). Thus, we additionally
consider a distance-based metric—the average symmetric surface
distance (ASSD) (Geremia et al., 2011) in our evaluation. ASSD
is defined as the average of distances between border voxels
of our automatic segmentation output and those of manual
segmentation output:

ASSD

=
∑

m∈B(M) mina∈B(A)||m− a|| +
∑

a∈B(A) minm∈B(M)||a−m||
|B(M)| + |B(A)| ,
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where B(·) denotes the set containing all the voxels on the border.
Zero value for this measure indicates a perfect segmentation.

3. RESULTS

In this section, we present qualitative and quantitative results
for our model and conduct ablation studies to demonstrate the
effectiveness of each proposed component. We also compare
the results of the proposed method with several state-of-the-art
methods on the same dataset. Finally, we explore the feasibility
of harmonizing the multi-site TBI data using CycleGAN and
show the generalized capability of our method. Wilcoxon signed
rank tests (two-sided) are used for performance comparison
throughout the analysis.

3.1. Single-Branch vs. Dual-Branch
Here we demonstrate the advantages of the dual-branch design
by investigating the influences of each single branch. Experiments
of using the dilated and standard branch separately are conducted
in the same 7-fold cross validation scheme. Each branch is
equippedwith residual connections as in the original dual-branch
setting. It can be observed in Table 1 that the dilated branch,
which has a significantly larger receptive field, performs better on
larger subregions (lateral, basal), while the standard branchwith a
smaller receptive field is better at segmenting smaller subregions,
especially on the cortico-superficial subregions (p = 0.007).
Additionally, the dilated branch yields significantly lower ASSD
values than the standard branch on all subregions (p<0.05). The
dual-branch network inherits the merits of each single branch

and achieves best overall accuracy in terms of both Dice and
ASSD. Qualitative results of the compared models are shown
in Figure 6.

3.2. Top-Down Attention-Guided
Refinement Unit
We also tested the effectiveness of the proposed top-down
attention guided feature refinement scheme for further boosting
the accuracy. Two variants were explored: “local reweighting”
and “global reweighting,” as illustrated in Figure 7. These were
compare with the SE blocks (Hu et al., 2018) that are also
placed on the residual connections. Table 2 shows that the “local
reweighting” scheme yields best overall Dice, especially on the
cortical-superifical subregions (p < 0.05) which are the most
challenging due to the smallest volume-to-surface ratio. Thus, we
employ a “local reweighting” scheme for the attention module.
Meanwhile, we can observe that the addition of either the “global
reweighting” scheme or the SE blocks results in comparable or
increased model complexity, while the results get slightly worse.
This demonstrates that the improvements are indeed due to
better feature refinement resulting from the locally top-down
attention module, and not simply from the increased capacity of
the model.

3.3. Comparison With Other
State-of-the-Art Methods
In order to demonstrate the advantage of the proposed method,
we compared our method with some other popular publicly
available segmentation methods including two deep learning

TABLE 1 | Dice overlap (columns 2–4) and ASSD (columns 5–7) performance of both single branch models and the dual-branch model.

Subregions Dice (%) ASSD (mm)

Dilated standard Dual Dilated standard Dual

Lateral 80.6 (6.6) 77.9 (7.7) 82.6 (5.0) 0.70 (0.24) 2.66 (1.90) 0.68 (0.31)

Basal 76.6 (6.6) 75.9 (6.1) 77.3 (6.0) 0.70 (0.15) 1.10 (0.68) 0.71 (0.20)

Centromedial 73.7 (7.7) 76.7 (5.2) 75.4 (5.3) 0.61 (0.16) 1.00 (0.66) 0.61 (0.20)

Cortical-Superficial 71.7 (5.7) 72.2 (5.6) 73.1 (5.6) 0.96 (0.44) 1.94 (2.00) 0.81 (0.33)

Mean 75.6 (7.4) 75.7 (6.5) 77.1 (6.4) 0.74 (0.30) 1.67 (1.59) 0.70 (0.27)

Subregions are listed in descending order by their volume-to-surface ratio. Highest are highlighted in bold and the second highest are underlined. The dual-branch model performance

was either highest or second highest for all regions in terms of both Dice overlap or ASSD.

FIGURE 6 | Qualitative segmentation examples show influences of each single branch on the final dual-branch model. The incorporation of larger context (Dilated

branch) enables the final model to better localize the subregions, thus reducing false positives (the scattered misclassified background voxels, as seen on the

Standard Branch result), while standard branch helps refine the appearance details of the final output.
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FIGURE 7 | Two variants of the proposed top-down attention. RX denotes the residual blocks (residual connections are omitted here).

TABLE 2 | Comparison for the Dice score (%) of the two variants and the SE

blocks against the baseline (dual-branch model) and the percentage increase in

model complexity.

Subregions Baseline SE Global Local

Lateral 82.6 (5.0) 81.2 (7.1) 83.4 (5.1) 82.8 (5.2)

Basal 77.3 (6.0) 76.9 (5.7) 77.2 (5.5) 77.6 (5.3)

Centromedial 75.4 (5.3) 74.5 (6.2) 76.3 (5.1) 76.6 (5.6)

Cortical-Superficial 73.1 (5.6) 71.7 (5.1) 72.5 (5.8) 74.7 (5.6)

Mean 77.1 (6.4) 76.1 (6.9) 77.4 (6.7) 78.0 (6.1)

Parameters (%

increase)

0.795M (–) 0.811M

(+2.0%)

0.808M

(+1.6%)

0.808M

(+1.6%)

The largest value in each row is bold faced.

models, DeepMedic and HighRes3DNet, and a multi-atlas based
algorithm. HighRes3DNet is a state-of-the-art method in brain
parcellation for 155 neuroanatomical structures (not including
extremely small brain structures such as the subregions of the
amygdala), and DeepMedic has shown excellent performance in
lesion segmentation. Results (Table 3) show that our method
exhibited superior performance in terms of both Dice and ASSD
in this application. The differences in Dice with DeepMedic on
the lateral (p = 0.04), basal (p = 0.03) and cortical-superficial
(p < 0.005) subregions were significant. In particular, our
method demonstrated substantial improvements for the cortical-
superficial subregions thanks to the top-down attention guided
refinement module. DeepMedic performed better ASSD on the
basal subregions (p < 0.005) and our method were better at the
cortical-superficial subregions (p < 0.03). Compared to multi-
atlas, our method yielded significantly better Dice on the lateral,
basal and cortical-superficial subregions (p < 0.05; p < 0.05;
p < 10−3, respectively). There was no statistically significant
differences on ASSD between our method and the multi-atlas
based method.

3.4. Generalization on Multi-Site TBI
Dataset
Whole-amygdala segmentation performance on the training data
is reported in Table 4, which shows a roughly 90% overlap
between the algorithm and ground truth. We investigated the

generalization of the proposed method on a challenging multi-
site TBI dataset by directly applying the trained whole-amygdala
segmentation model to the TBI data. The results were evaluated
relative to the “gold standard” defined by manual correction of
Freesurfer amygdala segmentations by an expert (GK). Both Dice
overlaps and ASSD were computed. For comparison only, we
also conducted supervised training with TBI labels (corrected
Freesurfer segmentations). As the objective was to evaluate
the utility of CycleGAN for improving deep neural network
(DNN)’s performance when testing on out-of-distribution data,
the performance of competing CNN methods on the multi-
site TBI data was not evaluated for these data. It is clear from
Table 5 that a direct application of our trained model to the
multi-site data demonstrated very poor performance, while after
harmonization by CycleGAN, the trained model’s performance
on target data was significantly improved (p < 10−6). Supervised
training yielded slightly higher performance. The multi-atlas
based method, which is much less affected by the shift in data
distribution, demonstrated similar performance to our method
after harmonization, though the processing time is considerably
longer. It should be noted that the segmentation performance
for all the approaches was substantially lower than for the
segmentation applied to the training data (Table 4). Qualitative
results for one subject are shown in Figure 8.

4. DISCUSSION

In this study, we present a lightweight dual-branch residual
FCNN with enhanced feature refinement to segment the
subregions of the amygdala. Parallel branches with different
dilation rates are used to process objects with different scales as
well as extract more global contexts, and a top-down attention-
guided refinement unit is proposed to guide the selection of
lower level details for better feature refinement. We evaluated
our method on MRI image data acquired from a cohort of
adolescents. The results show that the proposed method achieved
better performance as compared to several existing state-of-
the-art segmentation methods. Meanwhile, our approach takes
several seconds to segment the data of a subject, which is orders
of magnitude faster than the multi-atlas based approach. This
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opens up the potential for real-time use during MRI acquisition,
which would facilitate individualized functional, structural or
spectroscopic imaging of small anatomical structures.

From the results of using each branch separately, we found
that the performance on objects of different scales can be
critically influenced by the receptive fields, and the proper
receptive fields is correlated with the scale of objects. Our dual-
branch design with different receptive fields thus flexibly adapt
to subregions of different scales. Furthermore, although the
standard branch with a small receptive field is prone to spatial
inconsistencies due to local similarities, dilated branch remedies
this effect by incorporating more global contextual information
via dilated convolutions. The significantly lower ASSD values
it yields suggest that dilated branch is especially effective in
reducing such false positives, indicating its strong localization
ability for ROIs and boundaries. This suggests that each branch
provides complementary information toward the solution of the
segmentation problem. Benefiting from both branches, the final
model obtained substantially more accurate segmentation results
both volumetrically and morphologically.

Besides the lightweight dual-branch backbone, we also explore
the idea of multi-scale fusion and enhance it with a top-
down attention-guided refinement unit. An important design
choice for the proposed refinement unit is the strategy to
use more local or global high-level information as the guide.
The results indicate that the local refinement scheme may be
more suitable and it is especially advantageous in small and
challenging subregions (cortical-superficial). This is consistent
with our hypothesis that smaller objects tend to benefit more
from feature reuse. Interestingly, the comparison with SE blocks
suggest that SE blocks inhibit rather than emphasize the ROIs
in this application, as also found in Roy et al. (2018). This
may due to the small size of the features of the ROIs whose
contribution to the whole feature maps are less significant
compared with other features of the same level and are thus
suppressed. We therefore speculate that the top-down design,

which utilizes higher semantic and categorical information as
priors to determine the importance the lower-level features,
may alleviate this problem and thus may be more suitable for
segmentation tasks of small objects.

In comparisons with two other state-of-the-art deep learning
models, our method shows superior performance in terms of
both Dice overlap and ASSD. Notably, all evaluated models
contain comparable parameters and therefore comparable
capacities, while they vary in their topological structures.
HighRes3DNet consists of consecutive 20 dilated residual
convolutional layers with progressively enlarged dilation rates.
It shares many key components with the backbone of our
model such as the dilated residual convolutions, but has them
connected in series only while ours also in parallel. Such serial
connections result in an overly large receptive field (87 ×
87 × 87) which causes severe class imbalance in segmenting
small and compact subregions that cannot seem to be well
resolved by using Dice loss, as indicated in Table 3. This also
demonstrates the benefit of having an another branch that
maintains a small receptive field in our model design. DeepMedic
consists of two independent branches with the second branch
processing a low-resolution version of the inputs. Compared
with HighRes3DNet, the architecture of DeepMedic is flexible
enough to process input segments with smaller spatial sizes,
which can inherently balance the distribution of different classes.
DeepMedic also exploits multi-scale learning scheme, but the
responses of two branches are not fused until the very end of

TABLE 4 | Dice overlap performance on the main training dataset using a

leave-one-out approach (described in section 2.1).

Amygdala L. Amyg R.Amyg Mean

Dice (%) 90.6 (2.1) 90.5 (2.1) 90.6 (1.9)

This trained model is also applied to the harmonized TBI dataset.

TABLE 3 | Mean and standard deviation of the Dice scores and ASSD for the proposed method, two other state-of-the-art deep learning based and a multi-atlas based

segmentation methods evaluated on subregions.

Methods Lateral Basal Centromedial Cortical-Superficial Mean

DICE (%)

Multi-atlas 80.3 (7.0) 75.4 (6.1) 75.2 (6.4) 69.9 (5.7) 75.2 (7.3)

HighRes3DNet 68.1 (11.4) 69.3 (7.0) 25.3 (34.5) 65.8 (6.7) 57.1 (26.1)

DeepMedic 80.5 (7.5) 75.6 (6.5) 75.5 (5.3) 71.6 (4.2) 75.8 (6.7)

Dual (Ours) 82.6 (5.2) 77.3 (6.0) 75.4 (5.3) 73.1 (5.6) 77.1 (6.4)

Dual + Top-down Att (Ours) 82.8 (5.0) 77.6 (5.3) 76.6 (5.7) 74.7 (5.4) 78.0 (6.1)

ASSD (mm)

Multi-atlas 0.60 (0.20) 0.73 (0.16) 0.54 (0.12) 0.75 (0.16) 0.66 (0.18)

HighRes3DNet 2.00 (1.26) 1.20 (0.43) 16.63 (12.20) 1.18 (0.51) 5.25 (8.96)

DeepMedic 1.13 (1.11) 0.52 (0.36) 0.76 (0.67) 1.37 (1.01) 0.94 (0.89)

Dual (Ours) 0.67 (0.31) 0.71 (0.20) 0.61 (0.20) 0.81 (0.33) 0.70 (0.27)

Dual + Top-down Att (Ours) 0.94 (1.30) 0.69 (0.15) 0.67 (0.42) 0.73 (0.22) 0.76 (0.70)

“Dual” denotes the proposed segmentation model without the top-down attention guided feature refinement module. Highest are highlighted in bold and the second highest are

underlined.
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TABLE 5 | Performance before and after harmonization using CycleGAN and supervised training using TBI labeled data, and a multi-atlas method.

Settings No harmonization After harmonization Supervised Multi-atlas

Dice (%) 42.4 (21.8) 75.5 (6.7) 76.0 (9.6) 75.0 (8.4)

ASSD (mm) N/A 1.2 (0.7) 1.9 (1.7) 0.9 (2.9)

FIGURE 8 | Qualitative results of whole-amygdala segmentation in a single TBI scan. Automated segmentation results are shown in orange and yellow, and the

ground truth expert labeled segmentations are shown in green. The overlays show that the segmentation was very poor before CycleGAN harmonization (2nd

column), but much improved after harmonization.

the network. In contrast, our model encourages interactions of
multi-resolution features both in parallel and in series. This
could explain the improved performance of even our dual-branch
model with respect to DeepMedic, though they have the same
model complexity.

Finally, we evaluate the generalizability of our method on a
multi-site TBI dataset by first pre-training the model on the main
dataset and then directly applying it to the TBI data. In order to
address domain shifts, we explore the feasibility of harmonizing
the multi-site data using CycleGAN, which is shown to be
effective and nearly closes the gap to supervised training (i.e.,
training with TBI labels) in this application. Comparing the
Dice overlap performance of the supervised training on the
main dataset and the TBI dataset, the accuracy drop on TBI
data (90% to 76%) may be attributed to high variations due to
heterogeneous scanning methods and anatomical injuries. Thus,
larger labeled datasets are desired for better training for TBI
studies, which however are often not feasible in medical imaging
where expert-defined labels are often rare. Our results show that
after a decent data harmonization by CycleGAN, using a single
small set (N ≈ 14) of high-quality labeled data (even though they
are healthy subjects) can approximate the accuracy of directly
training with a few (N ≈ 21) TBI labeled data. This suggests
that our solution makes it possible to reuse labels from different
domains and thus alleviate the burdens for labeling. Another
important advantage is that knowledge of sources of biases from
scanners/protocols are not required for harmonization using
CycleGAN. A limitation, however, is that CycleGAN only adapts
images at pixel-level while feature spaces should ideally be aligned
as well for better domain adaptation, which we leave for future
works. Another limitation with this study was that only the
whole amygdala segmentations were evaluated because the raw
T1-weighted images were not of sufficient quality for expert
manual labeling of the subregions.

5. CONCLUSION

In this study, we presented a novel dual-branch dilated
residual FCNN with enhanced feature fusion via a top-down
attention-guided refinement unit to segment the subregions
of the amygdala with high accuracy. Each branch with a
different receptive field demonstrated specialized ability of
processing objects of the corresponding scale, thus providing
complementary information. Also, we found that the proposed
attention-guided feature refinement module may be more
suitable than the SE blocks in segmenting small structures due
to the top-down design. The proposed model showed superior
performance compared with two state-of-the-art deep learning
methods. Our method also shows decent generalizability on a
challenging multi-site TBI dataset without needing to be re-
trained, after harmonizing the TBI data using a CycleGAN.
We believe that our findings and the model design could
provide insights especially on generalized segmentation of
small objects, which are relatively under-studied, and the high
efficiency of our technique will potentially benefit real-time use
in clinical practices.
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