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Neuromorphic systems are designed with careful consideration of the physical properties

of the computational substrate they use. Neuromorphic engineers often exploit physical

phenomena to directly implement a desired functionality, enabled by “the isomorphism

between physical processes in different media” (Douglas et al., 1995). This bottom-up

design methodology could be described as matching computational primitives to

physical phenomena. In this paper, we propose a top-down counterpart to the bottom-up

approach to neuromorphic design. Our top-down approach, termed “bias matching,” is

to match the inductive biases required in a learning system to the hardware constraints of

its implementation; a well-known example is enforcing translation equivariance in a neural

network by tying weights (replacing vector-matrix multiplications with convolutions),

which reduces memory requirements. We give numerous examples from the literature

and explain how they can be understood from this perspective. Furthermore, we propose

novel network designs based on this approach in the context of collaborative filtering. Our

simulation results underline our central conclusions: additional hardware constraints can

improve the predictions of a Machine Learning system, and understanding the inductive

biases that underlie these performance gains can be useful in finding applications for a

given constraint.

Keywords: neural network, neuromorphic, bias, constraint, inductive bias, sparsity, regularization, collaborative

filtering

1. INTRODUCTION

A variety of systems are referred to as “neuromorphic,” Originally, “neuromorphic” has referred to
the idea of making use of isomorphisms between physical processes in different media, for example,
drift-diffusion phenomena in silicon to emulate drift-diffusion in neuronal ion channels, in order
to build VLSI chips consisting of neuron-like elements (Mead, 1989; Douglas et al., 1995; Indiveri
et al., 2011). Now, the term is used more broadly and also encompasses systems that accelerate
artificial neural network (ANN) algorithms (Hu et al., 2016) or use a biomimetic processing
principle (Furber, 2016).

Most neuromorphic systems have in common that parameters implemented in them or in the
larger system around them are learned from examples. If this learning process should generalize to
unseen examples, it is well-known that it needs to be biased in some way. Such biases that help a
learning system generalize from its training data are known as inductive biases (Mitchell, 1980).
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FIGURE 1 | General concept of bias matching: we should try to match inductive biases of learning algorithms to constraints on hardware to obtain systems that both

generalize better and are more efficient.

From an algorithmic perspective, inductive biases can come
in many forms: the algorithm’s structure, i.e., how parameters
affect the output (Tai et al., 2015), regularization, e.g., additional
costs (Krogh and Hertz, 1992), constraints on parameters during
training (Ioffe and Szegedy, 2015), or, in the case of Bayesian
models, explicitly as priors such as those described by Griffiths
(2010). These concepts can also be interpreted as constraints
on a learning algorithm’s complexity. From this point of view,
it is evident that, in an ideal world, the hardware on which
the algorithm is implemented exploits this simplicity for more
efficient processing (see Figure 1).

In this paper, we have asked two questions: “Can additional
hardware constraints improve the predictions of a Machine
Learning system?” and “What inductive biases underlie these
performance gains?” We answered these questions by giving
concrete examples and new conceptual designs of “bias
matching”: hardware implementations of machine learning
algorithms, where a useful inductive bias can be exploited for
efficient computation. Our aim was to establish “bias matching”
as a high-level approach in the design of neuromorphic hardware.

“Bias matching” contrasts, as a design-philosophy, with a
traditional bottom-up approach to neuromorphic engineering,
e.g., as described by Douglas et al. (1995). In the bottom-up
approach “the efficiency [...] rests in the power of analogy, the
isomorphism between physical processes in different media”
and “computational primitives such as conservation of charge,
amplification, exponentiation, thresholding, compression and
integration arise naturally out of the physical processes of
aVLSI circuits.” In this bottom-up approach the focus is on
computational primitives and their efficient implementation,
whereas we focus on inductive-biases and how to exploit them
for efficiency.

We will discuss our approach based on examples concerning
the following inductive biases/hardware constraints and
elaborate why they may be relevant for hardware design (see also
Table 1 for an overview):

1. Translation and time-shift equivariance (section 2.1)
2. Spatio-temporal locality (section 2.2)
3. Frequency limitations of input signals (section 2.3)
4. Sparse, low-rank and kernelized low-rank connectivity

(sections 2.4, 2.5 4.1)
5. Low-resolution connection weights (section 2.7)
6. Regularization by batch-size choice (sections 2.6, 4.2).

For each of these, we have defined an inductive bias or hardware
constraint, given (where possible) an example of its relevance,
and outlined how it can impact design. We have looked at
hardware and software implementations from the literature
(section 2), and we have presented novel observations and
simulations to back up our claims (section 4).

2. BACKGROUND

In this section, we have examined examples of neural network
implementations from the literature through the lens of the “bias
matching” design perspective we propose in this paper.

2.1. Translation and Time-Shift
Equivariance by Tying Weights
2.1.1. Inductive Bias

Probably the best know examples of an inductive bias in the
context of neural networks are convolutional neural networks
(CNNs) (Fukushima, 1988; LeCun et al., 1995) that exploit
translation equivariance. Translation equivariance (e.g., Worrall
et al., 2017), means that, if we translate the input of our model,
its output remains the same up to a translation. On the example
of images and CNNs, we can formulate translation equivariance:
given a CNN layer L(·), image X, and the translation operator T,
there exists an operator t such that

L(T(X)) = t(L(X)) (1)
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TABLE 1 | An overview of the pairings of hardware constraints and inductive

biases discussed in this paper.

Hardware constraint Inductive bias Application area Section

Tied weights between

neighborhoods

Translation/Shift

equivariance

Spatial and/or temporal

signals, e.g., images,

audio, video

2.1

Local communication/

decaying memory

Local independence,

spatially/temporally

hierarchical models

Spatial and/or temporal

signals, e.g., images,

audio, video

2.2

Slow state change Eigenvalues of

recurrent network

closer to one

Speech processing 2.3

Connectivity/memory

limitations

Sparse and low-rank

connectivity

Collaborative filtering,

model compression

2.4, 4.1

Low-resolution weights Difficult to interpret,

possibly

anti-synergistic with

SGD

Unknown 2.7

No gradient

aggregation over

samples

Batch-Size

regularization

Collaborative filtering

(among others)

2.6, 4.2

Concretely, for a stride-1 convolution with appropriate padding,
T and t are the same and T(Xi,j) = t(Xi,j) = Xi+t,j+s, where i and j
are pixel indices, and s, t are small natural numbers. Notably, full
CNNs are not translation equivariant, but single convolutional
layers are.

CNNs achieve equivariance by enforcing that some of their
parameters are equal (often referred to as “tying” parameters). A
given neuron n in a CNN receives input from some window w
of the previous layer’s output. For every other window w′ there
exists by construction a neuron n′ with the same input weights as
n (these weights are however applied to a different input, namely
w′). In this sense, the weights of some sets of neurons in a CNN
are tied together (not independent).

Note that time-shift equivariance is a special case of
translation equivariance in one dimension.

2.1.2. Hardware Constraint

Because of its implementation in the form of weight tying,
equivariance is highly relevant for hardware implementations of
CNNs. All neurons belonging to the same input/output channel
pair have the same weight. Hardware implementations of CNNs
making use of this constraint, holding each weight in their
memory only once and applying them to different sections of the
input either by broadcasting (Bose et al., 2019) or sequentially,
as, for example, on GPUs (Chetlur et al., 2014). On GPUs, the
convolution operation is commonly recast as a highly optimized
general matrix multiple between the filters and a copied and tiled
input image (though many variants of GPU convolutions exist).

Recurrent neural networks (RNNs) keep their weights
constant between subsequent time steps and implement time-
shift equivariance in this way. Due to the sequential and non-
linear nature of RNNs, implementations necessarily operate in a
fixed time-unrolled order and explicitly implement weight tying.

2.1.3. Performance Impact

Weight-tied neural networks are state-of-the-art in many
applications, particularly in the audio-visual domain. Some
highly cited examples include digit recognition (LeCun et al.,
1989), image classification (Cireşan et al., 2011; Krizhevsky et al.,
2012; He et al., 2016), and speech recognition (Saon et al., 2017).

2.2. Spatial and Temporal Locality by
Neighborhood Communication
2.2.1. Inductive Bias

Spatial locality means that, in order to compute a quantity
of interest at a given point p, only points that lie in a small
neighborhood of p need to be taken into account simultaneously.
Spatially localized operations are often used to build a hierarchy
of features with increasing spatial extent. The inductive bias
associated with spatial locality is therefore either directly the
independence of neighborhoods or the breaking down of
concepts into a spatial hierarchy.

Temporal locality occurs commonly in Reservoir Computing
(RC) (Lukoševičius et al., 2012) because most RC systems are
designed such that the echo-state property (ESP) holds. Formally,
the ESP states that the influence of any input signal vanishes
asymptotically (Jaeger, 2007). RC is particularly effective when
temporally local information is sufficient to solve the given task.

2.2.2. Hardware Constraint

Spatial locality is a key reason why CNNs can be computed
efficiently (next to translation equivariance). The computation
performed by neurons in a CNN is spatially localized if they
have a small associated filter. An example of a hardware
implementation of spatially localized processing is the SCAMP-5
sensor/processor array (Carey et al., 2013). The nearest-neighbor
communication structure of this chip allows for an efficient pixel-
parallel implementation of convolution filters if the filters are
small (Bose et al., 2019). In GPU implementations of CNNs, small
filters need fewer replications of each source pixel (as well as less
memory for the filters themselves).

A class of hardware implementations that benefit from
temporal locality are photonics-based RC, like Vandoorne et al.
(2014). For silicon-photonics based systems, the integration of
photonic amplifiers can be challenging, making temporal locality
desirable. However, the operation of time-shifted addition (with
small time shifts) is very efficient in these systems, allowing for
cheap communication across “temporal neighborhoods.”

2.2.3. Performance Impact

For spatial locality and associated CNNs, see section 2.1.2.
An example of a very high through-put system made possible

by temporal locality implemented in photonic hardware is Larger
et al. (2017).

2.3. Low-Frequency Signal Components
and Slow Neurons
2.3.1. Inductive Bias

For signals with slow dynamics (opposite to temporally local
signals), an opposite approach can be useful. When analyzing
signals, some of whose salient dynamics are much slower
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than the sampling rate, it can be difficult to learn effective
weights for recurrent neural networks (RNN) because longer
time dependencies are more difficult to discover. A commonly
used remedy for this is low-pass filtering of the hidden state
of the RNN (Mozer, 1992). This inductive bias could also be
described as enforcing eigenvalues of the recurrent connection
matrix that are closer to one (Nair and Indiveri, 2019a) in a
linearized approximation of the RNN.

2.3.2. Hardware Constraint

In a physical implementation, the fact that states of hidden
neurons change slowly can be exploited by implementing them
as leaky-integrate-and-fire (LIF) neurons with spike-frequency
adaptation, which need to emit only few spikes to represent their
state (Nair and Indiveri, 2019b). From the electrical engineering
perspective, such neurons can be interpreted as 61-Modulators
with unsigned 1 steps (Yoon, 2016).

2.3.3. Performance Impact

Nair and Indiveri (2019a,b) indeed observed that, when the
time-constant of such neurons matches the salient structure
of the analyzed signal (i.e., a favorable inductive bias in the
sense of Mozer, 1992 is used), the resulting system exceeds the
performance of an unconstrained system while operating at very
low power.

2.4. Linear Low-Rank Matrix
Approximation by Parameter Sharing
2.4.1. Inductive Bias

Strict low-rankmatrix approximations (Koren et al., 2009) model
a n×mmatrixW asW = QR, where Q is n× k and R is k×m,
where k is the resulting rank of W. Equivalently we can write
the entries of W as dot-products of rows and columns of Q and
R respectively:

wij = Eqi · Erj. (2)

Low-rank matrix approximations are commonly used to model
very large matrices from sparse observations, for example, in
collaborative filtering (Koren et al., 2009).

2.4.2. Hardware Constraint

Low-rank approximation of connection matrices in neural
networks is straightforward to implement with efficiency gains
on general matrix multipliers (GEMMs). This is because a
connection matrix restricted to rank-k is equivalent to the
interposition of a size-k layer with a linear activation function. In
formulae, we can write for a neural network layer with an n×m
weight matrix W that is rank-k; it can be written as W = QR,
where Q is n× k and R is k×m:

WEx = QREx = Q(REx) = QEy. (3)

The time complexity of this moves from O(mn) for WEx to
O(k(m + n)) for performing REx followed by QEy. The memory
required to store the parameters of W or R and Q respectively
also scale this way: the individual entries of the matrix W
share parameters.

2.4.3. Performance Impact

Low-rank reparameterization has been proposed as a model
compression tool for neural networks, both fully-connected
(Denil et al., 2013; Sainath et al., 2013) and convolutional ones
(Jaderberg et al., 2014). Recent examples of practical efficiency
tweaks that can be interpreted as low-rank approximation are the
linear bottleneck and depth-wise convolutions of Mobile-Net-
v2 (Sandler et al., 2018) (note that depth-wise convolutions may
additionally interpose a non-linearity).

2.5. Kernelized Low-Rank Matrix
Approximation by Parameter Sharing
2.5.1. Inductive Bias

Kernelized matrix reparameterization (Liu et al., 2016)
generalizes the dot-product to any kernel function:

wij = K(Eqi, Erj) (4)

It has been shown that such kernelized reparameterizations can
impose interpretable structure on neural networks (Muller et al.,
2018).

2.5.2. Hardware Constraint and Performance Impact

Kernelized reparameterizations are more complicated to
implement directly, and, to the best of our knowledge, this has
not been discussed in the literature. The same reformulation
as above does not work because the analog of Ey would live
in the embedding space of the kernel function, which can be
infinitely dimensional. However, kernelized reparameterizations
have greater representational power than strict low-rank
approximations and have been shown to produce state-of-the-art
results in collaborative filtering benchmarks (Muller et al., 2018).
In the case of architectures where the limiting factor is memory
access, kernelized reparameterizations can also be associated to
a speed-up: instead of looking up the nm entries of W, they can
be computed from only k(n+m) values (entries of the matrixW
share parameters). The additional overhead is the evaluation of a
kernel function.

2.6. Batch-Size Regularization With Model
Parallelism
2.6.1. Inductive Bias

Standard neural network training by stochastic gradient descent
(SGD) and its variants can be seen as a kind of regularization
or inductive bias in itself (Neyshabur et al., 2017) (SGD
with a small learning rate, is more likely to find a solution
with small parameter values). Furthermore, in the case of
mini-batch gradient descent (where gradients are summed or
averaged over a “mini-batch” of examples before being applied
to weights), decreasing the batch-size is often associated with
better generalization (Wilson and Martinez, 2003). This may,
however, depend on the exact variant of gradient descent
used (Smith, 2018).

2.6.2. Hardware Constraint and Performance Impact

For standard GPU implementations of neural networks, this
is somewhat problematic because parallelization is most easily
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implemented as data paralellism over the batch dimension
(Chetlur et al., 2014; Krizhevsky, 2014). In the worst case,
this results in a trade-off between speed-up and generalization
performance. In contrast, hardware implementations with
weight-wise parallelism in the vein of Gokmen and Vlasov (2016)
can have difficulties aggregating gradients over multiple samples
but do not have to make the speed-generalization trade-off.

2.7. Low Resolution Synaptic Weights
2.7.1. Inductive Bias

To the best of our knowledge, there is no clear inductive
bias associated with the use of low-resolution synaptic
weights, and, consequently, it is unclear what task or
learning setup matches low resolution constraints. Intuitively,
low resolution arithmetic might not match the setting of
gradient-based training because the gradient only gives reliable
information in a small neighborhood around the current model
parameters’circumstantial evidence for this is the significant
amount of work on the improvement of training methods in
the context of low-resolution weights (e.g., Müller et al., 2017;
Alizadeh et al., 2019; Helwegen et al., 2019). More generally,
Goodfellow et al. (2014) argue that current neural network
architectures are selected under the constraint that they are
well-suited for training by SGD. The improvement of alternative
training methods (e.g., gradient-free ones) could, in light of this,
be impactful for low resolution neural networks.

2.7.2. Hardware Constraint

In digital hardware, lower resolution directly translates into
more compact designs. In analog hardware, there probably
is an analogous trend due to noise tolerance. The optimal
implementation of the low-resolution arithmetic for neural
networks is in itself an open research question. Both floating-
(Courbariaux et al., 2014) and fixed-point (Lin et al., 2016)
approaches exist combined with different number formats
(Langroudi et al., 2019) and compression approaches (Aimar
et al., 2018). For the extreme case of binary and ternary
weights (Courbariaux et al., 2015; Muller and Indiveri, 2015),
the multiplication between inputs and synaptic weights can
also be simplified, as in Courbariaux et al. (2015) or by sparse
versions thereof.

2.7.3. Performance Impact

State-of-the-art neural networks, in terms of pure predictive
power, use at least 16-bit floating point arithmetic in all
applications we are aware of. However, some ultra-low-resolution
systems are highly competitive in terms of performance per
power (Andri et al., 2016) or performance under limited memory
usage (Uhlich et al., 2020).

3. METHODS

In this section, have given implementation details of the
simulations in the following section. We limited ourselves to
dense, technical descriptions here and have given more context
in the following section. All models were implemented in
tensorflow (Abadi et al., 2016).

3.1. Bias Matching
In section 4, we have given two examples of how to apply bias
matching in a concrete situation. Here, we have provided an
abstract step-by-step description of bias matching.

1. Define a hardware property or constraint.
2. Define an end-to-end machine learning architecture

incorporating the given constraint.
3. Find tasks that benefit from inductive biases associated

with the constraint.

If necessary, revisit point two after the evaluating performances.
While we followed this series of steps in the examples, one could
also take an inductive bias as the starting point and work toward
a hardware constraint.

3.2. Sparse Connectivity With Recurrent
Fixed Weights
In this section, we have defined a neural network layer whose
performance we have compared to that of a standard fully-
connected layer in two different settings.

The layer we proposed, termed the sparseRec-layer, has
the following recurrent definition (the reasoning behind this
definition is given in section 4.1), given input Ex:

Ey0 = WinEx

Eyt = f (Ey∗0 +WrecEyt−1) (5)

where Win is a learned input n × k matrix, and Wrec is a fixed,
randomly drawn recurrent m × m connection matrix. We chose

m > k and will denote s = k
m as sparsity. Ey∗0 is Ey0 zero-

padded from length k to m. f (·) is an activation function. When
computing the output of such a layer, we applied this recurrent
definition up to tmax while keeping the input fixed.

3.2.1. MNIST

The baseline model is a multilayer perceptron with one hidden
layer trained on MNIST (LeCun et al., 1998). The hidden layer
has m ∈ {16, 31, 62, 125, 250, 500} neurons and a rectified-
linear activation function (Glorot et al., 2011). We trained
with the Adam optimizer (Kingma and Ba, 2014) for 40
epochs at a batch size of 256 and summed categorical cross-
entropy cost. We used drop-out regularization (Srivastava,
2013). We ran a hyperparameter sweep for dropout values
d ∈ {0.0, 0.2, 0.4, and 0.6} and learning rates l ∈
{0.0005, 0.001, 0.002, and 0.003}with five different random seeds.
We selected the best performing parameters on a validation set
and report the best average performance of each model.

Formulaically the networks prediction given input Ex is

y = softmax
(

Wout · Dropout
(

ReLU
(

Win · Dropout(Ex)
)))

(6)

The sparseRec model is identical with some changes: the hidden
layer is replaced with a sparseRec-layer, as described in Equation
(5), and also has a rectified-linear activation function. The
sparsity s and the corresponding number of non-zero columns
k of the feedforward matrix Win is given in Table 2. The values
of Win are constrained to lie in [−1, 1] by reprojection after
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TABLE 2 | Basic network parameters used in the simulations in section 3.2.

# hidden

units (m)

# connected

hidden units (k)

Sparsity (s) (%)

500 500 0

500 250 50

500 125 75

500 62 87.6

500 32 93.2

500 16 96.8

each optimization step. The recurrent matrix Wrec is set to fixed
uniformly random weights of density 0.2 and rescaled to have
spectral radius 0.95 (motivated by the echo-state property, this
limits gradient decay/explosion).

Our goal was to compare the predictive accuracy of the two
models as a function of the number of free parameters.

3.2.2. ML1M

The baseline model is an item-based autoencoder identical to the
one described in Sedhain et al. (2015). It has one or two hidden
layers withm ∈ {280, 300, 350, 400, 450, 500} neurons (each) and
sigmoid activation function. We optimized using full batches and
the L-BFGS optimizer (Zhu et al., 1997) on the summed squared
error of known entries with an L2 regularization strength l2 ∈
{25, 50, 100}. The L2 regularization was applied to the connection
weights (not to biases) in the form of a cost c = l2

∑

ij(Wij)
2.

The sparseRec model is identical with the some changes: the
hidden layer is replaced with a sparseRec-layer, as described
in Equation (5), with a sigmoid activation function (as in the
baseline model). The sparsity s and the corresponding number
of non-zero columns k of the feedforward matrix Win is given
in Table 2. The values of Win are constrained to lie in [−1, 1]
by reprojection during the optimization. The recurrent matrix
Wrec was set to fixed uniformly random weights of density 0.2
and rescaled to have spectral radius 0.95.

As for the MNIST dataset, we compared the predictive
accuracy of the two models.

3.3. Batch-Size Regularization in
Low-Rank Matrix Approximation
The model used was an Factorization Machine (FM) as described
in Rendle (2012), where we adopted two minor deviations from
this description also used in the code accompanying that paper:
weight-decay (L2 regularization) was only applied to parameters
that have non-zero gradient, and themodels output was restricted
to the range of the rating values given in the training set.
Finally, we added a modification for numerical stability with
large batch sizes: the gradient of the global bias b was divided by
the batch-size.

For each batch-size, we individually found the optimal
hyperparameters (L2 regularization strength l2, learning rate) in
{0.02, 0.04, 0.06, 0.08} × {0.0005, 0.001, 0.002, and 0.003}. l2 is
the multiplicative coefficient to an L2 cost given in the previous
subsection. We ran each model for at least five different random

FIGURE 2 | Schematic description of a sparseRec layer. Win is learned, Wrec

is fixed and random. At each layer, a non-linearity is applied. See also

Equation (5).

seeds (resulting in different initial parameters and different train-
test splits). For each batch-size, we picked the hyperparameters
with the best average performance.

Our goal was to examine the test accuracy of the model as a
function of the training batch size.

4. SIMULATION RESULTS AND
DISCUSSION

In this section, we have shown simulation results where we could
identify good use-cases for specific computational limitations. In
these use-cases, the limitations match a task’s preferred inductive
bias. We further observed that, for other tasks, the same biases
may well lead to a deterioration in performance. We emphasize
that we did not perform exhaustive architecture searches for a
given task but conversely performed a constraint search for an
architecture and application that leads to an improvement over
a baseline.

4.1. Sparse Connectivity With Fixed
Weights
In this subsection, we began from a particular hardware
constraint and tried to find a suitable application for it, following
section 3.1 (step 1): we assumed we had developed hardware that
would allow us to cheaplymultiply vectors with a fixed, uniformly
random matrix.

Next, we defined an architecture (step two in section 3.1).
The architecture we considered could be succinctly described
as a deep echo-state network (ESN) (Gallicchio and Micheli,
2016) with trained feed-forward weights or alternatively as a set
of sparsely connected feed-forward layers, with fixed random
recurrent connections within each layer (see Figure 2 for a visual
explanation). As given in the previous section, formulaically we
proposed a neural network layer, termed the sparseRec-layer,
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FIGURE 3 | Schematic setup of the Autorec method (Sedhain et al., 2015) for predicting entries of a sparsely known matrix. The cost function is a squared error
∑

i (xi − yi )
2 on known entries (with regularization).

FIGURE 4 | Performance of MLPs with a hidden sparseRec-layers classifying

MNIST as a function of sparsity compared against two standard MLP

baselines, baseline1 shows the performance at 400,000 parameters,

baseline2 has a varying hidden layer size. Errorbars show the standard error.

The sparse models do not exceed the performance of the dense model.

with the following recurrent definition, given input Ex:

Ey0 = WinEx

Eyt = f (Ey∗0 +WrecEyt−1)

where Win is a learned input n × k matrix, and Wrec is a fixed,
randomly drawn recurrent m × m connection matrix. We chose

m > k and denoted s = k
m as sparsity. Ey∗0 is Ey0 zero-padded from

length k to m. f (·) was an activation function. When computing
the output of such a layer, we applied this recurrent definition up
to tmax while keeping the input fixed.

The intuition behind a sparseRec-layer, is that we want
a high number of linearly independent activations in each
layer. Simultaneously, we wanted to keep the number of
adjustable weights small (for regularization and simpler hardware

FIGURE 5 | Performance of autoencoders with a hidden sparseRec-layer

regressing ratings in ML1M as a function of sparsity (plotted as number of free

parameters) compared against a standard autoencoder baseline. Errorbars

show the standard error. Some sparse models exceed the performance of the

baseline model with the same number of free parameters significantly and

exceed (though not significantly) the performance of the dense model with

more parameters. Baseline1: Performance reported in Sedhain et al. (2015)

with 6M parameters, baseline2: our implementation of the same model with a

single hidden layer of varying size, and baseline 3: with two hidden layers of

varying size. Note that at 6M parameters the tmax = 0.0 model is equivalent to

baseline2.

implementation) compared to the number of fixed weights. From
an implementation perspective, this architecture is interesting
for some of the reasons that also make ESN and Extreme
learning machines (ELM) (Huang et al., 2004) appealing to
hardware designers: the use of mostly fixed weights (that do
not need an updating mechanism) and the recurrent network
structure (that reduces information transport in comparison
to a feed-forward structure). Since we added trained feed-
forward weights, we required that a product of an error vector
with the transpose weight matrix could also be performed
for the purpose of error back-propagation (in contrast to a
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standard deep-esn). Crossbar-arrays (Steinbuch, 1961) are a well-
known example of a kind of architecture that can support
such operations.

As a “naive” first benchmark, we used MNIST (LeCun et al.,
1998) and compared fully-connected networks to the proposed
sparse networks with fixed random recurrent weights in each
layer, as a function of number of free parameters (see Figure 4).
We found a gradual degradation of the performance as the
number of free parameters decreases. This is not surprising:
we are not aware of any reason to expect that sparsity should
improve performance for this task. Indeed, the sparse models do
not exceed the performance of the dense model.

In contrast, it has been observed that sparsified networks can
show improved performance in collaborative filtering settings
(Muller et al., 2018) (step 3 in section 3.1). In the spirit of bias
matching, we investigated whether our given sparse architecture
would improve over the fully-connected baseline in this task.
The setup followed (Sedhain et al., 2015) (see Figure 3). The
goal was to regress missing entries of a large, sparsely known
matrix given in MovieLens-1M (Harper and Konstan, 2015).
To achieve this, the matrix was cut into columns or rows.
Each column was treated as a sample. An autoencoder was
trained to reconstruct columns, where the cost is the squared
error for known entries and zero otherwise, in combination
with L2-regularization. Training was performed by a gradient-
descent variant, namely, L-BFGS (Zhu et al., 1997). We used the
same network of Sedhain et al. (2015) as a baseline, and, for
comparison, we replaced the hidden layer with the layer given
in Equation (5).

Figure 5 shows that, this collaborative filtering setting, the
constraint that degraded performance for the MNIST dataset,
improves the performance over the fully connected baseline at a
given number of free parameters. The performance also does not
significantly change when decreasing the number of parameters
by sparsifying in the proposed way but decreases significantly
when the hidden layer is made smaller (to reach the same number
of free parameters). We further found that additional network
depth explains this in part by comparison to an architecture with
an equal number of parameters and two hidden layers. Overall,
this suggests that the constraint matches well the inductive bias
required to generalize on this task.

Furthermore, we found that applying the fixed, random
matrix more than once does not improve the performance
significantly (tmax = 1 is as good as tmax > 1). This means that
our final layer architecture could be described as a learned input
matrix, followed by a fixed, randommatrix; in spirit, this is closer
to an ELM than an ESN.

4.2. Batch-Size Regularization in
Low-Rank Matrix Approximation
As a second example (step 1 in section 3.1), we considered a
“sparse vector”-“dense matrix” multiplier where the input data
vector is binary, Ex ∈ {0, 1}n, and changes to matrix entries
must occur in place. An example of such a system would
be a spiking neural network with synapses implemented by a
cross-bar array in the vein of Gokmen and Vlasov (2016). The
key constraint we considered here is that such systems usually
have difficulties aggregating gradients over multiple samples

FIGURE 6 | Sparse rank-k matrix decomposition (or a Factorization Machine)

as a (spiking) neural network.

(parallelization occurs across the weight-array instead of across
mini-batches).

As a computational architecture (step 2 in section 3.1), we
chose the Factorization Machine (FM) (Rendle, 2010). Given a
sparse sample of the entries of a matrix, we wished to regress
unknown entries. As a formula, the prediction for an entry r
of the matrix, given the concatenated one-hot encoded row and
column indices x, is

r = b+
∑

i

xiwi + 0.5
∑

j





(

∑

i

vijxi

)2

−
∑

i

v2ijx
2
i



 . (7)

From a neural network perspective, we can describe the setup
as follows (see Figure 6 for further details): we gave as input
to three fully-connected layers the one-hot encoded row and
column indices as a concatenated vector; two of these layers
have a linear, the other a quadratic activation function, and their
weights W,V1,V2 are tied such that V1 = V2

2 . The weights have
sizes W :(nc + nr) × 1 and V :(nc + nr) × k, where nc, nr are
the number of columns and rows, respectively. The three hidden
layers are read out by a dense layer of size one with fixed weights
of plus one (i.e., they are summed). The output of this dense
layer is the prediction for the rating. Training is performed by
gradient-descent with L2-regularization.

We further note that Figure 6 makes it evident that FMs
are closely related to spiking neural networks in the sense that
their central operation is a sparse vector-matrix multiplication.
In addition, Ex ∈ {0, 1}n has a clear interpretation for FMs: In this
case, the FM solves a low-rank factorization problem (Rendle,
2010).

A key area of application of FMs are collaborative filtering
tasks. We therefore considered low-rank matrix factorization of
MovieLens-1M as a test application with the inductive bias of
small training batch sizes (step 3 in section 3.1).
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FIGURE 7 | (A) RMSE (lower is better) and (B) generalization gap (difference between train and test performance, lower is better) of a FM trained on ML1M as a

function of training epoch for various batch sizes. There is a significant preference for smaller batch sizes. Batch-sizes 1 and 100 are not significantly different.

We plotted the performance on a validation set of this
network as a function of the mini-batch size during training
(Figure 7). We found that increasing batch-sizes reduce the
performance of the network (but note that it is possible that
means of regularization other than the ones we tested allow for
the use of larger batch-sizes). This indicates that an interesting
area of application for weight-parallel spiking neural network
accelerators are FMs because they can give a (weight-wise)
parallelization speed-up without the performance degradation
associated with large batch-sizes.

We note that the beneficial effect of using SGD with small
batch-sizes has been observed in other applications as well (as
mentioned in section 2.6, e.g., Wilson and Martinez, 2003).

5. CONCLUSIONS

When one approximates a machine learning model efficiently,
assuming some hardware constraints, the usefulness of these
constraints for generalization is worth careful consideration. In
other words, hardware constraints must match inductive biases.
Such a match can lead to highly efficient and well-performing
systems. For example, when designing a neuromorphic chip to
analyze speech signals, it does not need to support fast state
changes in the hidden neurons (see section 2.3), and building
accelerators for collaborative filtering exploiting sparsity could be
very relevant (see section 4.1).

Similarly, avoidance of an inappropriate bias can also be
crucial, as demonstrated by the Shuffle-Net (Zhang et al., 2018),
where a factorization of the model into independent subnetworks
is avoided by random shuffling of sparsely connected channels.

Recently, the question has arisen as to whether, in machine
learning research, the most successful approach is to look for
ways to apply more computational power to a problem rather
than finding better designed solutions (Sutton, 2019). Through
the many examples of “bias-matching” we have reported in this
paper, we support the contrary notion that finding low-level

improvements (through hardware constraints) that synergize
with the problems one is trying to solve (through inductive
biases) is a kind of thoughtful problem solving that can be crucial
in the development of competitive machine learning systems.

The embodiment of inductive biases as hardware constraints
also implies a caveat for the evaluation of neuromorphic
architectures: if an architecture aims to be general purpose, it is
important to benchmark it on a variety of tasks; otherwise, it may
be the case that the chosen benchmarks benefit from inductive
biases embodied by the constraints of the given architecture.

In this paper, we discussed several examples from the
literature where such a match is given. Furthermore we applied
the idea of bias matching to a novel network architecture that
can make use of fixed, random weights, and found that its
sparse structure leads to improved performance over a dense
baseline on a benchmark for which sparsity has been shown to
be useful previously.
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