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In this paper, we introduce a framework for dynamic gesture recognition with background

suppression operating on the output of a moving event-based camera. The system

is developed to operate in real-time using only the computational capabilities of a

mobile phone. It introduces a new development around the concept of time-surfaces. It

also presents a novel event-based methodology to dynamically remove backgrounds

that uses the high temporal resolution properties of event-based cameras. To our

knowledge, this is the first Android event-based framework for vision-based recognition

of dynamic gestures running on a smartphone without off-board processing. We assess

the performances by considering several scenarios in both indoors and outdoors, for

static and dynamic conditions, in uncontrolled lighting conditions. We also introduce a

new event-based dataset for gesture recognition with static and dynamic backgrounds

(made publicly available). The set of gestures has been selected following a clinical trial

to allow human-machine interaction for the visually impaired and older adults. We finally

report comparisons with prior work that addressed event-based gesture recognition

reporting comparable results, without the use of advanced classification techniques nor

power greedy hardware.

Keywords: gesture recognition, event-based, neuromorphic, background suppression, smartphone, dynamic

vision sensor (DVS), dynamic gesture recognition, mobile device

1. INTRODUCTION

This article focuses on the problem of gesture recognition and dynamic background suppression
using the output of a neuromorphic asynchronous event-based camera (Figure 1) connected to a
mobile phone (Maro et al., 2019). The system does not rely on off-board resources. Event-based
cameras (Lichtsteiner et al., 2008; Delbruck et al., 2010; Posch et al., 2011) offer a novel path to
computer vision by allowing to operate at high temporal precision at equivalent frame rates at the
order of several kilohertz. Contrary to standard frame-based cameras, which have a pre-defined
acquisition rate, individual pixels of neuromorphic cameras are independent and react to relative
changes of illuminance in their own field-of-view. Event-based cameras are scene dependent and
therefore burn very little power depending on the amount of recorded data (1–10 mW). They
hold the promise of low computational costs while operating at high temporal scales. However,
there has been no development of a proof of concept using these properties in the context of
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FIGURE 1 | A neuromorphic camera (an ATIS) (B) is plugged into a smart-phone (A) using an USB link (C), allowing mid-air gesture navigation on the smart-phone.

edge computation. In this paper, we introduce a working
prototype of a mobile phone event-based application. We chose
the popular task of vision-based gesture recognition and dynamic
background suppression. These are good targets to make use of
the dynamic properties of event-based sensors. We chose to use a
scalable machine learning architecture relying on the concept of
time-surfaces introduced in Lagorce et al. (2016) and extended
it to operate on the limited available computational resources.
The system has been designed to operate on each incoming event
rather than creating frames from the output of the sensor to then
send them to a GPU.

Compared to previous event-based approaches that tackled
the problem of gesture recognition, we emphasize the importance
of using the information carried out by the timing of past
events to obtain a robust low-level feature representation to avoid
binning events into frames. We also address the difficult problem
of dynamic background suppression by introducing a novel low
power event-based technique operating in the temporal domain.
This technique goes beyond existing background suppression
methodologies. It uses the properties of data-driven acquisition
and its high temporal resolution to segment a scene by setting

a relation between depth and relative activity, thus allowing the
foreground and background to be differentiated.

We also introduce a new dataset of gestures (NavGesture)
recorded using an event-based camera and available for public
download. The neuromorphic field still lacks datasets that take
full advantage of the precise timing of event-based cameras.
Available datasets such as N-MNIST and N-Caltech101 (Orchard
et al., 2015a) are recording scenes where dynamics are artificially
introduced. Even true neuromorphic datasets such as Poker-
DVS (Serrano-Gotarredona and Linares-Barranco, 2015) or N-
Cars (Sironi et al., 2018) contain limited intrinsic dynamic
properties that could be used for classification. We intend to
observe objects that can be classified using only their dynamic
properties (or motion) and not from their spatial distribution.
As an example, if one considers the N-Cars (Sironi et al.,
2018) database, most objects appear as "flashes" that provide
a snapshot of the object to be recognized. The DvsGesture
dataset (Amir et al., 2017) fulfills the requirement of having
dynamic properties, however the camera is set static with the
same centring for all samples with no activity in the background.
The American Sign Language dataset, ASL-DVS (Bi et al., 2019)
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offers various centring and scales but aims to recognizing hand
postures and also lacks dynamic properties. The proposed dataset
(NavGesture) is a new step toward bridging the gap between
laboratory-recorded datasets and everyday real situations. It
features a challenging set of dynamic gestures to classify, with
heterogeneous centring and scaling using a moving camera both
in indoor and outdoor environments.

1.1. Gesture Recognition on Mobile
Devices
Gesture recognition on mobile devices is a quickly expanding
field of research that uses a variety of sensors and methods
(Pisharady and Saerbeck, 2015; Asadi-Aghbolaghi et al., 2017;
Aditya et al., 2018). While resource-constrained devices such as
smartphones disallow the use of certain technologies requiring
high energy consumption such as vision-based depth (RGB-D)
sensors, current mobile phones have a wide variety of built-in
sensors. Several techniques use: phone speakers (Wang Z. et al.,
2019), inertial sensors (Deselaers et al., 2015; Gupta et al., 2016;
Li et al., 2018) or proximity sensors (Kim and Kang, 2010; Cheng
et al., 2011). It is worth noticing that (Won et al., 2015) propose to
use a neuromorphic camera as a proximity sensor instead of the
conventional infra-red sensitive photo-diode. Other techniques
use external components such as: e-gloves (Kau et al., 2015),
radio-frequency chips (Kellogg et al., 2014) and even in some
cases an external IMU for teeth gesture recognition (Gálvez et al.,
2019).

Smartphones also use standard RGB cameras, allowing vision-
based recognition. As pointed in Chakraborty et al. (2018),
dynamic gestures must be captured at high frame rates in order
to avoid motion blur and in some cases even missing a gesture.
However, processing high frame rates video data in real time on
a smartphone is computationally challenging if not impossible.
This might explain why most if not all of the vision-based
gesture recognition methods running on smartphones without
off-board processing are only applied to static gestures (hand
poses) (Ghanem et al., 2017; Lahiani et al., 2017). The only vision-
based dynamic gesture recognition method for smartphone
we found is proposed by Rao and Kishore (2016). However,
no proof of concept operating on a mobile phone has been
developed as the system has only been simulated on a resource-
capped standard computer. Furthermore vision-based methods
require to segment the hand from the background. This is often
solved either by background pre-sampling (Dadiz et al., 2017)
or by using skin color calibration (Jin et al., 2016; Lahiani
et al., 2016). We will shortly show that this can be performed
differently if one considers the high temporal resolution of event-
based cameras.

1.2. Gesture Recognition Using
Event-Based Cameras
Neuromorphic cameras coupled with event-based processing
open new perspectives for resource management as both
computation and memory can be allocated only to active parts
of a visual scene. In the past few years a large number of work
tackled computer vision problems using event-based cameras

while keeping in mind the necessity of avoiding at all costs the
temptation to generate frames from the sensor’s output, to cite
a few: optical flow estimation (Benosman et al., 2014), high-
speed tracking (Serrano-Gotarredona et al., 2009; Ni et al., 2012;
Valeiras et al., 2015), object classification (Sheik et al., 2013;
Lagorce et al., 2015; Orchard et al., 2015b), 3D reconstruction
(Ieng et al., 2018), or pose estimation (Reverter Valeiras et al.,
2016).

Generating images from the output of event-based cameras
to take advantage of decades of standard computer vision
research is becoming a popular stream of research (Kogler
et al., 2009; Mueggler et al., 2015; Pradhan et al., 2019; Rebecq
et al., 2019). This has lead to the development of pipelines that
convert conventional frame-based datasets into events either
using hardware (Orchard et al., 2015a; Hu et al., 2016; Wang Y.
et al., 2019) or software (Chadha et al., 2019). These data are then
often converted back into frames in order to use frame-based
techniques such as CNN. There is currently a need to carry out
research on event-by-event processing to take full advantage of
all the properties of neuromorphic vision sensors (Cadena et al.,
2016; Chen et al., 2019). These sensors cannot only be used to
generate high frame rates or high dynamic range images as one
loses all advantages of the sparseness and low computation power
associated to event-based acquisition.

To our knowledge, the first gesture recognition system using a
Dynamic Vision Sensors (DVS) is the Rock-Scissor-Paper game
from Ahn et al. (2011), which detected the final static hand
pose using event activity. Samsung has developed several gesture
recognition systems. In early experiments, they proposed to use
Leaky Integrate-and-Fire (LIF) neurons to correlate space-time
events in order to extract the trajectory of gestures, using a
stereo-pair of DVS in Lee J. et al. (2012); Lee et al. (2014). This
method is also adapted to track a finger tip using a single DVS
(Lee J. H. et al., 2012), and event activity rate is also used to
discriminate finger tip movements from hand swipes. Samsung
also proposed to use the Adaptive Resonance Theory (ART) for
continuous gesture recognition, first with HMM (Park et al.,
2012), then with CNN (Park et al., 2015). In parallel to the
trajectory extraction approaches, global motion-based features
were proposed. Kohn et al. (2012) proposed a motion-based
analysis of body movements using the relative event activity
accumulated into 40 ms frames, while Lee K. et al. (2012) used
pseudo optical-flow. To cope with varying speeds, Clady et al.
(2016) proposed a motion-based feature that decays depending
on the speed of the optical flow. Two end-to-end neuromorphic
systems for gesture recognition have been proposed in recent
years. The first one used the SpiNNaker neuromorphic board
(Liu and Furber, 2015) and the second was implemented by IBM
Research on the TrueNorth neuromorphic chip (Amir et al.,
2017). However, both systems bin events into frames at some
point in order to use a CNN for classification. Along with their
implementation IBM has also released the DvsGesture dataset,
which has become widely used in the neuromorphic community.
It has been used in multiple papers: spatio-temporal filters that
feed a CNN (Ghosh et al., 2019), SNN (Kaiser et al., 2018;
Shrestha and Orchard, 2018), and a PointNet adaptation (Wang
Q. et al., 2019).
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Sign Language recognition has also been investigated but with
a focus on static hand postures using events-to-frame techniques
(Rivera-Acosta et al., 2017) or a graph-based CNN (Bi et al.,
2019). Chen et al. (2019) proposed a new representation called
Fixed Length Gist Representation (FLGR), mapping events to a
higher dimensional feature. All presented methods used data
from a static neuromorphic camera, with no background clutter.
Furthermore, centring and scaling is in general the same except
for (Bi et al., 2019). The only work to our knowledge with a focus
on cluttered background and featuring one to several subjects per
se quence, is the hand detection method proposed by Li et al.
(2017). Unfortunately, they did not release their dataset. Also, it
is worth mentioning that almost all presented works use at some
point an events-to-frame conversion such as temporal or index
binning, pixel spike rate or global memory surfaces. The only
methods that process events in an event-basedmanner are scarce:
(Lee J. H. et al., 2012; Lee K. et al., 2012), Clady et al. (Clady et al.,
2016), SLAYER (Shrestha and Orchard, 2018) and FLGR (Chen
et al., 2019).

In this work, we will consider more general scenarios
offered by a moving camera that induces numerous new
issues to solve such as: a higher number of emitted events,
heterogeneous centering and scaling, unwanted shaking and
important background clutter. Eliminating the background is an
important step for event by event processing. Kyung et al. (2014)
proposed a background suppression method for neuromorphic
cameras, but converted events to frames. Our approach is
purely event-based and drastically contrasts from any existing
background removal algorithm as it uses only the timing of
events and it does not rely on conventional approaches such
as: code-books (Elgammal et al., 2000), probabilistic approaches
(Stauffer and Grimson, 1999), sample-based methods (Barnich
and Droogenbroeck, 2011), subspace-based techniques (Oliver
et al., 2000), or even deep learning (Babaee et al., 2018).

2. EVENT-BASED CAMERAS AND THE
EVENT-BASED PARADIGM

The Address Event Representation (AER) neuromorphic camera
used in this work is the Asynchronous Time-based Image Sensor
(ATIS) (see Figure 1B) (Posch et al., 2011). Each pixel is fully
autonomous, independent, and asynchronous, it is triggered by
a change in contrast within its field of view. A pixel emits a visual
event when the luminance change exceeds a certain threshold,
typically around 15% in contrast. The nature of this change is
encoded in the polarity p of the visual event, which can be either
ON (p = 1) or OFF (p = 0), depending on the sign of the
luminance change (see Figure 2). Wemust emphasize that p does
not carry meaningful information per se: indeed, a given object
can induce both polarities depending on if the background is
lighter or darker than the observed object. Hence, the polarity
is context-dependant and can not be taken into account except
in the case of a controlled environment and stimulus. The ATIS
has a high temporal precision, in the order of hundreds of
microseconds, which allows the capture of highly dynamical
scenes while avoiding motion blur (Mueggler et al., 2014). The

k-th visual event ek of the output stream of the camera can be
mathematically written as the following triplet:

ek = (xk, tk, pk) (1)

where xk is the spatial location of the visual event on the focal
plane, tk its time-stamp, and pk its polarity.

3. METHODS

3.1. Dynamic Background Suppression
The Dynamic Background Suppression (DBS) uses the simple
idea that the closer an object is to the camera, the more events it
will generate as its apparentmotionwill bemore important than a
farther object. From this property it is possible to link the relative
local activity within the focal plane to depth. A low event relative
activity can be associated to the background and hence dismissed,
whereas relative high activity regions could correspond to the
foreground. Although the technique could be applied to each
pixel, we will estimate the relative activity considering portions
of the focal plane that will be divided into a grid of cells, as shown
in Figure 3.

Let each cell c be composed of a set of pixels where activity
is expressed by Ac. For each incoming event ek = (xk, tk, pk)
emitted by a pixel belonging to a cell c, we can apply the following
update of its activity Ac as:

Ac ← Ac · exp(−
tk − tc

τb
)+ 1 (2)

where tk is the time-stamp of the current event ek, tc the last time
c has been updated, and τb is a decaying time-constant.

We can then compute the average activity A of a all cells. An
incoming event ek = (xk, tk, pk) belonging to c is sent to the
machine learning module only if:

Ac ≥ max(αA,AT) (3)

where α is a scalar to set the aggressiveness of the filter, and AT

is a threshold for minimum foreground activity. The activity of a
cell and the threshold A are computed for each incoming event,
which enables or disables a given cell at the temporal resolution
of incoming events. Cells with a low activity are considered as
background and are prevented from emitting events. In principle
each time a cell is updated the general mean activity has to be
updated. Events are timed at the µs and are orders of magnitude
faster than any conventional urban real scene dynamics. The
mean activity can then be updated at much lower temporal
scales set experimentally according to the computation power
available and perhaps the situation (one can infer acceleration
from the built-in IMU). The proof of principle of the technique is
shown in Figure 4 and an example of a denoised clip is provided
in Video S1.

3.2. Time-Surfaces as Spatio-Temporal
Descriptors
A time-surface (Lagorce et al., 2016) is a descriptor of the
spatio-temporal neighborhood around an incoming event ek. We
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FIGURE 2 | Principle of operation of the neuromorphic camera used in this work. (A) When the change in illuminance of a given pixel’s field of view exceeds a certain

threshold, (B) it emits a visual event, which is either "ON" or "OFF" depending on the sign of the change. (C) A given pixel responds asynchronously to the visual

stimuli in its own field of view.

define the time-context Tk(u, p) of the event ek as a map of
time differences between the time-stamp of the current event
and the time-stamps of the most recent events in its spatial
neighborhood. This (2R+ 1)× (2R+ 1) map is centered on ek, of
spatial coordinates xk. The time-context can be expressed as:

Tk(u, p) = {tk − t | t = max
j≤k
{tj | xj = (xk + u), pj = p}} (4)

where u = [ux, uy]
T is such that ux ∈ J−R,RK and uy ∈ J−R,RK.

Finally, we obtain the time-surface Sk(u, p) associated with the
event ek, by applying a linear decay kernel of time-constant τ to
the time-context Tk:

Sk(u, p) =

{

1−
Tk(u,p)

τ
, if Tk(u, p) < τ

0, otherwise
(5)

Sk is a low-level representation of the local spatio-temporal
neighborhood of the event ek. Figure 5 illustrates how time-
surfaces are computed from the stream of events.

Discarding time-surfaces. A time-surface can be computed
for each new incoming event, but would generate overlapping
time-surfaces and introduce redundancy. As the event-based
camera performs native contour extraction, we must ensure that
a sufficient number of events to form a full contour are taken
into account. Therefore, time-surfaces must be discarded if they
contain too little information, using the following heuristic:

card({(u, p), Tk(u, p) < τ }) ≥ 2R (6)

3.3. Event-Based Hierarchical Pattern
Matching
Following the principle of using deep multiple temporal and
spatial scales introduced in HOTS (Lagorce et al., 2016),
incoming visual events are fed to a network composed of several
layers. As events flow into the network, only their polarities are
updated on successive "feature planes." Polarities in the network
correspond to learned patterns or elementary features at that
temporal and spatial scale. However, as time-surfaces can be
discarded, the network output stream contains less events than
the input stream, which is an important property that builds on
the native low output of the event-based camera to lower the
computational cost.

3.3.1. Creating a Layer and Learning Prototypes
An iterative online clustering method is used to learn the base
patterns (hereinafter called prototypes), as it allows to process
events as they are received, in an event-based manner. A layer
is composed of a set of N prototypes, which all share the same
radius R (which corresponds to the neuron’s receptive field), and
the same time-constant τ . The triplet (N,R, τ ) defines a layer.
First, a set of N time-surface prototypes Ci, with i ∈ J0,N − 1K,
is created. The Ci are initialized by using random time-surfaces
obtained from the stream of events. For each incoming event ek
we compute its associated time-surface Sk of radius R and time-
constant τ . Using the L2 Euclidean distance, we compute the
closest matching prototype Ci in the layer, which we update with
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FIGURE 3 | Operating principle of the Dynamic Background Suppression (DBS). (A) A gesture is performed in front of the camera, which pixel array is divided into

cells. (B) Each cell has its own activity counter that decays over time. (C) Only cells with their activity greater than the mean activity (black dashes) of all cells can spike.

Sk using the following rule, improved from Lagorce et al. (2016):

Ci ← Ci + αi
Sk · Ci

‖Sk‖ ‖Ci‖
(Sk − Ci) (7)

with αi the current learning rate of Ci defined as:

αi =
1

1+ Ai

where Ai is the number of time-surfaces which have already been
assigned to Ci. If a prototype Ci is poorly triggered, it is re-
initialized and forced to learn a new pattern. This prevents badly
initialized prototypes to stay unused, and helps them converge to
meaningful representations.

3.3.2. Building the Hierarchy
One can then stack layers in a hierarchical manner, in order
to form a network (see Figure 6). First, the visual stimulus is

presented to the event-based camera (Figure 6A), which outputs
a stream of visual events. A given event em of the stream must go
through all the layers before the next event em+1 is processed.
At each layer (N,R, τ ), if the time-context Tm of the event
em satisfies Equation (6), the corresponding time-surface Sm is
computed (see Figure 6B). Then, the best matching prototype
Cc is updated using Equation (7) (see Figure 6B). At this point,
the polarity pm of em is modified so that pm = c, c being
the ID of the best matching prototype. Event em is then sent
to the next layer to be processed in a similar manner. We
must emphasize that the first layer, which receives visual events
from the camera does not take the polarity (that corresponds
to the increase or decrease in contrast) into account for the
reason exposed in section 2. All visual events have their polarity
p set to zero. In the subsequent layers, however, the polarity
now encodes a pattern, and we refer to them as pattern events
instead of visual events for which the polarity corresponds to
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FIGURE 4 | Denoising example of a gesture clip from the NavGesture-walk data-set. The presented gesture is a "swipe down". Top row is the raw stream of visual

events, and the bottom row is the denoised stream, at the output of the 3rd stage of the cascade presented in this paper. Each snapshot from the top row is made of

10,000 events, and bottom row contains only the kept events of those 10,000. "ON" events are orange, "OFF" events are black. The filtering lead to the removal of

83.8% of all events. Even after removing this many events each gesture is still easily recognizable by the human eye.

FIGURE 5 | (A) A moving vertical bar is presented to the event-based camera, which output a stream of visual events. The edges of the bar are ON (white) and OFF

(black) events. A ROI is defined around the current event (blue square). (B) The time-stamps of visual events contained the ROI are decayed using a linear kernel. (C)

The resulting extracted time-surface, that encodes both the contour orientation and the dynamic of the motion.

a luminance change. Pattern events are then fed to the next
layer, and processed in a similar manner. As we go higher in
the hierarchy of layers, subsequent layers combine patterns from
previous layers, thus their prototypes (and so the corresponding
polarities) encode more and more sophisticated patterns. As
an illustration, the first layer can only encode the shape and
the direction of the motion. The second layer however, because
it is working with the first layer output can encode changes
of direction in the motion. Once the full hierarchy has been
trained, meaning that its time-surface prototypes have converged,
the learning is disabled: prototypes are no longer updated
using Equation (7).

The network can now serve as a feature extractor: the
polarities of events output by the network will be used as features
for classification. Because this algorithm is truly event-based
and data-driven the computation time directly depends on the
number of events transmitted by the camera.

4. A NEW NEUROMORPHIC DATASET:
NAVGESTURE

As mentioned in the previous section, existing gesture and action
recognition datasets are recorded using a non-moving camera
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FIGURE 6 | (A) A stimulus is presented in front of a neuromorphic camera, which encodes it as a stream of event. (B) A time-surface can be extracted from this

stream. (C) This time-surface is matched against known pattern, which are also time-surfaces, and that can be used as features for classification.

set in front of a static background (Amir et al., 2017; Bi et al.,
2019; Chen et al., 2019; Ghosh et al., 2019; Wang Y. et al.,
2019). In some other popular neuromorphic datasets such as
N-MNIST and N-Caltech101 (Orchard et al., 2015a), the event-
based camera is set up on a pan-tilt in front of a computer screen,
hence the dynamics of recorded objects correspond to the pan-tilt
movement. The same issue arises in N-Cars (Sironi et al., 2018)
because of the very short duration of each clip. Furthermore cars
are cropped, removing most of the background.

The proposed dataset offers a challenging gesture recognition
task because of its dynamic and changing backgrounds. All
gestures were recorded in selfie mode, with the users holding
the camera with one hand and performing the gesture with their
free hand. The fact that users where holding the phone leads to
a wide variety of centring and gesture distance to the camera.
The dataset features both right-handed and left-handed users.
The users were either sitting or walking, indoors and outdoors,
in uncontrolled lighting conditions. The neuromorphic camera
used is an ATIS (Posch et al., 2011) with a lens VM-6.5-IR-CCD
from Universe Optics. This choice was made in order to facilitate
the "auto"-centring by the end-users, by allowing a larger field
of view.

The NavGesture dataset has originally been designed to
facilitate the use of a smartphone by the elderly and the visually
impaired. The gesture dictionary has 6 gestures in order to
be easily memorized. They have been selected to be the most
compact set able to operate a mobile phone. Four of them are
"sweeping" gestures: Right, Left, Up, Down. These are designed
to navigate through the items in a menu. The Home gesture, a
"hello"-waving hand, can be used to go back to the main menu,
or to obtain help. Lastly, the select gesture, executed only using

fingers, closing them as a claw in front of the device, and then
reopening them, is used to select an item.

The NavGesture dataset is split into two subsets, depending
on whether users were sitting or walking: NavGesture-sit
and NavGesture-walk. The NavGesture-sit dataset features 28
subjects, 12 being visually impaired subjects, with a condition
ranging from 1 to 4/5 on the WHO blindness scale and 16 being
people from the laboratory. The gestures were recorded in real
use condition, with the subject sitting and holding the phone in
one hand while performing the gesture with their other hand.
Some of the subjects were shown video-clips of the gestures
to perform, while others had only an audio description of the
gesture. This inferred some very noticeable differences in the
way each subject performed the proposed gestures, in terms of
hand shape, trajectory, motion and angle but also in terms of
the camera pose. Each subject performed 10 repetitions of the 6
gestures. In a second stage, all the acquired clips were manually
labeled and segmented. We removed problematic clips, such
as wrongly executed gestures or gestures executed too close to
the camera. The manually curated dataset contains a total of
1, 342 clips.

In the NavGesture-walk the users walked through an urban
environment, both indoors in the laboratory, and outdoors in
the nearby crowded streets in the center of Paris. Users recorded
the gestures while walking, holding the phone with one hand
and performing the gestures with the other. This uncontrolled
setting leads to much more variation in pose, unwanted camera
movements, dynamic backgrounds and lighting conditions. This
dataset features 10 people from the laboratory that performed
5 times each of the 6 gestures. The dataset contains a total of
339 clips. An overview is presented in Table 1. An example of
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TABLE 1 | Characteristics of the three Gesture Datasets used in this work.

Dataset #users #classes #clips Camera Background Framing

DvsGesture 29 10 + 1 1,342 + 122 Static No Upper body

NavGesture-sit 28 6 1,342 Handheld Yes, moderate Selfie, user sitting

NavGesture-walk 10 6 339 Handheld Yes, important Selfie, user walking

the "Swipe Up" gesture is shown in Figure 4. The NavGesture
dataset is publicly available at https://www.neuromorphic-vision.
com/public/downloads/navgesture/.

5. EXPERIMENTS AND RESULTS

The first experiment on the Faces dataset focuses on extracting
static properties. We show that a single layer is sufficient to
provide good results. The following experiments required more
layers. As the neuromorphic camera detects change in contrast,
these can either be ON or OFF events depending on the contrast
between the foreground and the background. Indeed, the same
moving object could generate ON events in front of a dark
background, and OFF events in front of a light background, as
explained earlier. This is the reason why in all the following
experiments we did not take the polarity of visual events into
account, as the polarity is context-dependent. An example of
this phenomena is a moving hand in front of a black and white
stripped background. This is why we considered that only the
illuminance change carries information for these classification
tasks, and not the fact that the illuminance increased (ON event)
or decreased (OFF event).

For all classification tasks, the output of end-layers (larger
time scale) is integrated over time to generate a histogram of
activity per feature as in Lagorce et al. (2016). This histogram is
then used as a dynamic signature of the observed stimulus. This
signature is fed to a classifier, in this case a nearest neighbor.More
sophisticated classifiers could be used, but this demonstrates that
extracted features are sufficient for classification.

5.1. Static Properties: Experiments on the
Faces Dataset
This dataset contains clips of the faces of 7 subjects. Each subject
was recorded 24 times, resulting in 168 clips. The subjects had to
move their head in a square-shaped trajectory, by following a dot
on a computer screen. The dynamic is therefore the same for all
subjects, and does not carry any meaningful information for the
classification task. Experiments were performed on a standard
desktop computer. We performed 10-fold cross-validation with
5 examples in the train subset, and 19 in the test subset. We
used a single-layer with N = 32 prototypes, receptive fields of
radius R = 6 and τ = 5 ms, we obtained 96.6% recognition
score on this dataset. By increasing the number of prototypes
to N = 64, we achieved 98.5% in average recognition rate. We
noticed that increasing τ higher than 5 ms was not beneficial and
even decreased our classification accuracy. This is because time-
surfaces encode both static properties such as shape and dynamic
properties such as optical flow. A small τ will mainly encode static

properties whereas a larger τ will also encode dynamic properties
such as pseudo optical-flow. When we added a second layer, the
recognition rate dropped. A single layer is therefore sufficient
to encode static properties such as shape. The classification was
made using a 1-nearest neighbor, and does not rely on advanced
classification techniques.

In comparison, the HOTS model in Lagorce et al. (2016)
performed at 79% using a three-layer architecture, with its end-
layer having N = 32 of prototypes. It must be noted that
this improvement in recognition rate also comes with a faster
computation because of the reduction in the size of used time-
surfaces, from size 4,624 in HOTS to size 169 in our work.

Classification scores depend on the number of prototypes: the
more prototypes, the higher the recognition rate.

5.2. Dynamic Properties: Experiments on
the NavGesture Datasets
In both NavGesture-sit and NavGesture-walk datasets, subjects
hold the phone in their hand, which results in cameramovements
and unwanted jitters that generate background activity. In the
case of the NavGesture-walk the visual background is even
more present as subjects are walking while performing the
gestures. The experiments were performed on a standard desktop
computer, andwe used k-fold cross-validation, with k the number
of subjects.

In order to remove events generated by the background we
used the Dynamic Background Suppression method introduced
in section 3.1. The DBS uses the following parameters,
set experimentally:

• τb = 300µs
• α = 2
• AT = 5
• grid size : 3× 3

Figure 4 illustrates the effect of the DBS. Table 2 reports
the mean percentage of remaining events for each gesture after
removing the background. The DBS allows to remove around
40% of events before the feature extraction. This has a direct
impact on processing time as we compute event by event.

In our experiments we used networks composed of 1 to 3
layers. We observed that two-layers networks perform better.
Some gestures such as "Select" or "Home" have changes in
direction, which can be encoded by networks with two or more
layers. However, we suspect that three-layers networks encode
features that are too complex for the stimulus, resulting in less
discriminative features and a lower recognition rate.

Because events are decayed over time, the value of τ must
correspond to the dynamic of the stimulus (Clady et al., 2016). If

Frontiers in Neuroscience | www.frontiersin.org 9 April 2020 | Volume 14 | Article 275

https://www.neuromorphic-vision.com/public/downloads/navgesture/
https://www.neuromorphic-vision.com/public/downloads/navgesture/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Maro et al. Gesture Recognition Background Suppression Smartphone

τ is too small, the extracted time-surface will encode only spatial
information. If τ is too large, the trail of older events will blur the
shape, encoding only direction of movement. In more extreme
cases with τ going to larger and larger values, the resulting time-
surface will carry less and less information, as all past events will
have the same weight. Of course this has also a close relation with
the radius of the time-surface as larger radii can encode longer
trails of events.

This observation leads to the fact that τ should be set in regard
to the radius R of the time-surface and the velocity v of the
apparent motion in pixel per second:

τ ≈
R

v
(8)

We observed that a first layer with a τ value in the order of
10 ms allowed to encode both shape and direction of motion
(only direction, not changes in direction). The second and end-
layer has a τ value of 100 ms, in order to encode changes in the
direction of motion.

A direct difficulty comes from the almost fish-eye field of view
of the camera: if the phone is not held vertically or if the gesture
is a bit off-axis, it becomes very difficult at the edges of the field
of view to determine if the motion is vertical or horizontal.

Ablation study. In order to assess the benefits of the DBS in
obtaining better recognition rates, we compared the performance
achieved with and without the DBS. Results show that DBS
does improve recognition rates, increasing the score from 81.3
to 92.6% when using the NavGesture-walk dataset, as shown
in Table 3.

TABLE 2 | Mean percentage of events left after each the Dynamic Background

Suppression for each gesture class.

Gesture
Mean

number of event

Mean percentage

left after the DBS

Down 988,901 41%

Home 2,398,850 48%

Left 969,014 42%

Right 962,501 43%

Select 1,212,222 30%

Up 1,110,652 44%

5.3. Experiments on the DvsGesture
Dataset
Amir et al. (2017) released a 10-class (plus a rejection class with
random gestures) dataset of hand and arm gestures, performed
by 29 subjects under 3 different lighting conditions. The camera
is mounted on a stand while the subjects stood still in front of it.
This dataset has no background so theDBSwas not used. Authors
split the dataset into a training set of 23 subjects and a testing
set of 6 subjects, preventing cross-validation for comparison
purposes. We used the same 2-layer network architecture as the
one used for NavGesture. The only difference is that we increased
the number of prototypes in the last layer because the gestures
are more complex. In order to take into account the spatial
component of gestures, we split the pixel array into sub-regions,
using a 3 × 3 grid. This is possible because the centring is very
similar for all clips in the dataset. Hence, the final feature is a
histogram of size 3× 3× 64 = 576. We achieved a classification
accuracy of 96.59% for the 10-class subset and 90.62% for the 10
classes plus the rejection class. One can observe in the confusion
matrix (Figure 7) that “Hand clap,” “Arm roll,” “Air guitar,”
and “Air drum” are the only gestures that are mistaken. These
gestures all share very similar hand movements at the same
spatial location, located in front of the torso. “Arm roll” and
“Air drum” are also very similar. Their difference lie in the fact
that hands in “Arm roll” move along the same vertical line,
and we suspect that the receptive field is too small to capture
this information.

When adding the rejection class, the same gestures get
confused. Indeed, only one clip of "Left hand wave" gets mistaken
for "Air guitar", which is understandable as the left hand in these
two classes performs the same movement at the same location.
The global accuracy decreases mostly because of the "Hand clap"
that gets misclassified more often and because of the "Other
gestures" that also are harder to classify.

One can observe in Table 4 that for the 10-class classification

task our system performs in the same range of accuracy using
a k-NN as other very elaborate systems using state-of-the-art
neural networks.

It must be noted that the same time constants gave best results

for both NavGesture and DvsGesture, which shows that decay
must be chosen in accordance with the stimulus, in both case

gestures. Indeed, previous work such as HOTS (Lagorce et al.,

2016) and (Sironi et al., 2018) used decay times that were three

TABLE 3 | Summary of obtained results on the NavGesture dataset.

ID Dataset
Layer 1 Layer 2

DBS Classifier Results

N R τ N R τ

E1 NavGesture-sit 8 2 10 ms 8 2 100 ms X k-NN 95.9%

E2 NavGesture-walk 8 2 10 ms 8 2 100 ms X k-NN 92.6%

E3 NavGesture-walk 8 2 10 ms 8 2 100 ms k-NN 81.3%

E4 NavGesture-walk 8 2 10 ms X k-NN 88.7%

The use of the Dynamic Background Suppression in E2 allows to drastically improve the recognition rate by over 10% compared to E3. Also, the addition of a second layer is beneficial,

as shown by the improvement in E2 compared to E4.
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orders of magnitude higher than the duration of the stimulus.
This resulted in time-surfaces that acted as binary frames
instead of encoding the dynamics of the scene. Furthermore,
such high decay values resulted in the incapacity of forgetting
past events.

6. IMPLEMENTATION ON A SMARTPHONE

The proposed gesture recognition pipeline has been implemented
on a mobile phone (Maro et al., 2019), a Samsung Galaxy S6
(model GM-920F), with a custom Android application allowing
easy navigation through basic phone functions, such as making
a call or sending a pre-defined text message (see Figure 8). The
event-based camera was directly plugged into the micro-USB
port of the mobile phone (see Figure 1). The gesture recognition
module is implemented in native C++ using JNI to communicate
with the Android application. The gesture recognition module
consists of basic noise filtering (a refractory period followed by a
spatio-temporal denoiser, known as the background activity filter,
that removes pixel electrical noise), the Dynamic Background
Suppression, a 1-layer Feature Extractor (N = 8, R = 2, τ = 10
ms,) and a k-NN classifier.

We used two strategies to segment gestures, the first one is an
"auto-start" based on the global visual scene activity. This option
works when users are seated but is inadequate for walking cases.
The second strategy relied on pressing a button before a gesture
to start the recording. The duration of the recording was tuned
experimentally to 2 s which seems to be the experimental upper
bound of the duration of a gesture. This 2-s batch of events at
once to the gesture recognition module, that returns the gesture
class to the Android application to be converted to an Android
command. An overview of the system is presented in Figure 9.

To assess processing time, we ran five trials for each gesture in
two different settings. The input event stream having a duration
of 2 s, a real-time processing is reached when the processing
time is below 2 s. In the first scenario, the phone was set on a
table. In the second scenario the phone was handheld in selfie
mode, with the user walking around. All results are compiled in
Table 5. When looking at the first scenario, we can see that all
gestures are under the 2 s barrier, except for the "Home" gesture
(a "Hello-waving" gesture). This is because this gesture produces
3 times more events than all other gestures (see Table 2). The
algorithm being truly event-based, the processing time directly
depends on the number of events to process. Also during trials 3
and 4, the user waved his hand 5, 6 times, while in trials 1, 2, and 5
waved only 3, 4 times. The second scenario is the handheld selfie
mode scenario, where the background generates a high number
of events, hence necessitating longer processing time. However,
all gestures except for the gesture "Home" that could be computed
in real-time. This gesture should be replaced by another more
event-based friendly gesture that would generate less events, or
should be more constrained by forcing users to only wave 1 or
2 times.

This prototype was tested by untrained visually impaired end-
users, in real use conditions. The subjects were asked to perform

FIGURE 7 | (Top) Confusion matrix for DvsGesture using 10 classes. Global

accuracy is 96.59%. "Hand clap", "Arm roll", "Air guitar" and "Air drum" are the

only gestures that get confused. The reason might be that they generate

similar motion in the same spatial location. (Bottom) Introducing the rejection

class "Other gestures" amplifies the mismatch between the four precedent

gestures, leading to a global accuracy of 90.62%. However, it has almost no

impact on other gestures (4.2% in the "Other gestures" row corresponds to

only one clip).

certain tasks to operate the phone. These preliminary tests lead
to a global accuracy of 78%, which is below the 88.7% accuracy
we obtained using the same single layer on the NavGesture-walk
dataset. We suspect this is partly due to framing and off-axis
handling of the phone.
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TABLE 4 | Comparison in accuracy of state-of-the-art methods for the DvsGesture dataset.

Method
DvsGesture

(10 classes)

DvsGesture

(10 classes + 1)

Amir et al. (2017) CNN (avg 192 ms) 91.77% (96.49%) 91.77% (94.59%)

Shrestha and Orchard (2018) SLAYER 93.64%

Kaiser et al. (2018) DECOLLE 94.18%

Ghosh et al. (2019) ST filter + CNN (avg 200 ms) 94.85% (95.94%)

Kaiser et al. (2019) SNN eRBP 92.7%

Wang Q. et al. (2019) PointNet++ (avg 118 ms) 96.34% (97.08%) 94.10% (95.32%)

This work Time-surfaces + k-NN 96.59% 90.62%

When noted (avg) an averaging scheme was proposed to improve the system accuracy. Our method, although using a simple k-NN classifier performs in the same range for the 10-class

classification. However, the k-NN lacks the discriminative power to handle the rejection class on the contrary of more sophisticated classifiers.

FIGURE 8 | Interface of the Android application that was developed in order to operate the phone using the proposed gestures. Right is the main menu, left illustrates

the pre-defined messages the user could send.

FIGURE 9 | Overview of the Android smartphone system.
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TABLE 5 | Processing time in milliseconds for five trials of each gesture on the

mobile phone, depending on two conditions.

Trial Up Home Right Left Select Down

Processing time in ms for 2,000 ms of input

Setting: fixed position (no background)

1 132 2,343 54 127 40 54

2 57 2,798 60 56 57 45

3 74 3,047 44 275 61 42

4 254 3,833 32 42 29 54

5 48 2107 28 45 47 51

Processing time in ms for 2,000 ms of input

Setting: outdoor - moving

1 320 4,119 154 641 138 115

2 614 3,669 704 282 265 451

3 468 4,305 854 421 551 342

4 569 3,681 575 548 956 371

5 899 3,890 722 354 892 620

“Fixed position” corresponds to a mobile phone set on a table, which means no

background. “Outdoor, moving” corresponds to handheld selfie mode, while walking

around. Each gesture corresponds to 2,000 ms of events, meaning that except for the

“Home” gesture, all proposed gestures can be processed on real-time. The event-based

camera is data-driven so a gesture like “Home’ which corresponds to several “swipe”

gestures will generate more events (see Table 2). Our algorithm being truly event-based

it is also dependent on the number of events, and takes more processing time the more

events it receives.

7. DISCUSSION AND CONCLUSION

This paper introduced a proof of concept for an event-based
Android application for gesture recognition using the computing
power of a mobile phone. The main idea was to show that it
is possible to make full use of the high temporal resolution
of event-based cameras on a power-constrained device. The
system used a camera designed to operate with Android using
the USB link to stream events. This is by far a very inefficient
way to input data to the mobile platform as USB is often too
slow and implies time stamping events that adds more bits of
information to the acquired events. It is expected that if this type
of camera is one day introduced in a mobile device it will use
better connectivity such as MIPI buses which are designed for
low-power applications and eventually an associated processor.
This will remove the need for time stamping and allow both
direct routing to the processor and direct computation on the
time of arrival of events with no delays. In this paper due to
the limitations of the developed software we used 2-s packets of
events to optimize communication within the phone. However,
we showed that processing required inmost cases less than 2 s per
batch, which implies that real time performance can be reached if
transmission delays are solved. We are confident that a way can
be found within Android to transmit events from the camera to
the processing stage with no latency. We have also shown that
it is possible to handle the stream of events in an asynchronous
manner. This allows the temporal machine learning algorithm
to be efficient while using only a single core of the phone.
The hierarchical temporal network has been optimized for the
set of defined gestures showing that robust recognition levels
can be reached without requiring the use of GPU or using the

non-event-based concept of generating frames from an event-
based sensor. Experimental results show that as expected the
computation is scene dependent and therefore tightly linked to
the amount of events generated by the observed object.

We have also shown that the temporal precision of event-
based cameras can tackle different tasks, where it would have
been too computationally expensive or even impossible to
compute with frames in an elegant and low-power manner. As
an example, the background suppression algorithm that for the
first time considers outdoor, hand-held scenarios relies on the
simple idea that the foreground being closer to the camera will
on average generate more events than the background. The idea
of using the relative mean activity for background suppression
shows that high temporal precision is a valuable feature as it
implies that velocity is linked to the amount of data produced,
and can be estimated precisely.Moreover, the use of well designed
temporal filters can reduce even more the already sparse steam of
events, leading to faster event-by-event computation.

There is still so much to develop around the concept of using
time as a computational feature for mobile applications. As an
example the use of scene dynamics allows to derive techniques
such as the one in Lenz et al. (2018) that uses the temporal
signature of eye blinks to detect the presence of a face in a scene.
This approach introduces an alternative to the current greedy
stream of thought that believes everything has to be learned using
large databases.

All data collected and used in the paper has been made
available to the community. The introduction of this new
database will set the groundwork for further work on dynamic
background suppression.
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