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Design and Evaluation of a Real-Time
Audio Source Separation Algorithm
to Remix Music for Cochlear Implant
Users

Sina Tahmasebi*, Tom Gajecki and Waldo Nogueira

Department of Otolaryngology, Medical University Hannover and Cluster of Excellence “Hearing4all”, Hanover, Germany

A cochlear implant (Cl) is a surgically implanted electronic device that partially restores
hearing to people suffering from profound hearing loss. Although CI users, in general,
obtain a very good reception of continuous speech in the absence of background noise,
they face severe limitations in the context of music perception and appreciation. The
main reasons for these limitations are related to channel interactions created by the
broad spread of electrical fields in the cochlea and to the low number of electrodes
that stimulate it. Moreover, Cls have severe limitations when it comes to transmitting the
temporal fine structure of acoustic signals, and hence, these devices elicit poor pitch and
timber perception. For these reasons, several signal processing algorithms have been
proposed to make music more accessible for Cl users, trying to reduce the complexity of
music signals or remixing them to enhance certain components, such as the lead singing
voice. In this work, a deep neural network that performs real-time audio source separation
to remix music for Cl users is presented. The implementation is based on multi-layer
perception (MLP) and has been evaluated using objective instrumental measurements to
ensure clean source estimation. Furthermore, experiments in 10 normal hearing (NH)
and 13 Cl users to investigate how the vocals to instruments ratio (VIR) set by the
tested listeners were affected in realistic environments with and without visual information.
The objective instrumental results fulfill the benchmark reported in previous studies
by introducing distortions that are shown to not be perceived by Cl users. Moreover,
the implemented model was optimized to perform real-time source separation. The
experimental results show that Cl users prefer vocals 8 dB enhanced with the respect
to the instruments independent of acoustic sound scenarios and visual information. In
contrast, NH listeners did not prefer a VIR different than zero dB.

Keywords: music source separation, deep learning, neural networks, multi-layer perception, real-time, cochlear
implant

1. INTRODUCTION

A cochlear implant (CI) is a medical electronic device that is surgically implanted in the inner
ear and can provide hearing sensations to people suffering from profound hearing loss. Cls
allow the patients to understand speech in quiet and even in a noisy background. However,
music appreciation is still challenging for CI users, as it requires a good pitch perception and
melody recognition (McDermott, 2004; Limb and Roy, 2013). CI devices typically transmit 12-22
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spectral channels, each modulated slowly in time. This
representation provides enough information for speech
understanding in quiet conditions and rhythmic perception of
music. However, this representation is not enough to support
speech understanding in noise or melody recognition, as
melody recognition requires complex pitch perception, which in
turn depends strongly on access to spectral and temporal fine
structure cues (McDermott, 2004; Macherey et al., 2011). This
work investigates the use of a real-time algorithm to make music
more accessible for CI users.

Previous research in the area of music enhancement
for CI users has focused on reducing music complexity
(Nagathil et al.,, 2017) or on amplifying vocals relative to the
background instruments (Buyens et al, 2014; Pons et al,
2016; Gajecki and Nogueira, 2018). Spectral complexity
reduction of music was investigated based on dimensionality
reduction techniques, such as principal component analysis
and a partial-least squares analysis. Enhancement of singing
voice has been investigated based on the finding that CI
users prefer singing music remixed such that the vocals are
boosted by 6 dB with respect to the background instruments
(Buyens et al., 2014). In this context several source separation
algorithms have been proposed to separate the vocals from
the instruments and remix these components accordingly.
Previous approaches used a harmonic/percussive sound
separation (HPSS; Buyens et al, 2014) algorithm, non-
negative matrix factorization (NMF), multi-layer perceptrons
(MLP), deep recurrent neural networks (DRNN), and
convolutional autoencoders (DCAE) in order to separate
different sources within an audio mixture (Pons et al., 2016;
Gajecki and Nogueira, 2018). However, all these algorithms
were implemented in non-real-time fashion to perform
source separation.

A key factor in the design of source separation methods
for music enhancement is the distortions that these algorithms
introduce in the processed signals. These distortions are typically
quantified through objective instrumental measures, such as
the signal-to-distortion ratio (SDR), the signal-to-artifacts ratio
(SAR), and the signal-to-interference ratio (SIR) (Vincent et al.,
2010). Gajecki and Nogueira (2018) investigated the maximum
levels of artifacts and distortions accepted by CI users to remix
music with enhanced vocals. They demonstrated that source
separation algorithms with an SDR > 0.69 dB and an SAR
> 4.42 dB were suitable for remixing singing pop music for
CI users.

In order for the source separation algorithm to operate
in real-time, algorithmic complexity and latency need to be
minimized. Regarding latency, even delays in the order of
tens of milliseconds can cause a de-synchronization between
the visual and the acoustic information provided by the
CI. Stone and Moore (2003) measured maximum non-
noticeable latency for hearing aid devices of around 15-20
ms for speech signals. The international telecommunication
union (ITU) performed several subjective evaluations (ITU,
2008) and reported the acceptable and the detectable lip
synchronization error. This error was assessed by means of the
time delay between the visual feedback and acoustic information

provided by a person speaking. Their results revealed that
the measured time delay detectability was 125 ms and the
threshold of acceptability was 185 ms, respectively, with respect
to perfect lip synchronization when audio lagging behind
the video. Furthermore, Hay-McCutcheon et al. (2009), in
a similar study, investigated the audiovisual asynchrony for
CI users. In this study, the measured minimum noticeable
audiovisual asynchrony was around 200 ms, when the video
was leading the audio. These values could be taken as
an upper boundary for the design of a real time source
separation algorithm.

Previous source separation algorithms to remix music for
CIs have been evaluated under laboratory settings using
clean digital recordings. It remains a question whether these
algorithms are usable in real music events in which reverberation
influences the acoustics. Moreover, these source separation
algorithms were evaluated only using pre-processed sounds. It
is therefore interesting to investigate whether these algorithms
are usable in real-time giving the users the possibility to
continuously modify the level difference between the singing
voice and the instruments to reach a final decision on
their preference.

Although music experiments are typically investigated only
through sound, it is very important to consider that CI users
have access to both hearing and visual cues. It has been shown
that when congruent visual and auditory cues are processed
together, perceptual accuracy is enhanced in both normal hearing
(NH) and in hearing-impaired listeners (Perrott et al., 1990; Ross
et al., 2007; Landry et al., 2012). The importance of vision in
lip reading the singing voice, which helps in understanding the
lyrics, the fact that CI users can see the instruments being played,
as well as the information provided by the performance can
significantly enhance their perception (Plant, 2015). It therefore
remains a question of whether source separation algorithms
used to enhance the vocals are necessary if visual information
is available.

In this work, we implement and evaluate a deep neural
network (DNN) to perform real-time music source separation
to improve music appreciation of CI wusers in realistic
acoustic scenarios. The model is based on an MLP and
is trained to automatically identify the lead singing voice
contained in western pop music to remix it accordingly to
the subjects’ preference. Prior to assessing individual balance
preferences, objective instrumental measures will be used to
make sure that the source separation algorithm fulfills the
benchmark proposed by Gajecki and Nogueira (2018). Finally,
the balance between music and singing voice will be assessed
by means of experimental tests were subjects will indicate their
preferred vocals-to-instruments-ratio (VIR), which is defined
as the ratio between the power of the vocal signal and the
instruments signal in dB, with and without visual cues. As
the experiments were meant to be as realistic as possible,
360° video and 3D audio were provided to the listeners.
In this context, the subjects should be able to move their
heads toward the singer or to the background instruments and
therefore they should be provided with consistent acoustic and
visual cues.
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FIGURE 1 | Block diagram of the source separation algorithm.

2. METHODS AND MATERIALS

2.1. Music Source Separation and Remix
Algorithm

Figure 1 shows a block diagram representing the data-flow of
the used music source separation and remixing framework. The
input signal x(f) consists of the original mixture, of vocals and
instruments and the output signal m(t) is a remixed version of the
input signal that is delivered to the CI speech processor at discrete
time f. The desired VIR is applied to the estimated signals to be
then remixed and delivered to the CI listener.

The music source separation process starts by feeding the
magnitude spectrogram of the input mixture to the source
separation algorithm. For a vocal signal y; (t) and an instruments
signal y,(t) we construct a corresponding mixture signal x(t) =
y1(t) + y2(t). We compute the short-time Fourier transform
of length 1024 samples to obtain the spectrums Y;(k), Ys(k),
X(k) for frame k. Since the time-domain audio signals are real,
we used half of the spectral length, as dropping the negative
frequencies does not lead to any information loss, which leads
to a spectral size of 513 bins. For inverting the spectrum of Y7 (k)
and Y;(k), back into the time domain, we used the phase of the
mixture spectrum and applied the inverse STFT with overlap-
add to synthesize the music signal, for both the vocals and
instruments components. Figure 1 illustrates the block diagram
of the algorithm. The ability that MLPs have to approximate any
input/output map made them one of the most popular network
architectures (Panchal et al., 2011). Furthermore, as MLPs require
relatively low computation complexity, they became the first
choice of this study to perform music source separation. The
number of input and output units is directly related to the size
of the analysis window. We used an STFT with a window length
of 1,024 samples, an overlap of 75%, and a Hamming window
to transform, which leads to a spectrum with a dimension of
513 bins. In order to exploit the temporal dependency in the
music signals, three consecutive frames with two frames overlap
were used as input to the network resulting in an input size of
513*3. During the source separation process, we specify multiple
parameters, that have a direct effect on separation quality and
are linked to the networK’s structure. The depth of the MLP was
set to one hidden layer with 1,024-units and a rectified linear
unit (ReLU) activation function, which resulted in a three layer
network with an input size of 513*3 units and output layer of
1,026 (2¥513) units which corresponds to the two spectrums

of vocal and instruments signal. After selecting the number of
hidden layers and units in each layer, a proper training algorithm
was used to minimize the algorithm error by fitting the model to
the training data. During training, the fixed parameters were: the
batch size which was set to 128 and the initial learning rate which
was set to 0.005. The adaptive moment estimation algorithm
(Adam) (Kingma and Ba, 2014) was used as the optimization
algorithm. A hundred epochs were used to train the network,
where after each epoch, the learning rate was decreased by 0.9 and
the training data were shuffled. To avoid over-fitting, a dropout
layer with a probability of 80% was applied. Three consecutive
frames were used as input to exploit the temporal context in the
audio signals. However, introducing more frames to the network
did not improve the objective instrumental measurement values.

2.2. Audio Material Used to Train the

Neural Network

In this work, we use three audio data sets to perform the
objective and experimental evaluations in NH and CI users of
the investigated audio source separation algorithms. The data sets
will be described in the following lines.

e iKala Data Set: The first data set introduced by Chan et al.
(2015) namely iKala contains 252 30-s tracks of vocal and
backing track music with a sample rate of 44,100 Hz. Each
music track is a stereo recording, with one channel for the
singing voice and the other for background music. All music
tracks have been performed by professional musicians and six
singers, of which three were female and three males. The iKala
data set contains non-vocal time passages where the source
separation algorithm assumes the presence of vocals and
having non-vocal time passages in the data set may challenge
the algorithm. The presence of vocals in the instruments
signal and long non-vocals regions were the reasons that in
experimental settings 30 music tracks of data set have been
excluded, making the total number of music tracks in the
iKala data set equal to 222.

e The MUSDB Data Set: MUSDB data set was the second data
set with 150 professionally mixed songs from different genres,
each including four stereo sources (bass, drums, vocals and a
group of other instruments) used in this work. The data set
was divided into the training and the testing data set with 100
and 50 songs, respectively.

e Buyens Shared Data Set: As the third data set, six popular
music pieces (Buyens et al., 2014) that have been used in
previous CI studies to create and report a benchmark (Pons
et al., 2016; Gajecki and Nogueira, 2018) have been also used
in this study.

e Custom Data Set with Virtual Acoustics: All the previous
data sets were studio recordings with no spatial characteristics.
In order to have a DNN which can be used in a realistic sound
scenario, it was necessary to train the model with a data set that
included spatial characteristics. To create a music data set with
such characteristics, TASCAR was used to simulate realistic
sound scenarios (Grimm et al., 2015). TASCAR is a toolbox
to create virtual acoustics in real-time. TASCAR toolbox is
based on an image source model that simulated localized
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TABLE 1 | Details about created sound scenarios.

Sound Dimensions in Damping Reflection Virtual receiver
scenario meters factor coefficient position
x,y,2) x,y,2)
1 (30, 30, 8) 0.70 0.25 At the center
(0,0,0)
2 (20,20, 7) 0.80 0.20 At the center
(0,0,0

sources, reflections and a diffuse sound model for adding
background recordings and reverberation. The image source
model rendered an image source for each combination of the
primary sound source and a reflecting surface, provided that
the primary source was not behind the surface. To playback the
content of a virtual scene created by TASCAR on an arbitrary
playback device, Ambisonics decoding must be performed to
get the signals for the channels of the playback system. The
acoustic scene was rendered and played through an array
of 16 loudspeakers. In order to assess the effect of different
sound scenarios on the performance of the DNN model, two
rooms with different dimensions and acoustic characteristics
were rendered through the 16 loudspeaker setup and the
TASCAR toolbox. A reverberant room with a T20 = 0.24
s and T60 = 0.65 s and a smaller and less reverberant
room with a T20 = 0.18 s and T60 = 0.5 s were used in
the experiments.

In each sound scenario a virtual receiver with an
omnidirectional characteristic is defined which captures the
sound in that space. The real receiver (CI user or dummy
head) was placed in the center of the loudspeaker layout
in the lab and received the sound corresponding with the
position of the virtual receiver in each defined sound scenario.
The virtual environment consisted of two loudspeakers
reproducing stereo mixes aiming at resembling a music
concert amplified with a public address system (PA system).
The room impulse response was modeled by the toolbox
using the reflection coeflicient and a damping factor shown
in Table 1. Figure2 shows a visualization of the created
sound scenarios.

A Nucleus speech processor (Cochlear, Sydney, Australia),
mounted on a dummy head at the height of 1.4 m was placed
in the center of loudspeaker layout to record the custom
data set. While TASCAR was running on a Linux operating
system, another PC, which was connected to the Nucleus
speech processor through a sound card, was recording the
simulated sound field. The custom data set was exclusively
used to train, validate and, test the MLP using objective
instrumental measures.

2.2.1. Training, Validation, and Testing Data Set

To have a uniform data set, the signals contained in the MUSDB
set, which had different lengths, were chopped in 30 s long
samples and were mixed with the iKala data set. Finally, we
distributed the iKala and MUSDB data sets into the training,

(13,13,1) T

((DJ (8,81)

T T
mu:gawer

30m 26m 20m 16m

v F@\\l
\ ((p: (s,(i[.)f,

(13,-13,1)

Virtual receiver

Sound scenario 2

Sound scenario 1

FIGURE 2 | Visualization of the created sounds scenarios. (Left) Sound
scenario 1 consisting of large reverberant room (T20 = 0.24 s, T60 = 0.65 s);
(Right) Sound scenario 2 consisting of a smaller and less reverberant room
(T20=0.185, T60 = 0.5 3).

validation and testing sets. During this study, 60% of the iKala
and MUSDB data sets were used as the training data set, 20% as
the validation data set and 20% as testing data set. Moreover, the
music signals shared by Buynes were added to the testing data set.

2.3. Experiments in Normal Hearing

Listeners and Cochlear Implant Users

This study consisted of two experiments. In the first one, the
effect of having different sound scenarios on VIR preferences was
investigated. In the second one, the effect of having visual cues on
VIR preferences was investigated.

2.3.1. Subjects

Thirteen bilateral CI users with different musical backgrounds
and 10 NH subjects participated in the study. The demographic
information of the tested CI subjects is presented in Table 2.
From the 13 CI users only 10 CI subjects participated in each
experiment as indicated in the same table. All subjects gave
informed consent to the project as approved by the Medical
University Hannover Institutional Review Board. The subjects
were asked to turn off any program on the speech processor and
use the audio cable as input. None of the subjects had residual
hearing except for Subject S07, who had bilateral residual hearing
up to 250 Hz. This particular subject was also asked to wear
soft foam earplugs to minimize acoustic leakage. In the first
perceptual experiment, ten NH subjects participated in the study
as a control group.

2.3.2. Test Setup Used in Listening Experiments

The experiments were conducted monaurally using the better
performing side of each subject. Sound material was presented
in a double-walled sound-treated room using 16 active (self-
amplified) loudspeakers (Genelec 8030B, Helsinki, Finland),
which were organized in a circle with a radius of 1.25 m and were
driven by an A16 MKII digital to analog converter connected
to a PC with Ubuntu Xenial 14.04 operating system. Subjects
were seated in the center of the loudspeaker array and the audio
material was always presented at a level corresponding to 65 dB
SPL at the position of the participant’s head.
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TABLE 2 | Information of the CI subjects, who took part in the experiments.

TABLE 3 | Music tracks used in experiment 1.

Subject Age Cause of Duration of Implant Sound Brand
id deafness deafness experience processor
on tested
side
S012P  65-70 Unknown )4 21Y Opus2 MEDEL
S022b  80-85 Genetic 4M Y Opus2 MEDEL
S032P  55-60 Sudden 2M 4y Naida AB
deafness
S042°  B0-65 Unknown Y 13M CP910 Cochlear
S052P  70-75 Sudden 20M 3Y CP910 Cochlear
deafness
S06%  65-70 Unknown 3.5Y 5Y Harmony AB
S07%  65-70 Unknown 4M 12y CP910 AB
S082P  20-25 Otitis media  4Y 20Y CP910 Cochlear
S098 60-65 Unknown 5Y a4y CP910 Cochlear
S102P 2025 Unknown oM 18M Naida AB
S112  70-75 Unknown 4y 4y CP910 Cochlear
S12°  65-70 CRS 31Y Y CP910 Cochlear
S13®  20-25 Meningits 4 M 18Y CP910 Cochlear

Time data are expressed in years (Y) or in months (M).
aparticipated in the first part of experiment 1 Participated in the second part of experiment
1. CRS, congenital rubella syndrome.

The microphone of a Nucleus speech processor (Cochlear,
Sydney, Australia) was used to capture the presented audio
signals during all subjective tests. The microphone had an
omnidirectional characteristic and no beamforming was used
during the tests. The captured signals were then processed
through the algorithm and presented to the subjects speech
processor. A preamplifier was used to amplify the captured signal
which was routed to the subject’s own processor, in direct-in
mode, through a 3.5 mm audio cable. During the tests, the
microphone on the subject’s CI was disabled.

The subjects were asked to adjust a slider that controlled the
VIR using the left and right arrow keys on a keyboard while
listening to the music. The slider had 24 steps each corresponding
to 1 dB on a logarithmic scale from —12 to +12 dB VIR. In
order to prevent any bias, initial VIR for each song presentation
was randomly chosen and the subjects were kept blinded to the
initial VIR. Afterward, the subjects adjusted the VIR to their
preferred setting.

For NH subjects, instead of a CI, a headphone (DT 770,
Beyerdynamic, Heilbronn, Germany) was used to present the
music tracks. The music tracks presented to the NH subjects
were captured with the same microphone on the Nucleus speech
processor. The headphone was calibrated to present each music
piece at 65 dB SPL using only one side, at the self-reported
preferred ear.

2.3.3. Music Material Used in Listening Experiments

Music tracks shown in Tables 3, 4 have been used in experiment 1
and 2, respectively. The music excerpts used in experiment 1 had
a duration of 5 s, whereas the ones used in experiment 2 were 45 s
in duration. The pieces selected for experiment 2 had clear vocals
with simple music accompaniment (electronic in “Cassiopeia’

Song id Data set Song name Genre

M1 iKala 21058_chorus Pop

M2 iKala 31104 _verse Pop

M3 iKala 31118_chorus Pop

M4 iKala 54236_chorus Pop

M5 MUSDB Secretariat—Over The Top Pop rock

M6 MUSDB Georgia Wonder—Siren Folk rock

M7 MUSDB The Long Wait—Dark Horses Folk

M8 Popular music Hey Jude (The Beatles) (excerpt A) Pop, country music
M9 Popular music Hey Jude (The Beatles) (excerpt B) Pop, country music

M10 Popular music  Dock of the Bay (Otis Redding) Pop, classic soul

TABLE 4 | Music tracks used in experiment 2.

Song id Song name Genre
CasA Cassiopeia (excerpt 1) Electronic
CasB Cassiopeia (excerpt 2) Electronic
CasC Cassiopeia (excerpt 3) Electronic
KénigA Der Konig in Thule (excerpt 1) Sung poetry
KonigB Der Kdnig in Thule (excerpt 2) Sung poetry
KoénigC Der Kdnig in Thule (excerpt 3) Sung poetry

and a flute and a tuba in “der Konig in Thule”) and in that sense
were similar to the pieces used in experiment 1.

2.3.3.1. Virtual test scenarios in experiment 1

The TASCAR library was used in experiment 1 to add
spatial characteristics to the studio-quality music tracks. In
this experiment the two sound scenarios presented in Figure 2
were used to assess the VIR preferences of NH listerners and
Cl users.

2.3.3.2. Virtual test scenarios in experiment 2

Six music excerpts from live recordings in a concert was
used in the experiment 2 (Nogueira, 2019). In comparison
to the before-mentioned data sets, which were recorded
with studio quality and had no spatial characteristics, these
music excerpts were spatially recorded using the Eigenmic
32 microphone (Summit, New Jersey, USA). These music
tracks already contained the spatial characteristics of a
concert hall.

2.3.4. Experiment 1: Online Vocals to Instruments
Ratio Adjustment

In the first experiment, 5-s excerpts of ten signals from three data
sets were used (Table 3). Each excerpt was calibrated at 65 dB
SPL and was played in a loop until the subject adjusted the VIR
slider in their favored position. Subjects had no time limits to
adjust the VIR for each music track and were allowed to have a
break whenever they desired. After the test, subjects were asked
to fill in a questionnaire providing their musical background
experiences or knowledge and music genre preference. This
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procedure including the stimulus length was chosen based on
previous studies (Pons et al., 2016; Gajecki and Nogueira, 2018).
This experiment was divided into two parts. In the first part of the
experiment, NH listeners and CI users were asked to adjust the
VIR for a test data set. In this part, the VIR was modified keeping
the level of the instruments fixed while modifying the level of
the vocals. In the second part of the experiment, the VIR was
altered by modifying the level of the vocals and the instruments
in opposite directions to keep the overall presentation level
constant at 65 dB SPL. The second part of this experiment
was included to exclude potential effects due to variations
in loudness.

2.3.5. Experiment 2: Effect of Visual Information on
VIR Preferences

The goal of this experiment was to examine whether visual
feedback affects the VIR preferences of the CI recipients. This
experiment was divided into two parts. The music pieces 4 of
a concert were presented to the subjects, once without visual
information, and once with visual information through a set of
Oculus Rift (Facebook, Irvine, California, USA) virtual reality
(VR) headset. Each music excerpt was repeated until the subjects
adjusted the VIR at their favored value. As mentioned in section
2.3.3, the music pieces were recorded with an Eigenmic 32
microphone array that has 32 microphones, capable of providing
4-th order Ambisonics. Reaper (Cockos, New York, USA) on an
Ubuntu PC was used as a digital workstation to process the audio
material. The audio signals were captured by an Eigenmic 32
microphone array and during the tests they were first encoded
to 4-th order Ambisonics and then decoded to the layout used
in the testing lab. GoPro player (GoPro, San Mateo, California,
USA) on a Windows (Microsoft, Redmond, Washington, USA)
PC was deployed to present the visual materials of the concert.
As the digital workstation and the GoPro player use different
synchronization protocols, a third party application, which was
able to send and receive OSC and UDP messages, was used
to synchronize both audio and video. For this experiment, the
VIR was applied in the same way as in the second part of the
previous experiment; i. e. by modifying the level of the vocals
and the instruments in opposite directions to keep the overall
presentation level constant at 65 dB SPL. During the second part
of the test, the Nucleus speech processor was fixed on the Oculus
Rift VR headset. It is worth mentioning that five subjects wore
eyeglasses, which they took off during this experiment.

3. RESULTS

3.1. Objective Instrumental Measures

Figure 3 shows the objective results for music tracks used in the
first perceptual experiments. Mean SDR and SAR of the music
tracks in sound scenario 1, which was a larger room with more
diffusive and reverberant characteristics, with 5.5 dB is around
0.3 dB worse than the mean SDR obtained in the second room.
However, the SAR values obtained in the first sound scenario
(8.8 dB) were slightly better than in the second sound scenario
(8.7 dB). Both sound scenarios fulfill the benchmark reported by
Gajecki and Nogueira (2018), where the lower bounds for SDR

and SAR were reported with 0.69 and 4.42 dB, respectively. It is
worth mentioning that the room characteristics cause changes in
the music tracks, which leads to different objective results after
source separation, which can be seen in Figure 3.

3.2. Experiment 1: Online Vocals to
Instruments Ratio Adjustment

Figure 4 presents the individual and group VIR preferences of
the first part of experiment 1 for CI users (top panels) and NH
listeners (bottom panel) for two virtual sound scenarios. The line
and the circle in the boxes represent the median and the mean,
respectively. On average, the VIR mean across CI users was 8.2
and 8.5 dB and across NH listeners was —2 and —1.7 dB for sound
scenarios 1 and 2, respectively. Note that for CI users S1, S6, and
S7 no box can be seen in specific sound scenarios as the plots for
these subjects collapsed to a single line due to small variance in
their results. These subjects adjusted the VIR in more than 75 %
of the cases to the same value. R Studio (Boston, Massachusetts,
USA) software was used to conduct the statistical analysis. First,
the VIR preferences of CI users and NHs were tested against the
null hypothesis that the preferred VIR was equal to zero dB. This
was done for the two parts of the experiment for each tested
sound scenario by means of two-tailed ¢-tests.

For the first part of the experiment, where the VIR was set
by modifying the vocals with respect to the instruments, the CI
group showed a preference for positive VIRs for the first (Mean =
8.5dB,SD = 2.4 dB,p < 0.001) and second sound scenarios
(Mean = 8.2 dB,SD = 2.5 dB,p < 0.001). The NH group,
on the other hand, did not show any evidence of preferring a
balance different from the original mix (VIR=0 dB) for the first
sound scenario (Mean = —2 dB,SD = 3.2 dB,p < 0.086) nor
for the second sound scenario (Mean = —1.75 dB,SD = 2.8
dB,p < 0.082). Finally, none of the tested groups’ preferred VIR
depended on the sound scenario (p = 0.297 for the CI users and
p = 0.7 for the NH group).

Figure 5 presents the individual and group VIR preferences of
the second part of experiment 1 for CI users (top panels) and NH
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listeners (bottom panel) for two virtual sound scenarios. Note
that for CI users S1, S6, and S7 no box-plot could be created as
they adjusted the VIR in more than 75 % of the cases to the same
value. In the second part of experiment 1 subject S5 with around
11 dB and subject S1 with —4 dB had the highest and lowest mean
VIR preferences. Subject S1 was the only CI user with a negative
mean VIR preferences in all experiments.

For this part of the experiment, where the VIR was set by
altering the singing voice and the background instruments level
simultaneously in opposite directions. The CI group showed also
a preference for positive VIRs for the first (Mean = 4.6 dB, SD =
2.7 dB,p < 0.001) and second sound scenarios (Mean = 5.3
dB,SD = 5.1 dB,p = 0.0093). The NH group, again, did not
show any evidence of preferring a balance different from the
original mix (VIR = 0 dB) for the first sound scenario (Mean =
—1.6 dB,SD = 2 dB,p = 0.0194) nor for the second sound
scenario (Mean = —1.7 dB,SD = 1.9 dB,p = 0.0194). For this
part of the experiment, again, non of the tested groups’ preferred
VIR depended on the sound scenario (p = 0.024 for the CI users
and p = 0.027 for the NH group).

To conclude the statistical analysis for this first experiment,
a final f-test analysis was performed to assess if the measured
VIRs depended on the VIR adjustment method (i.e., balancing
the vocals alone or adjusting both signals in opposite directions),
two-tailed t-tests were performed comparing the VIRs measured
between the VIR adjustment methods for each group. The ¢-tests
revealed that the measured VIRs did not depend on the VIR
adjustment method for none of the tested groups p < 0.001.

3.3. Experiment 2: Effect of Visual

Information on VIR Preferences

The individual VIR preferences set by the CI group in the second
experiment are presented in Figure 6 (left). Figure 6 (right)
shows the mean VIR across subjects and music excerpts for both
conditions. The line and the circle in the boxes represent the
median and the mean, respectively. As shown in Figure 6, the
individual results for the condition without visual information
show a larger variance in comparison to the condition with visual
information. Similarly to experiment 1 the results from subjects

S1, S5, §7, S9, and S10 in some specific sound scenarios are
collapsed into a line due to very small variance in their responses.
The results of both conditions (i.e., with and without visual
information) were statistically significant with respect to the
original mix (VIR = 0 dB), as revealed by a two-tailed t-test (p <
0.005). When comparing the mean VIR between both conditions,
however, no significant differences were found (p = 0.024).

4. DISCUSSION

In this work, a real-time source separation algorithm based
on a DNN has been designed to enhance the singing voice in
pop western music for CI users. The real-time implementation
allowed the investigation of remixing music for CI users
under realistic acoustic environments and with the presence of
additional visual information. Moreover, for the first time, the
subjects were able to modify the amount of vocal enhancement
online in contrast to previous studies that only used pre-
processed sounds. The results of the current study confirm
that CI users prefer the vocals enhanced with respect to the
instruments even if the music contains reverberation and visual
information is available.

The proposed algorithm to remix music for CI users is based
on an MLP with an input layer with 513 x 3 units, one hidden
layer and an output layer with dimension 1,026. Based on the
proposed benchmark by Gajecki and Nogueira (2018), CI users
should not be able to notice the degradation in sound quality
caused by the source separation algorithm when the SDR and
SAR are larger 0.69 and 4.42 dB, respectively. The proposed
algorithm obtained an SDR of 8 dB using the iKala test data set
and an SDR of 5.5 and 3 dB for the MUSDB and the Buyens
data sets, respectively. Moreover, the source separation algorithm
could be implemented in the front end of a sound coding strategy
as its algorithmic latency is determined by the hop size of the
used STFT. In our implementation, we used a hop size equal to
25% of the STFT’s window length resulting in 6 ms algorithmic
latency. The algorithm was implemented in MATLAB and run
at 44,100 Hz sample rate in a 64 bit Windows 10 PC with an
Intel (Santa Clara, California, USA) Core i7 4.3 GHz CPU and
16 GB RAM resulting in a computation time of 2 ms for each
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audio frame, well below the algorithmic latency to ensure real
time processing. Hay-McCutcheon et al. (2009) measured and
reported the minimum noticeable audiovisual asynchrony for CI
users. The outcomes of that research revealed that CI users were
insensitive to an asynchrony of up to 200 ms when the video
was leading the audio. Considering that result and the latency
caused by our system (around 100 ms), we assume that the
audiovisual asynchrony of our system was not noticeable for the
tested CI subjects. Moreover, it is worth mentioning that during
listening experiments, none of the subjects expressed any reaction
regarding the audiovisual asynchrony caused by the latency.

Ten bilateral CI users participated in two perceptual
experiments. The first experiment showed that even if
reverberation is added to the music scene, CI users prefer
the vocals enhanced with respect to the background instruments.
Two methods were used to alter the VIR, in the first method
the instruments were kept constant while the singing voice was
modified. Under this condition, CI users set the VIR to 8.2 and
8.5 dB for a low and a high reverberant room, respectively. Note
that, as one of the subjects (S7) had bilateral residual hearing
in the low frequencies, earplugs were used to attenuate the
sounds transmitted through his/her acoustic hearing. Still, the
attenuation was probably not enough to completely attenuate
the low-frequency acoustic sounds causing the subject to set the
VIR to high values to be able to perceive the voice enhancement
more clearly.

In this same condition, NH listeners set the VIR to —2
and —1.7 dB for the low and the high reverberant room,
respectively. The main limitation of this method to alter the
VIR is that the presentation level increased with increasing VIR
and therefore, presentation level was a confounding factor. For
this reason, the experiment was repeated modifying the VIR
by altering the singing voice and the background instruments
level simultaneously but in opposite directions to keep the
music presentation level constant. In this second condition, CI
users preferred a VIR of 5.3 and 4.6 dB in the low and the
high reverberant sound scenario, respectively. In contrast, NH
listeners did not prefer the vocals to be enhanced. Previous
studies (Buyens et al., 2014; Pons et al., 2016) showed that CI
users find music more enjoyable when the vocals are enhanced by
6 dB on average. The larger vocal enhancement observed in the
current study may be explained by the introduced reverberation
which causes more difficulties in perceiving the singing voice and
in turn results in CI users requiring an even further enhancement
of the singing voice.

In the second experiment, the impact of visual information
was examined by comparing the VIR preferences of CI users with
and without using VR headset. The results of the experiment
show no significant difference between the measured VIR with
and without visual information. These results indicate that the
use of source separation to remix music in CI listeners to enhance
the singing voice may be applicable also for music listening
in live concerts, performances, theaters, religious ceremonies
or any other social event related to music that contains
visual information.

It is important to mention that each subject had distinct
VIR preferences and that the preferred VIR even varied from

music track to music track. These results indicate that each CI
recipient needs a subject-specific remixed music track for a better
music appreciation. For this reason, it is important to expose
the VIR parameter of the source separation algorithm such that
the CI listener can adjust it to its own needs. Here one can
foresee that the wireless communication to smartphones or the
use of remote controls with such a parameter exposed could
be very beneficial to make music more accessible for CI users
(Nogueira et al., 2019).

5. CONCLUSION

This work introduced a real-time music source separation
algorithm using a multilayer perceptron (MLP) to separate
the singing voice from the background elements in music for
CI users in realistic sound scenarios. Objective results show
that the implemented neural network fulfills the benchmark
reported by Gajecki and Nogueira (2018) and therefore, we
assume that the degradation caused by this algorithm is not
noticeable by CI recipients. Results from the experimental
measures in CI users show that neither the presence of visual
information nor different sound scenarios have an impact on
VIR adjustment by CI recipients. Our experiments confirm that
CI recipients find music more enjoyable when the vocals are
enhanced with respect to the instruments and that this can
be achieved by real-time audio source separation based on a
neural network.
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