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The neurovascular unit (NVU), composed of vascular cells, glial cells, and neurons,
is the minimal functional unit of the brain. The NVU maintains integrity of the blood–
brain barrier (BBB) and regulates supply of the cerebral blood flow (CBF), both of
which are keys to maintaining normal brain function. BBB dysfunction and a decreased
CBF are early pathophysiological changes in neurodegenerative disorders, such as
Alzheimer’s disease (AD), Parkinson’s disease (PD), and amyotrophic lateral sclerosis
(ALS). In this review, we primarily focus on the NVU in AD as much research has been
performed on the connection between NVU dysfunction and AD. We also discuss the
role of NVU dysfunction in the pathophysiological mechanisms of PD and ALS. As
most neurodegenerative diseases are difficult to treat, we discuss several potential drug
targets that focus on the NVU that may inform novel vascular-targeted therapies for AD,
PD, and ALS.
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INTRODUCTION

Neurodegenerative disorders, like Alzheimer’s disease (AD), Parkinson’s disease (PD), and
amyotrophic lateral sclerosis (ALS), are severe neurological disorders that severely affect the quality
of life of patients and result in a heavy burden on the economy and society. AD symptoms include
memory loss and cognitive impairment (Govindpani et al., 2019). The prevalence of AD patients
is high. In 2020, there were approximately 4.7 million people with AD in the United States,
and by 2050, the number is expected to triple (Hebert et al., 2013). PD is the second most
common neurodegenerative disorder. Common clinical manifestations include tremor, rigidity,
and bradykinesia, which result in a heavy burden on patients and society (Lee and Pienaar, 2014).
ALS is a common degenerative disease, which affects motor neurons and causes progressive atrophy
of skeletal muscles, paralysis, and death (Petrov et al., 2017). However, our understanding of the
pathogenesis of these disorders is still limited.

Numerous research studies have demonstrated that the diseases mentioned above are related
to disruption of the neurovascular unit (NVU) (Sweeney et al., 2018; Liu et al., 2019). The NVU,
which is composed of vascular cells, glial cells, and neurons, plays an important role in maintaining
the functional integrity of the blood–brain barrier (BBB) and regulating the volume of the cerebral
blood flow (CBF) (Sweeney et al., 2018). Disruption of the NVU may induce dysfunction of the BBB
and decrease the CBF, which may contribute to the pathogenesis of neurodegenerative disorders.
When the NVU is disrupted and CBF decreases, not only is the supply of oxygen and nutrients
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to the brain reduced but also the clearance of neurotoxic
substance, such as β-amyloid (Aβ) and α-synuclein from brain
parenchyma is diminished.

In this review, we will discuss the roles of the NVU in
the pathogenesis of neurodegenerative diseases, AD, PD, and
ALS. Because the prevalence of Huntington’s disease, multiple
sclerosis, and other neurodegenerative diseases is relatively low
(McColgan and Tabrizi, 2018), we do not discuss research related
to those diseases in this review. We will especially focus on AD
because of significant research related to the close interaction
between NVU dysfunction and AD. In this article, we describe
the composition of the NVU as well as its function in molecular
transport and CBF regulation. Moreover, in this study, we
review changes in the NVU with respect to the pathogenesis of
neurodegenerative disorders, including specific mechanisms in
different neurodegenerative diseases. Finally, we review potential
therapeutic targets associated with these neurovascular deficits.

COMPOSITION OF THE
NEUROVASCULAR UNIT

The NVU is composed of vascular cells (including endothelial
cells, pericytes, and vascular smooth muscle cells), glial
cells (astrocytes, microglia, and oligodendroglia), and neurons
(Figure 1; Zlokovic, 2011). The tube structure of the capillaries
in the brain is formed by endothelial cells. The outside of the
endothelial tubes is surrounded by pericytes and astrocyte end-
feet. Moreover, endothelial tubes are surrounded by extracellular
matrix that forms the basement membrane. Combined with
neurons, all those mentioned above comprise the NVU. Tight
junctions and adherens junctions connect endothelial cells and
tight junctions limit the paracellular permeability of the BBB
(Zlokovic, 2008). There are several transmembrane proteins
involved in constructing tight junctions, including claudin,
occludin, junctional adhesion molecule, and zonula occludens-1
(ZO-1) (Zlokovic, 2011; Yamazaki and Kanekiyo, 2017). Vascular
endothelial (VE) cadherin is the principal cadherin that forms the
adherens junction and mediates intercellular adhesion (Zenaro
et al., 2017). Both tight and adherens junctions play key roles in
the control of endothelial permeability. Tight junctions prevent
free diffusion of proteins and seal the paracellular cleft between
endothelial cells (Tietz and Engelhardt, 2015), whereas adherens
junctions play a key role in cell-to-cell contacts and promote cell
maturation (Tietz and Engelhardt, 2015).

Pericytes cover the abluminal surface of capillaries and
regulate blood flow by controlling the capillary diameter
(Hamilton et al., 2010; Winkler et al., 2011). Pericytes also clear
toxic proteins to maintain the stability of the central nervous
system (CNS) and play a key role in the formation of tight
junctions (Daneman et al., 2010; Sagare et al., 2013).

Astrocytes are the most abundant glial cells in CNS. In the
NVU, astrocytes communicate with endothelial cells through
their end-feet (Abbott et al., 2006). Astrocytes combine neuronal
activity with blood vessels in a process, termed neurovascular
coupling. They respond to neuronal activity and deliver signals
to regulate the CBF (Attwell et al., 2010; Gordon et al., 2011).

Furthermore, astrocytes play a vital role in molecular transport
and BBB integrity (Yamazaki and Kanekiyo, 2017).

The NVU is crucial for stabilizing the environment of the
brain. Firstly, the continuous endothelial cells with tight junction,
basement membrane, and end-feet of astrocytes in the NVU form
the BBB. The BBB regulates which molecules or cells enter the
brain and clear detrimental proteins from brain parenchyma to
the peripheral circulatory system (Yamazaki and Kanekiyo, 2017).
Secondly, the NVU regulates the CBF in response to neuronal
activity through neurovascular coupling, which ensures sufficient
oxygen and nutrient delivery to brain tissue where they are
needed (Sweeney et al., 2018).

NEUROVASCULAR UNIT
DYSREGULATION IN ALZHEIMER’S
DISEASE

The most widely accepted pathophysiologic mechanism of AD
is insoluble Aβ deposition in senile plaques (Vinters, 2015). Aβ

accumulation in the brain is highly related to the dysfunction of
the NVU (Sweeney et al., 2018) and is thought to be caused by
the following two mechanisms, increased permeability of the BBB
and reduced CBF.

Increased Permeability of the
Blood–Brain Barrier
As mentioned above, adjacent endothelial cells are connected
by tight and adherens junctions, which form the BBB to
maintain homeostasis of the brain. Various studies using different
experimental methods have shown that the BBB integrity is
impaired in AD (Yamazaki and Kanekiyo, 2017).

The detection of plasma-derived proteins in brain
parenchyma is an extensively used approach for detecting
BBB breakdown. Plasma proteins, including prothrombin,
are found in postmortem cortical tissues of AD patients, and
leakage of proteins is more common in patients with at least
one APOE4 allele (Zipser et al., 2007). Using a novel dynamic
contrast-enhanced MRI protocol to quantify BBB permeability,
Montagne et al. (2015) showed that BBB permeability was
increased in patients with mild impaired cognitive function
than in healthy controls. Furthermore, BBB dysfunction leads to
decreased Aβ clearance in AD (Govindpani et al., 2019). There
are several mechanisms related to BBB dysfunction, which may
lead to amyloid burden in the brain (Figure 2).

Firstly, decreased expression of low-density lipoprotein
receptor-related protein 1 (LRP1) and P-glycoprotein (P-gp),
together with increased expression of the receptor for advanced
glycation end products (RAGE), is are observed in endothelial
cells in AD patients (Yamazaki and Kanekiyo, 2017; Zenaro
et al., 2017). All these proteins are crucial in Aβ transport
across the BBB. LRP1 is expressed on endothelial cells and
can internalize Aβ on the abluminal side (Cupino and Zabel,
2014; Yamazaki and Kanekiyo, 2017; Goulay et al., 2019).
The internalized Aβ is then transported into lysosome in
endothelial cells for further degradation, and some internalized
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FIGURE 1 | Structural diagram of the neurovascular unit (NVU) and the
composition of tight junctions and adherens junctions. The NVU is composed
of vascular cells (including endothelial cells, pericytes, and vascular smooth
muscle cells), glial cells (astrocytes, microglia, and oligodendroglia), and
neurons. Pericytes and astrocyte end-feet surround endothelial tubes.
Adjacent endothelial cells are connected by tight junctions and adherens
junctions. The tight junction is mainly composed of claudin, occludin, and
junctional adhesion molecules, whereas the adherens junction is composed of
vascular endothelial (VE) cadherin. NVU, neurovascular unit.

Aβ would be transferred to the luminal side by receptor-
mediated transcytosis (Pflanzner et al., 2011; Candela et al.,
2015). P-gp is an ATP-dependent efflux transporter that is located
on the luminal surface of endothelial cells (Schinkel, 1999).
In a previous animal study, it was concluded that deficient
expression of P-gp decreased Aβ clearance and increased Aβ

deposition in the brain (Cirrito et al., 2005). RAGE is a member
of immunoglobulin superfamily and can bind Aβ (Yan et al.,
2010). RAGE mediates the entry of Aβ from peripheral vessels
to the brain through the BBB. RAGE immunoreactivity in
endothelial cells was significantly increased in postmortem AD
brains compared with healthy controls (Miller et al., 2008).
Increased expression of RAGE in endothelial cells leads to
more influx of Aβ from the peripheral circulatory system to
brain parenchyma.

Secondly, tight junction proteins such as occludins, claudins,
and ZO-1 are reduced in endothelial cells (Marco and Skaper,
2006; Kook et al., 2012; Wan et al., 2015). As reported in previous
studies, Aβ was responsible for changes in tight junction protein
expression (Marco and Skaper, 2006; Kook et al., 2012; Wan
et al., 2015). It has been revealed that Aβ1-42 oligomers disrupt
tight junctions and increase permeability of the BBB through
reduction in the expression of occludin, claudin-5, and ZO-1 in
endothelial cells (Kook et al., 2012; Wan et al., 2015).

Cerebral Blood Flow Reduction
Decades before the onset of clinical symptoms, CBF in the
cortex changed in AD patients (Binnewijzend et al., 2016; Hays
et al., 2016; Dong et al., 2018). In AD and mild cognitive
impairment patients, arterial spin-labeling MRI demonstrated
reduced CBF in temporal and parietal cortices (Schuff et al., 2009;
Alexopoulos et al., 2012).

The most widely accepted cause of CBF reduction in AD is
the cholinergic-vascular hypothesis (Govindpani et al., 2019).
This hypothesis postulates that CBF changes are due to changes
in vascular innervation caused by neuronal loss, especially
the loss of cholinergic innervation. In a previous study, an
extensive reduction in cholinergic neurons in the temporal
lobe cortex and hippocampus of postmortem AD brains was
shown (Babic, 1999). Cholinergic neurons have a critical role in
controlling the vascular tone in the brain (Van Beek and Claassen,
2011). Acetylcholine binding to muscarinic receptors in vascular
smooth muscle cells dilates arterioles (Hamel, 2004). The deficit
in neurovascular coupling leads to decreased CBF in the brain.

In addition to disruption of neurovascular coupling, vascular
abnormalities may lead to decreased CBF in AD (De La Torre,
1997). Vascular abnormalities, such as tortuous, kinking, looping,
or twisting arterioles, are common in AD (Baloyannis and
Baloyannis, 2012). Such morphological changes in arterioles are
due to vessel wall thinning and vascular smooth muscle cells loss.
String vessels, which are composed of connective tissue and lack
endothelial cells, are not functional in maintaining BBB integrity.
The density of string vessels is remarkably increased in the brain
gray matter of AD patients (Hunter et al., 2012), and this is related
to decreased CBF in the brain.

A decreased CBF also decreases clearance and increases the
deposition of Aβ (Mosconi, 2005; Mawuenyega et al., 2010).
It has been reported that parenchymal Aβ deposition and
cerebral amyloid angiopathy burden are increased in animal
models of cerebral hypoperfusion (Garcia-Alloza et al., 2011;
Okamoto et al., 2012; Li et al., 2014; Gupta and Iadecola, 2015).
Consistent with the data from animal experiments, postmortem
human brains showed that the severity of cerebral amyloid
angiopathy significantly correlated to cortical microinfarcts
(Okamoto et al., 2012). Similar to the role of hypoperfusion in
promoting Aβ accumulation, it has been reported that plasma
Aβ increased after cardiac arrest in humans (Zetterberg et al.,
2011). Hypoperfusion can trigger accelerated deposition of Aβ

(Garcia-Alloza et al., 2011). Hypoperfusion in the brain has been
shown to dramatically increase the cleavage of Aβ from the
amyloid precursor protein (APP), through upregulation of β- and
γ-secretase, two enzymes that are required for the production of
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FIGURE 2 | Clearance of β-amyloid (Aβ) from the brain is impaired through several mechanisms. (1) Decreased expression of LRP1 on endothelial cells causes
decreased transport of Aβ from the brain to the peripheral circulatory system. (2) P-gp is an ATP-dependent efflux transporter that is expressed in the luminal surface
of endothelial cells. Deficient expression of P-gp decreases Aβ clearance. (3) RAGE is an immunoglobulin superfamily member and a receptor for Aβ. Increased
expression of RAGE in endothelial cells leads to more influx of Aβ from the peripheral circulatory system to brain parenchyma. (4) Tight junction proteins such as
occludin, claudins, and ZO-1 are reduced in endothelial cells, thereby leading to impairment of BBB integrity. Apart from disruption of the BBB, decreased CBF leads
to hypoxia, which upregulates the production of β- and γ-secretase. Increased β- and γ-secretase increases the cleavage of Aβ from APP. LRP1, low-density
lipoprotein receptor-related protein 1; P-gp, P-glycoprotein; RAGE, receptor for advanced glycation end products; ZO-1, zonula occludens-1; BBB, blood–brain
barrier; CBF, cerebral blood flow; APP, amyloid precursor protein.

Aβ (Zhang et al., 2007; Li et al., 2009). Moreover, in addition to
increased production of Aβ, decreased CBF leads to insufficient
clearance of Aβ. It was found that about half of the Aβ clearance
could be attributed to CBF and vascular-perivascular pathways
(Roberts et al., 2014).

The effects of brain hypoxia and Aβ deposition are mutual
(Gupta and Iadecola, 2015). The accumulation of Aβ deteriorates
cerebrovascular function, increases arterial vasoconstriction, and
reduces CBF (Thomas et al., 1996; Niwa et al., 2000).

NEUROVASCULAR UNIT
DYSREGULATION IN PARKINSON’S
DISEASE

The widely accepted pathological mechanism of PD involves the
loss of dopaminergic neurons in the ventral tier mesencephalon
(Lee and Pienaar, 2014). However, it is demonstrated that PD
pathology not only is restricted to the dopaminergic system but
also influences the noradrenergic, serotonergic, and cholinergic

systems (Loane et al., 2013; Pienaar and Van De Berg, 2013).
Increasing evidence has shown that disruption of the BBB may
play a critical role in the pathological mechanism of PD.

Previous research has revealed that the BBB is disrupted
in various toxin-induced PD models, including 6-OHDA and
MPTP-treated mice (Carvey et al., 2005; Chen et al., 2008). Other
studies have demonstrated that the expression of α-synuclein
is associated with increased permeability of the BBB (Jangula
and Murphy, 2013). Several mechanisms can explain the BBB
disruption in PD patients. Firstly, with increasing age, senile
astrocytes and microglia produce various cytokines, chemokines
(e.g., IL-6, IL-1β, and TNF-α), and reactive oxygen species
(ROS), which disrupt the integrity of the BBB and lead to
the rearrangement of tight junctions (Collins et al., 2012).
Secondly, PD patients show reduced expression of P-gp in
the midbrain, which is related to BBB dysfunction (Kortekaas
et al., 2005). It is thought that the decreased P-gp maybe
related to an accumulation of α-synuclein and other neurotoxic
substances in the brain (Bartels, 2011). Decreased efflux
membrane transport through P-gp leads to brain damage due
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to the accumulation of harmful substances. Furthermore, in
PD patients, angiogenesis occurs; however, the newly created
vessels are less likely to display the restrictive properties of
the BBB. Hence, the poorly developed BBB cannot protect the
parenchyma from toxic factors in the peripheral circulation
(Desai Bradaric et al., 2012).

NEUROVASCULAR UNIT
DYSREGULATION IN AMYOTROPHIC
LATERAL SCLEROSIS

Amyotrophic lateral sclerosis is a lethal neurological disease
involving rapid and progressive degeneration of motor neurons
in the brain and spinal cord. Most patients die within
24–48 months after symptom onset (Petrov et al., 2017).
A small number of ALS patients have familial ALS, and of
those, with a familial etiology, 20% have inherited superoxide
dismutase-1 (SOD1) mutations, which induce the disease
(Garbuzova-Davis et al., 2011). For sporadic ALS, various
pathological mechanisms have been proposed; however, the
precise pathogenesis is still unclear. One widely accepted
pathogenic mechanism of ALS is related to BBB and blood–
spinal cord barrier (BSCB) impairment, which leads to
motor neuron damage.

Mice with ALS-linked SOD1 mutations have reduced levels of
tight junction proteins, including ZO-1, occludin, and claudin-
5, which disrupt the BBB and BSCB functions (Zhong et al.,
2008). Human lumbar spinal cords from ALS patients also
demonstrate diminished expression of ZO-1 and occludin,
which corresponds with the finding in animals (Henkel et al.,
2009). Another study showed dramatically reduced perivascular
occludin, collagen IV, and astrocyte end-feet surrounded with
endothelial cells in the postmortem spinal cord of ALS patients
(Miyazaki et al., 2011). Furthermore, the disruption of the BBB
and BSCB occurs prior to motor neuron degeneration (Zhong
et al., 2008). In the NVU, the degeneration of tight junctions,
impairment of endothelial cells, and reduction in astrocytic end-
feet contribute to dysfunction of the BBB and BSCB. This leads
to vascular leakage and the entry of harmful substances from
the peripheral blood into the CNS parenchyma (Garbuzova-
Davis et al., 2008). The expression of two proteins important
for endothelial cell function, GLUT-1 and CD146, is decreased
in ALS (Garbuzova-Davis et al., 2007). Additionally, in SOD1
mutated mice, blood flow in the cervical and lumbar spinal cord
is decreased by about 30–45% before the onset of symptoms
(Zhong et al., 2008).

In short, the NVU is impaired in ALS before the onset of
clinical symptoms, and damage to the NVU plays a key role in
the pathogenesis of ALS (Garbuzova-Davis et al., 2011).

IMPLICATIONS FOR DRUG TARGETS

Increasing evidence has shown the important role of the NVU
in the pathogenesis of neurodegenerative diseases, including
AD, PD, and ALS (Sweeney et al., 2018). Most of these

neurodegenerative disorders are intractable, especially AD
and ALS. Therefore, looking to vascular cells as potential
drug targets for neurodegenerative disorders is a promising
avenue of research.

For instance, BBB breakdown and CBF reductions are
critical in the pathogenesis of AD. As discussed before,
downregulation of LRP1 expression is found in endothelial
cells and pericytes of AD patients, and this significantly
affects the clearance of Aβ across the BBB. Thus, increasing
expression of LRP1 may be a promising therapeutic target for
AD patients. Statins can reduce the risk of AD by decreasing
Aβ levels. In addition, the molecular mechanism of how
statins influence Aβ metabolism involves increasing the
expression of LRP1 and accelerating Aβ clearance (Shinohara
et al., 2010). Therefore, statins may be recommended for
upregulation of LRP1 (Whitfield, 2007). Recent research
has found that treatment with 1,25-(OH)2-vitamin D3
increased the expression of LRP1 significantly both in vivo
and in vitro (Patel and Shah, 2017; Cai et al., 2018).
Therefore, sufficient vitamin D supplementation may be
beneficial for Aβ clearance from the brain parenchyma to
blood. Furthermore, loss of cholinergic innervation leads to
decreased CBF in AD patients. Acetylcholinesterase inhibitors
(AChEIs), like tacrine, galantamine, and donepezil, increase
the acetylcholine concentrations and have been widely used for
decades (Govindpani et al., 2019). AChEIs have been shown
to increase blood perfusion in the frontal lobe and prevent the
progression of cognitive impairment after 1 year of treatment
(Shimizu et al., 2015).

For abnormal angiogenesis, Aβ immunization therapy in
Tg2576 mice has been shown to dramatically reduce the
formation of non-functional vessels, which increase vascular
permeability and lead to brain damage (Biron et al., 2013).
In Aβ-immunized mice, amyloidogenesis-triggered angiogenesis
was decreased, and the vascular density reverted to normal levels.
However, early clinical trials using the Aβ vaccine in human AD
showed unexpected negative side effects. Therefore, additional
studies are required prior to the application of Aβ immunization
therapy in AD patients (Masliah et al., 2005).

In a mouse model of AD, implantation of encapsulated
VE growth factor (VEGF)-secreting cells resulted in increased
vascularization and reduced Aβ deposition in the cerebral cortex
(Spuch et al., 2010). Furthermore, cognitive behavior improved
after implantation of VEGF microcapsules (Spuch et al., 2010).
A recent study in mice showed that the transplantation of
endothelial progenitor cells into the hippocampus increased
microvessel density, whereas the deposition of Aβ senile plaque
and hippocampal cell apoptosis was decreased (Zhang et al.,
2018). Transplantation of endothelial progenitor cells could also
upregulate the expression of the tight junction proteins ZO-1,
occludin, and claudin-5 (Zhang et al., 2018).

Given that oxidative stress plays an important role in the
underlying mechanism of PD, astrocytes as a part of NVU secrete
several beneficial antioxidant compounds, including glutathione
(GSH), superoxide dismutases (SODs), and ascorbate (Cabezas
et al., 2014). These molecules are important for neuron survival
during the neurodegenerative processes (Cabezas et al., 2014).
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Several studies have showed that GSH was critical for the
protection of BBB integrity (Agarwal and Shukla, 1999).
Thus, supplementary of these molecules may be an effective
treatment for PD.

CONCLUSION

In this review, we describe the role of NVU dysfunction in
the pathogenesis of several neurodegenerative diseases, including
AD, PD, and ALS. BBB breakdown and CBF reduction influence
the removal of harmful substances from the brain and play
an important role in the onset of neurodegenerative disorders.
A focus on the NVU for potential drug targets may be
helpful to inform novel vascular-targeted therapies. Nevertheless,

the mechanisms of BBB breakdown during neurodegenerative
diseases need to be further elucidated.
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