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Gut integrity impairment leading to increased intestinal permeability (IP) is hypothesized
to be a trigger of critically illness. Approximately 15–20% of human ischemic stroke (IS)
victims require intensive care, including patients with impaired level of consciousness
or a high risk for developing life-threatening cerebral edema. Local and systemic
inflammatory reactions are a major component of the IS pathophysiology and can
significantly aggravate brain tissue damage. Intracerebral inflammatory processes
following IS have been well studied. Until now, less is known about systemic
inflammatory responses and IS consequences apart from a frequently observed post-
IS immunosuppression. Here, we provide a hypothesis of a crosstalk between systemic
acute phase response (APR), IP and potential secondary brain damage during acute and
subacute IS stages supported by preliminary experimental data. Alterations of the acute
phase proteins (APPs) C-reactive protein and lipopolysaccharide-binding protein and
serum level changes of antibodies directed against Escherichia coli-cell extract antigen
(IgA-, IgM-, and IgG-anti-E. coli) were investigated at 1, 2, and 7 days following IS in
ten male sheep. We found an increase of both APPs as well as a decrease of all anti-
E. coli antibodies within 48 h following IS. This may indicate an early systemic APR and
increased IP, and underlines the importance of the increasingly recognized gut-brain axis
and of intestinal antigen release for systemic immune responses in acute and subacute
stroke stages.
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INTRODUCTION

Gut integrity (GI) plays an important role in balancing permeable
gut functions required for the uptake of nutritional components
versus preventive functions such as forming a barrier against
pathogen egress (Doig et al., 1998; Otani and Coopersmith,
2019). GI impairment and subsequently increased intestinal
permeability (IP) are believed to be a major pathophysiological
elements in a number of severe conditions. They have been
described in chronic heart failure (Doig et al., 1998; Sandek
et al., 2014), complications in intensive care unit (ICU)
patients (Klehmet et al., 2009) and in individuals undergoing
cardiopulmonary bypass (Riddington et al., 1996), as well as
after traumatic brain injury (Bansal et al., 2009). GI impairment
and increased IP are supposed to be related to inadequate
mucosal perfusion (Doig et al., 1998; Klehmet et al., 2009;
Sandek et al., 2014) or a potential epithelial disruption by
proinflammatory cytokines such as TNF-α (Triantafilou and
Triantafilou, 2002). Decreased intestinal blood flow and increased
proliferation of mucosal bacteria were correlated with a higher
level of systemic anti-lipopolysaccharide (LPS) IgA in patients
with critical chronic heart failure (Sandek et al., 2014).

Despite the recent advances in acute ischemic stroke (IS)
management and care (Saver et al., 2016), IS is still a leading
cause of chronic disability and death (Zazulia, 2009). Next
to primary ischemic and secondary neuroinflammatory brain
damage, IS patients also suffer from systemic stroke sequelae such
as stroke-induced systemic immune suppression (SIIS) leading
to pneumonia or severe gut alterations including dysmotility,
microbiotic dysbiosis, and bleedings (Arya and Hu, 2018). While
SIIS and related pulmonary infections have been investigated
decently (Prass et al., 2003; Dirnagl et al., 2007; Klehmet et al.,
2009), not much is known about intestinal epithelial barrier
dysfunction following IS. Since GI and increased IP could
serve as an important systemic immunological and inflammation
trigger, they have recently been discussed as potential elements
of systemic IS pathophysiology and as potential therapeutic
targets (Zazulia, 2009; Wen and Wong, 2017). Based on a set of
preliminary experimental data, we hypothesize that an impaired
GI with increased IP can emerge after IS and could potentially
pave the way for endogenous gut-borne infections, or fuel
reciprocal immune responses leading to secondary brain damage.

INTESTINAL PERMEABILITY AND
STROKE MODELS

Recent investigations on the role of the microbiome in mouse
IS models suggested a protective function of bacteria in the
conventional gut flora as intestinal dysbiosis was associated with
poor outcome (Winek et al., 2016; Sadler et al., 2017). However,
rodent data on disturbed GI and increased IP following IS
are controversial. Some studies report bacterial translocation
and sepsis after IS in rats and aged mice (Crasper et al.,
2016), while others did not find evidence for increased IP and
bacterial translocation 3 days after transient middle cerebral
artery occlusion (Oyama et al., 2018). This may raise the question

whether these findings from rodent IS models might be breed-,
supplier- or even model-specific.

The Stroke Treatment Academic Industry Roundtable
(STAIR) expert consortium recommends the additional use
of suitable gyrencephalic models of focal cerebral ischemia to
increase the validity of experimental findings (Fisher et al., 2009).
Due to a closer similarity to humans regarding neuroanatomical
and physiological features, large animal models are believed to
mimic the clinical situation of human stroke patients realistically
(Dirnagl et al., 2013). In particular, large animals might be
useful to investigate GI breakdown and increased IP after IS.
Ruminants, for which IS models are available (Boltze et al.,
2008; Wells et al., 2012), possess a much larger gastrointestinal
tract than rodents and humans in both absolute and relative
terms, and a higher physiological bacteria load, what may
be an advantage when aiming to detect potential systemic
immunological consequences.

HYPOTHESIS: STROKE-INDUCED
ACUTE PHASE RESPONSE AND
INCREASED INTESTINAL
PERMEABILITY LEAD TO SECONDARY
BRAIN DAMAGE

The mechanism behind a potential GI impairment and increased
IP after IS remain poorly understood. Hypothetically, impaired
GI and increased IP can be caused by inadequate mucosal
perfusion or epithelial breakdown mediated by proinflammatory
cytokines such as TNF-α or zonulin. This has been described
in the context of ischemic diseases and reduced organ motility
(Rahman et al., 2018). Indeed, inflammatory cytokines can
compromise intestinal mucosa integrity by affecting endothelial
(gate) and tight junction (fence) functions (Bruewer et al., 2003).

Within minutes, IS leads to a four-step process of ischemia-
related blood-brain barrier breakdown (BBB) in peri-infarct
regions (Ballabh et al., 2004; Sandoval and Witt, 2008; Krueger
et al., 2015), accompanied by endothelial cell damage and loss
(Krueger et al., 2015). BBB disruption then facilitates exchange
of blood components and brain antigens such as brain myelin
basic protein (del Zoppo and Mabuchi, 2003; Offner et al.,
2006; Krueger et al., 2015). Inflammatory cytokines are released
into the circulation in large amounts after IS and hence could
inflict “off-site” damage to the intestinal mucosa. Moreover,
inflammatory cytokines induce the production of acute phase
proteins (APPs) in the liver, but interestingly also in intestinal
epithelium (Molmenti et al., 1993; Wang et al., 1998). Some
APPs, such as serum amyloid A (SAA) stimulate inflammatory
cytokine production themselves, providing a positive feedback
mechanism. SAA, once present in the circulation, also increases
the recruitment of immune cells to inflammatory sites. Other
APPs, such as coagulation factors and plasminogen activator-
inhibitor foster coagulation and might negatively affect perfusion,
contributing to thromboinflammation in cerebral and intestinal
capillaries. A vicious circle finally leading to increased secondary
brain damage might evolve (Figure 1).
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FIGURE 1 | Schematic illustration of a hypothetical pathophysiological cascade following ischemic stroke (IS): the innate immune system is activated by cerebral
ischemia due to release of inflammatory cytokines after blood-barrier-breakdown. Hence, these cytokines could directly inflict “off-site” damage to the intestinal
mucosa and induce the production of APPs such as serum amyloid A (SAA), coagulation factor and plasminogen activator inhibitor (PAI). SAA itself stimulates further
inflammatory cytokine production via positive feedback stimulation. Other APPs, such as coagulation factors and PAI can impair capillary perfusion and, importantly,
increase IP which is associated with bacterial translocation. Consequently, both pathways increase the amount of pro-inflammatory mediators, which leads to a
prolonged inflammatory stage following IS. Red lines: established mechanisms, green lines: potential mechanisms (according to our hypothesis). Whether or not
adaptive immune processes, augmented by the translocation of bacteria and bacterial antigens from the gut, can inflict secondary brain damage is entirely
speculative (dotted green line, upper left).

STATEMENT OF HYPOTHESIS

Collection of Preliminary Data to Support
the Hypothesis
In order to find support for abovementioned hypothesis, we
took advantage of a running experiment in an ovine IS model
in which peripheral blood samples were collected at days 1,
2, and 7 following IS. We focused on signs for potential
(i) acute phase response (APR), (ii) IP alterations, and (iii)
interaction between intestinal antigen translocation and systemic
inflammation. Specifically, we determined levels of the APPs
C-reactive protein (CRP), lipopolysaccharide-binding protein
(LBP), and of and IgA-, IgM-, and IgG-anti-E. coli antibodies
1, 2, and 7d following IS. E. coli belongs to the physiological
adhesive intestinal flora in sheep (Wang et al., 1998), but
does not egress from the intestine in the steady state. Hence,
changes of IgA-, IgM-, and IgG-anti-E. coli antibody levels
could reflect IP alterations following IS. Animals were subjected
to permanent middle cerebral artery occlusion (pMCAO) as
described elsewhere (Boltze et al., 2008). Please refer to the
Supplementary Material for methodological details.

All animals were considered clinically healthy prior to
surgery (for further details see Supplementary Tables S1 and
Supplementary Tables S2). Animal health was assessed one day
after pMCAO and every second day thereafter. No clinical signs
of infection (e.g., fever) were observed. A standardized anesthesia
and medication scheme was performed in all animals (see
Supplementary Table S3). However, two animals with massive
strokes were sacrificed 1d post IS due to severe neurological
dysfunction and rapid worsening of general condition. These
animals were excluded from further analysis. Stroke induction
failed in one animal (no IS at day 1). Since this particular animal
underwent the same procedure as other pMCAO animals, it
was kept and served as a sham reference to control for surgery-
related effects in APR.

Findings
Imaging Findings
Combined positron-emission tomography and magnetic
resonance (PET/MR) imaging confirmed a perfusion deficit
corresponding to the ischemic area within the MCA territory
at day 1 after pMCAO in all but the sham reference animal
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(Supplementary Figure SF1B). Details on the lesion and
lesion size (t2w TSE defect volume in ml) at days 1 and 7
post pMCAO are given in Supplementary Figure SF1 and
Supplementary Table S4.

Systemic Acute Phase Protein Levels
Average CRP plasma levels tended to increase on day 1
after pMCAO as compared to baseline (p = 0.067), but not
on day 2 (p = 0.213) and day 7 (p = 0.241, Figure 2).
Statistically significantly increased levels of mean LBP were
detected on day 1 (p = 0.002) and day 2 (p < 0.001)
when compared to baseline (Figure 2). At each time point
(baseline/1d/2d/7d), a relatively high inter-individual variability
could be detected for CRP (39.6%/41.3%/35.7%/43.2%) and LBP
(39.5%/41.7%/19.7%/101.5%). Baseline-corrected values showed
a significant increase of CRP on day 1 (p = 0.028), while LBP was
increased on day 1 (p = 0.002) and 2 (p < 0.001; all Figure 3).
Baseline APP values in the sham reference animal were higher
than in other subjects, but followed a similar kinetic except for a
slight decrease of CRP values at d1 (Figure 2, green crosses).

IgA-, IgM-, and IgG-Anti-Escherichia coli Antibodies
Average plasma levels of IgA-, IgM-, and IgG-anti-E. coli
antibodies decreased within the first 2 days after pMCAO,
followed by an minor increase on day 7 (Figure 3). In detail,
mean IgG-anti-E. coli antibody levels were significantly
decreased on day 2 (p = 0.0012), and a significant (p = 0.048)
drop of IgM-anti-E. coli antibodies levels was observed
on day 1 post pMCAO. Additionally, IgA-anti-E. coli
antibodies were significantly decreased at day 1 (p = 0.006)
and day 2 (p = 0.001). Since the coefficient of variation
for IgG-anti-E. coli (41.3%/55.7%/48.1%/35.4%), IgM-anti-
E. coli (42.2%/40.0%/45.9%/33.7%) and IgA-anti-E. coli
(42.8%/48.5%/49.7%/48.6%) was high at each time point,
baseline-corrected values were analyzed (Figure 3). Values
relative to baseline for IgG-anti-E. coli significantly decreased
on day 1 (p = 0.048), and those for IgM- and IgA-anti-E.coli on
days 1 (p = 0.008, p = 0.002) and 2 (p = 0.045, p < 0.001) post
pMCAO (Figure 3). Antibody levels remained almost constant
in the sham reference samples, apart from an isolated increase of
IgA-anti-E.coli on day 2.

Correlation With Ischemic Brain Damage
A negative correlation (r = −0.700, p = 0.036) was found
between LBP and IgA-anti-E. coli values 1d post pMCAO.
Moreover, the levels of IgM-anti-E. coli correlated positively
with rCBF values (r = 0.927, p = 0.003) 1d after pMCAO. In
addition, a negative correlation (r = -0.901, p = 0.014) was
detected between total brain volume (excluding IS lesion) 7d
following pMCAO and IgG-anti-E. coli 2d post pMCAO. We
found no further significant correlations between any measured
parameters. Detailed results of all correlation analyses are given in
Supplementary Tables S5–S8.

APP Response Following IS
CRP and LBP are relevant APPs in humans (Schumann
and Zweigner, 1999) and sheep (Schroedl et al., 2001;

Ulutas and Ozpinar, 2006). In fact, clinical investigations
revealed that blood-borne markers of peripheral inflammation,
including increased CRP, IL-6 or white cell counts, are present
within the first week following IS in human patients, thus
providing evidence of early and sustained inflammatory
conditions (Emsley et al., 2003). Elevated CRP levels in
cardiovascular ischemia are hypothesized to increase myocardial
damage in the infarct area, likely by activating the complement
cascade (Nijmeijer et al., 2003). Additional myocardial damage
can in turn increase CRP levels, forming a part of the rational
basis for our hypothesis that a similar mechanism might exist
in stroke. This vicious circle is thought to contribute to poor
outcome (Gill et al., 2004; Pepys et al., 2006; Slagman et al., 2011).
CRP is normally absent from serum, but typically rises within 6 h
of inflammation onset in humans with serum levels increasing
up to 1000-fold within 24 h in cases of severe inflammation
(Roudbary et al., 2011). LBP plays an essential role for the innate
immune response against bacterial infection (Triantafilou and
Triantafilou, 2002; Worthmann et al., 2015) and is capable of
binding bacterial LPS. It activates macrophages and monocytes
via CD14 and toll-like receptors (TLR), leading to release of
pro-inflammatory cytokines (Schumann and Zweigner, 1999).
In healthy humans, LBP serum values fluctuate between 5–
10 µg/ml, and can increase up to 10-fold during the acute stage
of severe inflammatory processes (Myc et al., 1997). LBP mean
levels in our data set increased from 6 up to 47 µg/ml at day 1
after pMCAO, quantitatively resembling the situation in humans.
LBP is usually produced in the liver, but can also be produced
extrahepatically under pro-inflammatory conditions. For
instance, LBP production was observed in murine and human
intestinal epithelium in cases of severe systemic inflammation
(Vreugdenhil et al., 1999, 2000). High amounts of ruminant LBP
is also expressed within the forestomach, small intestine crypts
and colon glands, at which it likely plays an important role in
mucosal innate pathogen defense (Rahman et al., 2010). The data
may further indicate an early increase of local gastrointestinal
LBP production in sheep under pro-inflammatory conditions as
previously assumed (Rahman et al., 2010). This might indicate
a systemic APR in the early stage of experimental IS in sheep,
thus supporting the reference of IS-triggered cascade of systemic
immunoreactions observed in rodents (Offner et al., 2006) and
humans (Emsley et al., 2003).

Connecting APP Response, IP, and
Secondary Brain Damage
Ruminants possess a much larger gastrointestinal tract than
rodents and humans. The continuous physiological presence of
bacteria such as E. coli ensures that a “baseline” antibody titer is
maintained in the sheep blood. Interestingly, levels of all tested
anti-E. coli antibodies were reduced during the first 48 h post
IS, but recovered to baseline levels 7d post IS. Theoretically,
decreased antibody levels may be related to changes of intestinal
barrier integrity. We hypothesize that the decreased antibody
levels are related to a suddenly increased presence of bacterial
antigens in plasma, as a result of translocation through the gut
wall, thus leading to initial anti-E. coli antibody consumption.
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FIGURE 2 | Acute phase proteins and anti-E. coli antibodies in plasma. CRP, LBP as well as IgA-, IgM- and IgG-anti-E. coli antibodies exhibited a high
inter-individual variance at baseline (b) and 1, 2, and 7 days post pMCAO. Boxplots indicate the mean at each time point (white bar), 1st and 3rd quartiles, and 95%
confidence intervals. Significance level of paired two-sample t-test against baseline were p < 0.05 (*), p < 0.01 (**), and p < 0.001 (***). The green crosses (x)
indicate sole data points from the animal with failed pMCAO (no stroke at day 1) serving as a sham reference for surgery-related effects.

Our hypothesis is underpinned by the simultaneously increased
LBP levels as well as by a negative correlation between LBP and
anti-E. coli antibodies within 24 h post IS. Local LBP expression
might be increased by pro-inflammatory factors such as LPS (Su
et al., 1994; Dentener et al., 2000; Bruewer et al., 2003). However,
our results could also be related to SIIS in general. Hence,
to substantiate our hypothesis, further investigations should be
performed, including measurement of cytokine (e.g., TNF-α) as
well as measurements of the sympathetic nervous system status
(e.g., catecholamine and cortisol), in order to explore the entire
inflammatory and immunosuppression process.

Enhanced IP may enable antigen fluxes through the intestinal
wall or could activate the local intestinal immune system. Both
events could increase the amount of inflammatory mediators
such as intestinal factors including i-PAMPs (pathogen associated
molecular pattern, e.g., E. coli lipopolysaccharide: F-, K-, or
H-antigens) F-, K-, or H-antigens or cytokines within the
circulation. In summary, increased IP could hypothetically lead to
a prolonged inflammatory stage following IS, which may further
aggravate IS outcome. We found some indirect indication for
a potential relationship between increased IP and a systemic
immune reaction. We detected that higher free anti-E. coli
antibody levels at day 2 were related to smaller lesions (rCBF
deficits) 1d following IS (see Supplementary Table S8). In turn,
higher levels of IgA-anti-E. coli (2d post IS) are related to reduced
post-stroke total brain volume (indicating post-IS tissue loss)
7d following IS (see Supplementary Table S8). This may imply
that increased IP could amplify or modify systemic-adaptive and-
innate immune reaction patterns, cumulating in secondary brain
damage. Subsequent studies must be performed to investigate
this assumption, e.g., determination of bacterial antigen, cytokine
or endotoxin measurements, histological assessment and CFU
content determination in blood, gut lymph nodes, spleen,
liver, and lung.

Critical Appraisal of Preliminary Data and
Hypothesis
Rodent brain structure and size, genetic homogeneity, and
differences in immunobiology may limit the translation of
experimental findings from rodent models to the human patients.
Large animal IS models are potentially useful for IP investigations
following IS. However, outcome variability is often higher than

FIGURE 3 | Difference of acute phase proteins 1CRP and 1LBP as well as
IgA-, IgM- and IgG-anti-E.coli antibodies. Values are given as percentage of
baseline (gray area). Boxplots indicate the mean difference at each time point
(white bar), 1st and 3rd quartiles, and 95% confidence intervals. Significance
level of one-sample t-test against 100 (baseline) is indicated by p < 0.05 (*),
p < 0.01 (**) and p < 0.001 (***). The green crosses (x) indicate sole data
points from an animal with failed pMCAO (no stroke at day 1) serving as a
sham reference for surgery-related effects.

in rodent models (Herrmann et al., 2019), what may reflect the
inter-individual variations observed in human stroke patients.
Accordingly, we found a relatively high inter-individual variation
for all measured blood parameters, but overall data indeed
indicate increased IP after IS.

A limitation of the supporting data is the small statistical
sample size and the existence of only one sham case. In
consequence, general effects of the surgical procedure, anesthesia
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or medication on evaluated blood markers cannot be excluded.
The responses of CRP and LBP in the sham subject with identical
surgical intervention except for MCA occlusion show a relative
similar pattern than that in other animals, apart from a drop in
CRP value at day 1 (Figure 2). These APPs would be expected
to generally increase after tissue trauma (Baumann and Gauldie,
1994; Nijmeijer et al., 2003) as for instance exerted by the invasive
MCAO model (trepanation). However, antibody titers relative
to baseline remained almost constant in this animal over the
course of the experiment. This makes it less likely that the changes
observed in the other subjects are simply caused by the surgical
intervention itself, supporting our hypothesis.

Potentially, there might be an interaction between medication
and post-stroke immune system responses, i.e., clinical signs of
infection following pMCAO could be masked by medication.
However, there is no evidence of relevant impact of butorphanol-,
cyclooxigenase inhibitor flunixin-, or antibiotic treatment
(enrofloxacin) on CRP and LBP levels in contemporary literature
(Löscher et al., 2014; Henke et al., 2015). However, systemic
antibiotic therapy was given in a uniform scheme as required by
the experimental protocol of the study these cases were derived
from. This may have counteracted some of the consequences
of potential E. coli traffic across intestinal barriers and on
inflammatory response, but post-stroke changes in antibody and
APP levels were nevertheless large enough to be statistically
significant despite the small sample sizes.

CONCLUSION

We initially characterized the modification of the APR and
the interactions between the systemic immune system and IP
following IS in an ovine IS model. Our findings confirm the
reaction patterns of CRP and LBP as APPs following IS, and
revealed preliminary indications for alterations of intestinal
barrier functions. In addition, we found indirect indications of IP
enhancement in the early stage of IS in sheep. To our knowledge,
this was first explored in a large animal model. Further
confirmatory investigations, e.g., direct identification of bacterial
antigens, endotoxin measurements, histological assessment and
colony forming unit (CFU) determination in blood, gut lymph
nodes, spleen, liver, or lung, need to be performed. Measurements
of inflammatory cytokines as well as potential interaction with
the sympathetic nervous system (e.g., catecholamine and cortisol
determination) should be conducted to gain a more holistic
picture of the entire pathophysiological cascade. Moreover, any
effect of antibiotic treatment should be excluded by a carefully
planned study design.
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