
ORIGINAL RESEARCH
published: 05 May 2020

doi: 10.3389/fnins.2020.00439

Frontiers in Neuroscience | www.frontiersin.org 1 May 2020 | Volume 14 | Article 439

Edited by:

Kaushik Roy,

Purdue University, United States

Reviewed by:

Jim Harkin,

Ulster University, United Kingdom

Guoqi Li,

Tsinghua University, China

*Correspondence:

Alexander Kugele

alexander.kugele@de.bosch.com

Specialty section:

This article was submitted to

Neuromorphic Engineering,

a section of the journal

Frontiers in Neuroscience

Received: 14 November 2019

Accepted: 09 April 2020

Published: 05 May 2020

Citation:

Kugele A, Pfeil T, Pfeiffer M and

Chicca E (2020) Efficient Processing

of Spatio-Temporal Data Streams

With Spiking Neural Networks.

Front. Neurosci. 14:439.

doi: 10.3389/fnins.2020.00439

Efficient Processing of
Spatio-Temporal Data Streams With
Spiking Neural Networks

Alexander Kugele 1,2*, Thomas Pfeil 2, Michael Pfeiffer 2 and Elisabetta Chicca 1

1 Faculty of Technology and Center of Cognitive Interaction Technology (CITEC), Bielefeld University, Bielefeld, Germany,
2 Bosch Center for Artificial Intelligence, Renningen, Germany

Spiking neural networks (SNNs) are potentially highly efficient models for inference on fully

parallel neuromorphic hardware, but existing training methods that convert conventional

artificial neural networks (ANNs) into SNNs are unable to exploit these advantages.

Although ANN-to-SNN conversion has achieved state-of-the-art accuracy for static

image classification tasks, the following subtle but important difference in the way SNNs

and ANNs integrate information over time makes the direct application of conversion

techniques for sequence processing tasks challenging. Whereas all connections in SNNs

have a certain propagation delay larger than zero, ANNs assign different roles to feed-

forward connections, which immediately update all neurons within the same time step,

and recurrent connections, which have to be rolled out in time and are typically assigned

a delay of one time step. Here, we present a novel method to obtain highly accurate

SNNs for sequence processing by modifying the ANN training before conversion, such

that delays induced by ANN rollouts match the propagation delays in the targeted SNN

implementation. Our method builds on the recently introduced framework of streaming

rollouts, which aims for fully parallel model execution of ANNs and inherently allows

for temporal integration by merging paths of different delays between input and output

of the network. The resulting networks achieve state-of-the-art accuracy for multiple

event-based benchmark datasets, including N-MNIST, CIFAR10-DVS, N-CARS, and

DvsGesture, and through the use of spatio-temporal shortcut connections yield

low-latency approximate network responses that improve over time as more of the

input sequence is processed. In addition, our converted SNNs are consistently more

energy-efficient than their corresponding ANNs.

Keywords: spiking neural networks, sequence processing, efficient inference, neuromorphic computing,

event-based vision

1. INTRODUCTION

Spiking neural networks (SNNs) were initially developed as biophysically realistic models of
information processing in nervous systems (Rieke et al., 1999; Gerstner et al., 2014), but they
are also ideally suited to process data from event-based sensors (Posch et al., 2010; Liu and
Delbruck, 2010; Furber et al., 2013; O’Connor et al., 2013; Osswald et al., 2017), and are natively
implemented on various neuromorphic computing platforms (Schemmel et al., 2010; Furber et al.,
2013; Merolla et al., 2014; Qiao et al., 2015; Martí et al., 2015; Davies et al., 2018). Their sparse

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2020.00439
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2020.00439&domain=pdf&date_stamp=2020-05-05
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:alexander.kugele@de.bosch.com
https://doi.org/10.3389/fnins.2020.00439
https://www.frontiersin.org/articles/10.3389/fnins.2020.00439/full
http://loop.frontiersin.org/people/770694/overview
http://loop.frontiersin.org/people/47543/overview
http://loop.frontiersin.org/people/21160/overview
http://loop.frontiersin.org/people/21489/overview

Kugele et al. SNNs for Efficient Sequence Processing

and event-driven mode of computation makes them more
energy-efficient and faster compared to conventional artificial
neural networks (ANNs), and additionally allows for the use of
spatio-temporal spike codes to represent complex relationships
between features in the network. These hypothetical advantages
can, however, only be completely exploited on hardware that
supports fully parallel model execution, which means that spiking
neurons operate independently from each other and their update
is solely based on incoming spikes. This is different from typical
ANN execution schemes, which update all neurons in a fixed
order determined by the network architecture and at fixed
discrete time steps.

The goal of this article is to develop a framework for obtaining
SNNs that run fully in parallel and achieve high accuracy, low
latency, and high energy-efficiency on sequence processing tasks,
in particular classifying streams of events from neuromorphic
sensors. Sequence processing seems to be a natural fit for
the execution mode of SNNs where every neuron has its own
dynamics, but in practice it has proven to be very challenging
to exploit this property to train SNNs on temporally varying
input data. Even more, current state-of-the-art methods for SNN
training are unable to yield competitive accuracies compared
to ANNs even in the simpler case of static inputs (Pfeiffer and
Pfeil, 2018), albeit the gap has become narrower over the past
years due to better training algorithms, such as e.g., variants of
backpropagation for SNNs (Lee et al., 2016; Wu et al., 2018;
Shrestha and Orchard, 2018; Neftci et al., 2019). However, Deng
et al. (2020) argue that SNNs in general are put at a disadvantage
in tasks designed for ANNs, such as image classification, because
of the information loss incurred during conversion of images to
spike trains of finite time window length. SNNs should not be
expected to outperform ANNs in terms of accuracy on frame-
based tasks, but they may be advantageous in terms of memory
and compute costs. SNNs should ideally always be evaluated on
event-based datasets, where they are able to outperform ANNs
by exploiting the spatio-temporal information encoding of event-
streams. Consequently, in this article we use only event-based
datasets to evaluate our SNN performance and report memory
and compute requirements for our networks, as suggested in
Deng et al. (2020).

The currently most successful method for obtaining accurate
SNNs is to train an ANN with conventional deep learning
methods, and convert the resulting ANN architecture and
weights into an equivalent SNN, translating analog neuron
activations into proportional firing rates of spiking neurons (Cao
et al., 2015; Rueckauer et al., 2017). Conversion methods have
achieved the best known SNN accuracies for image classification
tasks, such as MNIST, but they rely on the assumption that input
patterns do not change for some time. This is required because
firing rates in each layer need time to converge to their targets
derived from ANN activations. Spikes are allowed to propagate
instantaneously between layers of the network, since this speeds
up convergence of firing rates in deeper layers, and there is
no additional temporal information beyond rates encoded in
spike trains.

These assumptions are no longer valid when sequence
processing tasks are considered, which require networks capable

of temporal integration. Temporal integration means that
information from different times of the input has to be integrated
at a single point in time at the output of the network. In a multi-
layer network this means that the network architecture as well as
the propagation delays between layers become crucial to control
not just what features of the input are computed, but also when
information computed in other layers can be used to update
the feature computation. Temporal integration is achieved with
recurrent or temporal skip connections, which not only skip
layers in depth-direction of the network, but also bridge time
like recurrent connections. Since temporal skip connections,
in contrast to recurrent connections, serve as shortcuts in time,
and hence, reduce the latency of early approximate network
responses, we omit recurrent connections in the following.

Our goal is to obtain SNNs for model-parallel execution on
actual neuromorphic systems, which requires assigning non-zero
delays to all connections in the network. However, current ANN-
to-SNN conversion methods are unable to deal with the case
of time-varying inputs or with temporal skip connections with
different propagation delays. The main contribution of this paper
is to close these gaps by unifying ANN-to-SNN conversion with
the recently introduced concept of streaming rollouts (Fischer
et al., 2018), thereby greatly extending the applicability of SNN
training methods to novel and important classes of applications.
Since the inference graph of an SNN determines the way
temporal information is being processed, its temporal structure
needs already to be taken into account during ANN training (see
Section 2.2 for details). In other words, it has to be ensured that
information from all required parts of the input sequence and
the resulting activations of intermediate layers arrives at the right
time at the output neurons both during ANN training and after
conversion to SNNs. With this novel method for rolling out and
training ANNs before conversion to SNNs we obtain SNNs that
efficiently and accurately solve sequence processing tasks, and
yield approximate responses as early as possible.

In the following, we describe our methods in detail and
show experimental results that emphasize the advantages of our
approach for event-based sequence processing tasks.

2. METHODS

In this section, we describe the task of classifying event-based
data streams with spiking neural networks (Section 2.1), and
present a recipe for obtaining SNNs to process input sequences
on neuromorphic hardware. First, we define the targeted
inference graph of SNNs (Section 2.2) and, then, describe how
to train (Section 2.3) and convert (Section 2.4) corresponding
artificial neural networks (ANNs). Last, we describe how we
estimate the energy-efficiency of both approaches in Section 2.5.

2.1. Classification With Spiking Neural
Networks
We study the task of training an SNN that processes a given input
spike sequence Sin into a discrete target output y ∈ {1, . . . ,C},
where C is the number of available classes. The input Sin is a
multi-dimensional spike sequence of dimensionality M, where

Frontiers in Neuroscience | www.frontiersin.org 2 May 2020 | Volume 14 | Article 439

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Kugele et al. SNNs for Efficient Sequence Processing

S
(i)
in = (t

(i)
in,1, . . . , t

(i)
in,n(i)

) defines the spike times of neuron i ∈

{1, . . . ,M}, and n(i) ≥ 0 is the number of spikes generated by
input neuron i in the input sequence. We define Tmax(Sin) =

maxi=1,...,M t
(i)
in,n(i)

as the length of the complete sequence, i.e., the

time of the final input spike to any input neuron, and we denote
by S[t0, t1] the partial spike train that includes all spikes of S
between t0 and t1. We introduce the shortcut S[t] = S[0, t] for all
spikes up to time t. The output vector y(t) is computed from the
spike trains Sout[t] of a defined output layer of the network after
seeing all spikes up to time t, and can be computed in various
ways, e.g., by applying the softmax function to the spike counts
of all output neurons.

In our experiments the spiking neurons are simple non-
leaky Integrate & Fire (IF) neurons without refractory period,
as described in Rueckauer et al. (2017). Every neuron i is
characterized by its membrane potential Vi(t), which is updated
whenever the neuron receives an input spike from another
neuron j. In this case we update Vi(t) ← Vi(t) + wij. If Vi(t)
exceeds a threshold voltage Vth then the neuron sends out a spike
and resets its membrane potential by the following subtraction:
Vi(t) ← Vi(t) − Vth. Rueckauer et al. (2017) analytically show
how IF neurons can approximate ANN activations with spike
rates. It is possible to use alternative neuron models, e.g., leaky
integrate-and-fire, but to date no practical benefits have been
demonstrated that would warrant their additional analytical and
computational complexity. Hence, we consider only IF models in
this paper.

2.2. Sequence Processing With Streaming
Rollouts
The architecture of the neural network is described by a directed
network graph, in which nodes correspond to layers of a neural
network, and edges represent dependencies between the layers.
The goal is to train a network for sequence processing, which
means the output t at any time depends on the entire input
sequence Sin[t] or at least a spatio-temporal receptive field Sin[t −
τ , t] of duration τ . The network needs to be capable of temporal
integration, i.e., information about the input in the relevant
spatio-temporal receptive field must remain present in some
nodes, and must be continuously combined with new incoming
information. Temporal integration requires a network graph
that includes either recurrent or temporal skip connections, as
discussed next.

In the setting of an ANN processing an input sequence, a
network graph can be rolled out in time in multiple ways (Fischer
et al., 2018). The usual convention of sequential rollouts is to
assume a delay of one time step for recurrent edges, whereas all
other edges in the feed-forward direction from input to output
are assumed to transport information instantaneously without
delay. A mechanism similar to sequential rollouts, although on
the granularity of SNN simulation time steps was proposed by
Wu et al. (2018) to train SNNs with backpropagation, which
allows treating the spatial and temporal domain separately for
backpropagation. However, this notion of sequential rollouts
is in contrast to the fully parallel execution mode of SNNs,
in which all neurons can update their states simultaneously,

but information cannot be instantaneously propagated between
neurons. Converting an ANN trained with sequential rollouts
into an SNN can therefore lead to a mismatch in the way
information is being processed over time.

Fischer et al. (2018) proposed an alternative rollout
mechanism called streaming rollout, in which all edges transport
information to the next rollout frame. We define a rollout frame
as the state of all neurons at a given time point after applying all
instantaneous updates within the same frame, as well as updates
from delayed connections from the previous time step(s). The
streaming rollout is equivalent to introducing an axonal delay
dANN of at least one rollout frame to all connections. Each
neuron’s next state can then be computed exclusively from
values computed in the previous rollout frame, which allows
fully parallel updates within one rollout frame. In previous
conversion approaches, the time to reach good approximations
scales with the network depth, because the spiking activity in any
layer first needs to converge to a good-enough approximation of
ANN activations before the next layer is able to generate precise
approximations. This is resolved by the streaming rollout, as all
layers approximate the activations in parallel, thereby decoupling
the depth from the integration time. We limit our analysis in this
paper to a delay of one rollout frame.

Skip connections under streaming rollout translate to
temporal skip connections, which do not only skip layers in the
depth-direction of the network, but also span time. Furthermore,
temporal skip connections give rise to early approximate
results, and the earliest response is determined by the shortest
path between input and output in the network graph. Initial
predictions are less accurate, because only a shallower network
is used for classification, but getting an early guess is desirable
for many tasks that require real-time decisions. Note that the
scenario we investigate here is different from the typical sequence
processing framework, e.g., NLP or speech, where reasonable
accuracy can only be obtained after seeing most of the input.
The accuracy improves over time as more frames of the input
sequence are processed, and as deeper layers of the network begin
to contribute to the prediction.

Figure 1 illustrates how streaming rollouts achieve temporal
integration for an exemplary network graph (Figure 1B) with
Nl = 4 convolutions and a fully-connected layer (number of
blocks Nb = 1). The temporal shortcuts with dANN = 1
allow for temporal integration over multiple frames in the input
sequence. This is illustrated in Figure 1C by assigning a color
to each of the four processed input frames F1, . . . , F4, and the
mixing of colors indicates which frames provide information to
which layer at every time step. For example, the skip connection
from layer 1 to 4 causes early activity in the output layer already
at k = 3, although with reduced accuracy. Multiple paths of
different lengths connect the input to the output, with a shortest
path (shown in blue) of length 2, and the longest path (in red)
of length 4. The difference between the length of the longest
and the shortest path determines the size of the spatio-temporal
receptive field. In our example, the size of the receptive field
is τ = 3 input frames and, hence, the output in Figure 1C is
shown as a mix of up to three colors. In Figure 1C at k = 6,
input data from k = 2 and 4 arrive at the same time at the

Frontiers in Neuroscience | www.frontiersin.org 3 May 2020 | Volume 14 | Article 439

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Kugele et al. SNNs for Efficient Sequence Processing

FIGURE 1 | Network rollout and training of ANNs before conversion to SNNs for sequence processing. (A) Input frames Fin are generated from event data by

averaging ON (red) and OFF (blue) events over time intervals of fixed duration TF (here TF = 25 ms; in the bottom only OFF events are shown). This example is taken

from the N-CARS dataset. (B) Network graph of an exemplary feed-forward SNN consisting of an initial convolutional layer (with index 1), one block of three

convolutional layers (2 to 4) and a fully-connected (FC) layer that are connected to each other. (C) The streaming rollout of the ANN that corresponds to the

connectivity chosen in (B) over K = 6 rollout frames k and dANN = 1 for all connections. Note that the model parallelism required by SNNs is achieved by choosing all

connections to span time, i.e., to bridge rollout frames. For networks with skip connections, this results in paths of different length from input Fk to output yk′ (e.g., red

and blue path from F2 and F4 to y6) allowing for spatio-temporal integration of information over the input sequence Fin. Nodes in the rollout are numbered like in (B)

and identically numbered nodes indicate that they share their weights. (D) Exemplary activity of an SNN (raster plot) after conversion from a trained ANN as shown in

(C). Each row corresponds to a neuron in the SNN and each data point is a single spike. Note that the absence of activity in layers 2–4 in the first rollout frame is

caused by axonal delays.

output layer (via the red and blue path, respectively) and can,
hence, be jointly used for prediction. In addition, the shortest
path between inputs and outputs of such a network (green path)
defines the latency, at which a first approximate prediction can
be made. Long paths (red path), i.e., deeper networks, allow
for better accuracy at the cost of higher computational effort.
In addition, the overall energy-efficiency is further increased
by regularizing all activations with the L2-norm in order to
achieve smaller activations and therefore reduce the number
of operations necessary to reach an accuracy level close to
the maximum possible. Note that in streaming rollouts newly
acquired input frames are immediately processed and fused with
pre-processed information from previous inputs to refine the
output of the network. Since the computation of all layers in a
rollout frame only depends on the outputs of the layers in the last
rollout frame, outputs can be computed frame by frame. This is
in contrast to other methods for sequence processing, for which
multiple input frames are required at once to compute the output
of the network (e.g., van den Oord et al., 2016a).

2.3. Training of Artificial Neural Networks
In all our experiments, the network graphs follow the DenseNet
architecture (Huang et al., 2017) due to two main reasons.
First, DenseNets are established network models and achieve
competitive results across various applications (Zhu and
Newsam, 2017; Huang et al., 2018; Zhang et al., 2018). Second, the
dense connectivity between layers, as described in the following,
results in streaming rollouts, in which the output is updated

every time step. In each block of a DenseNet, every layer is
connected to all previous layers. The blocks are connected by
transition layers that reduce the resolution via pooling. The last
layer is composed of global average pooling and a fully-connected
layer for classification. Throughout this study, we use network
graphs with Nb = 3 blocks, all other hyperparameters and a full
schematic of a two-block DenseNet can be found inAppendix A.

For the streaming rollout of the above network graph, the
temporal window τ is limited by the depth of the network
D = NlNb + 1. This explicit restriction to a finite temporal
window allows choosing a network architecture that matches the
temporal scale of the specific problem at hand. Furthermore,
the latency from first input to output in streamingly rolled out
DenseNets is Nb rollout frames, which is typically shorter than
the latency ofD for recurrent networks that utilize allD layers for
each prediction. These temporal skip connections in streamingly
rolled out DenseNets allow for fast approximate predictions that
are refined over time. For our datasets, we saw an increase in our
accuracy when replacing regular dropout with spatial dropout
(Tompson et al., 2015) and using convolutions with weight
kernels of spatial size 3 × 3 instead of 1 × 1 for the transition
layers (for further hyperparameters, see Appendix A).

For the training of ANNs with streaming rollouts, event-based
input sequences first need to be converted into sequences Fin of
N so-called input frames Fk (e.g., see Figures 1A,C). The input
spike sequences Sin are divided intoN equally sized time intervals
of length TF = T(Sin)/N, and for each interval we compute
the sum of all spikes, which is used as the input to the ANN.

Frontiers in Neuroscience | www.frontiersin.org 4 May 2020 | Volume 14 | Article 439

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Kugele et al. SNNs for Efficient Sequence Processing

Since event-based vision sensors distinguish between ON and
OFF events, we compute two separate channels per input frame.

For a given sequence of input frames Fin we use streaming
rollouts to compute the activations of all ANN units over time,
and apply backpropagation-through-time (Werbos, 1990) to
train the weights of the network. To consider all N input frames
Fk in Fin with k ∈ {1, ...,N} with the shortest possible rollout,
the last network output yk of the rollout is connected to the last
input frame FN , via the shortest path ls. This results in rollouts
with K = N + ls rollout frames and as many outputs yk (with
k ∈ {ls, . . . ,K}) as inputs (for an example, see Figure 1C). For
every dataset, the number of rollout frames K is determined by τ ,
the length of the temporal window. If the number of input frames
N is smaller than τ , these input frames are evenly distributed over
the available τ input slots of the fixed rollouts.

The optimization objective is tominimize the categorical cross
entropy L over all predictions yk of the network outputs,

L =

K∑

k=ls

−akŷk log(yk) (1)

where ŷk are the one-hot class labels and ak are factors to trade off
between early and late accuracy. These factors will be discussed
in detail in Section 3.2. As we are considering classification
problems, the target class label is the same for each output, i.e.,
ŷk = ŷ ∀ k. Observe that ŷk log(yk) is a scalar product and since
ŷk is a one-hot vector, only one term is non-zero. In all layers,
we apply weight decay as regularization, and activation decay for
increased sparsity. For parameterizations and further details, see
Appendix A.

2.4. ANN-to-SNN Conversion
After training the streaming rollout of the ANN, the architecture
and weights of the ANN are translated into an equivalent SNN
for energy-efficient inference. We closely follow the conversion
method described by Rueckauer et al. (2017), who proved that,
under the assumption of ReLU activations and IF neurons, the
firing rate ri of a spiking neuron i becomes proportional to
the activation ai of the corresponding neuron i in the ANN.
Hence, for the same input, the output firing rates of the SNN
approximate the ANN output activations, and the approximation
error decreases with simulation time of the SNN. In order to
speed up this approximation, the authors proposed a weight
normalization scheme to fully use the dynamic range of the
spiking neurons determined by their maximum firing rate.

In this article we go beyond the mechanisms described
Rueckauer et al. (2017), and apply ANN-to-SNN conversion
to a network rolled out in time using streaming rollouts (see
section 2.2 and Figure 1C), thereby allowing to address sequence
processing tasks. Two levels of temporal integration have to be
considered for the SNN: First, for every rollout frame, ANN
activations are approximated by firing rates, which happens in the
time interval defined byTF. Therefore, we have to set the duration
of a rollout frame long enough for firing rates to converge to their
target rates. Second, skip connections in streaming rollouts allow
temporal integration of information. For example, the red and

blue path in Figure 1C are arriving at the same time at layer 4 at
k, because each connection has delay dANN = 1. Consequently,
axonal delays of connections in SNNs have to be set such that
information propagates through the network as predefined by
the rollout of the ANN. If ANN activations in each rollout frame
are approximated by nsf simulation steps in SNNs, the delay in
SNNs has to satisfy d = nsf · dANN = nsf. Additionally, to
prevent neurons from being inactive for too long after receiving a
sustained negative input during one rollout frame we use a lower
bound on the membrane potential. It is expected that the output
rate of a neuron changes smoothly with its input rate. Assuming
that the input changes slowly over time, the membrane voltage
stored at the end of one rollout frame will be a good initialization
for the next rollout frame. In addition, the time until the rate
approximation is sufficiently good decreases for each additional
rollout frame. The limitation is the resolution with which the
rates have to be approximated. A particular advantage of using
skip connections is that the time required for information to
propagate from input to output is determined by the shortest path
ls. This rate of change from input to output is usually higher than
for networks using recurrent instead of skip connections, since
for these the shortest path equals to the full depth of the network
(ls = D), i.e., information needs to propagate through all layers.

Classification outputs in the final layer of the spiking network
are computed as y(t) = argmax(

∑t
t′=t−TF

Sout[t
′]) by summing

all weighted input spikes to each neuron over the time interval
TF and taking the argmax of this vector. This allows faster
adaptation of predictions, does not need an external stimulus,
and handles the case when both output neuron activations
are negative.

One important aspect of a classification method is the latency
between inputs and outputs, especially in scenarios with critical
real-time requirements. A direct approach would be to measure
the wall-clock time required to execute the SNNs. However, the
execution time of SNNs strongly depends on the used hardware
system. In order to disentangle this dependency we introduce
the hardware-agnostic measure of simulation steps per frame
nsf. In a time-stepped SNN simulator, each frame of a sample
is used as input for nsf steps. Then, the actual wall-clock time
depends on, first, the throughput of the SNN simulator/emulator
f in simulation steps per second and, second, the time needed
to accumulate one frame TF (see Figure 1). If a new frame is
accumulated while the network is executed and fnsf ≤ TF holds,
the system runs in real time.

The core idea of ANN-to-SNN conversion is to achieve a
linear mapping between activations of the ANN neurons and
spike rates of the SNN neurons. Neurons should not saturate,
i.e., the rate after mapping should not exceed one spike per
simulation step. Therefore, the activations have to be rescaled,
which can be achieved by rescaling weights and biases in each
layer by a scalar factor. The employed robust scheme scales
the parameters of each layer by a predefined percentile of
the training set activations, as described in Rueckauer et al.
(2017). Rescaling by a percentile of the activations instead of
the maximum activation leads to some neurons saturating (they
should spike more than once per simulation step), but increases
the overall activity in the network, leading to faster propagation

Frontiers in Neuroscience | www.frontiersin.org 5 May 2020 | Volume 14 | Article 439

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Kugele et al. SNNs for Efficient Sequence Processing

of information and therefore reduces the latency between input
and output. Additionally, the authors of Rueckauer et al. (2017)
see an increase in accuracy when choosing a percentile as scaling
factor instead of the maximum activation. It should be noted
that this method is not dependent on the layers used, considers
also concatenations of layers and only needs one forward pass
to rescale all layers. For our approach, we have to consider that
activations change over time. We calculate the percentile over
all activations over time, but still for each layer separately. In
contrast to the original work, we also rescale the weights of
Average Pooling layers by a percentile of the activations and
observe an increase in top accuracy.

2.5. Energy-Efficiency and Number of
Operations
In order to compare the energy-efficiency of ANNs and SNNs
we use the same metric as in Rueckauer et al. (2017), i.e., we
measure the average number of operations over all samples in the
used dataset split during inference. The number of operations is
calculated differently for ANNs and SNNs, due to the difference
in their neuron models. As discussed by e.g., Thakur et al. (2018)
and Pfeiffer and Pfeil (2018), many different neuron models
exist for SNNs depending on the desired biological plausibility
and complexity. In this study, we use the IF neuron model as
described in Section 2.1 to match the method for ANN-to-SNN
conversion introduced by Rueckauer et al. (2017). Comparing a
forward pass from layer l to layer l + 1 with activations al and
connection weightsW l

ij in ANNs

al+1i = ReLU(
∑

j

W l
ija

l
j). (2)

to the rate approximations of these activations al in SNNs as
described in Section 2.1, we follow Rueckauer et al. (2017) and
define the number of operations for ANNs and SNNs as follows.

For ANNs, operations are defined as the sum of all multiply-
add computations, and for SNNs, operations are defined as
synaptic operations, i.e., the sum of all spikes processed by
all neurons. The number of ANN operations is constant
across samples and rollout frames and only depends on the
size of the input frame. In contrast, for SNNs, the number
of operations depends on how many spikes are generated
during the execution of the network. The overall number of
spikes typically grows with the number of simulation steps
nsf and the magnitude of ANN activations, while it decreases
with the sparsity of activations. Thus, a smaller number of
simulation steps nsf in SNNs leads to better energy-efficiency,
but also to a less accurate approximation of ANN activations,
potentially reducing accuracy. Generally, real-valued multiply-
add operations in ANNs are computationally more expensive
than synaptic operations in SNNs, but on the other handmemory
accesses are more structured for ANNs. This trade-off varies
between different accelerators and neuromorphic chips. As an
estimate, the energy per multiply-add operation for a recent
FPGA architecture (Manolopoulos et al., 2016) is about 555–
1295.4 pJ, while for neuromorphic devices, a synaptic operation
consumes only 2.8–360 pJ (Thakur et al., 2018). Observe, that

our definition of simulation steps per frame nsf is related to the
number of simulation steps Ttot in Rueckauer et al. (2017) and
Deng et al. (2020) by the number of rollout frames K as Ttot =

nsf ·K, i.e., either one can be used to quantify the tradeoff between
energy-efficiency and accuracy.

3. RESULTS

In this section we demonstrate fast, accurate, and energy-efficient
inference with SNNs on five different sequence processing
tasks. First, a toy dataset is used to illustrate the concept of
temporal integration via streaming rollouts in ANNs, and shows
the energy-efficiency of converted SNNs (Section 3.1). Second,
we apply our approach to event data recorded by an event-
based camera in real-world driving scenes (Section 3.2) and
showcase the trade-off between the latency of network responses,
the classification accuracy, and energy-efficiency. Finally, we
demonstrate state-of-the-art performance on the established
N-MNIST, CIFAR10-DVS, and DvsGesture benchmarks for
classification on event-streams (Sections 3.3 to 3.5).

3.1. Moving Rectangles
This synthetic dataset consists of sequences composed of two
frames containing one rectangle each, and the task is to
determine whether the rectangle has moved to the left or right
in the second image. See Figure 2A for an example of both
classes and Appendix A.1 for more details. This frame-based toy
dataset is a minimal example of temporal integration, because the
direction of movement can only be inferred from the complete
sequence, but not from a single image. For this example, we
use the network graph as described in Section 2.3 with Nl = 1
that results in streaming rollouts with a spatio-temporal receptive
field of duration τ = 3. To demonstrate the effect of temporal
integration, we train this rollout with τ = 6 input frames (for
details, see Section 2.3), of which the first and second half (three
input frames each) comprises the first and second image of the
pair of moving rectangles, respectively.

During ANN inference, the predictions of the first three
outputs of this rollout are on chance level (see data points in the
area with light gray shading in Figure 2B), because only the first
τ = 3 input frames comprising the first rectangle are seen by
these outputs. The network outputs at rollout frames k = 8 to 10
(dark gray shading) retrieve information from both frames of the
input pair and, hence, can integrate this information to perfectly
classify themovement direction of the rectangle. Note that for the
chosen network graph and streaming rollout, the first response
of the network occurs at k = 5, which reflects the length and
the temporal delay ls = 4 of the shortest path between input and
output of the rollout.

Figure 2B shows that the SNN’s accuracy follows that of the
ANN and results in comparable overall performance. However,
the SNN accuracy is lagging behind the ANN accuracy in
Figures 2B,C, by at least one rollout frame. Multiple reasons
could cause this lag: First, the SNN accuracy is calculated by
averaging predictions over the last nsf simulation steps. Second,
accuracies could be further delayed by information that is stored
in the values of the membrane potentials and is carried from one

Frontiers in Neuroscience | www.frontiersin.org 6 May 2020 | Volume 14 | Article 439

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Kugele et al. SNNs for Efficient Sequence Processing

FIGURE 2 | Results for the moving rectangles dataset. (A) Samples for each class. (B) Average classification accuracy over rollout frames and corresponding

simulation steps for ANN (red dashed line) and SNN (blue solid line) with the standard error of the mean in lightly colored areas. Vertical gray lines separate rollout

frames and the shading of the background indicates, which image of the input sequence Fin is seen by the network output y: Light gray for the first and dark gray for

both input frames. Note that the first prediction occurs at the fourth rollout frame after input onset (simulation step = 45), since the shortest path from input to output

has length ls = 4. (C) Determining the trade-off between accuracy and energy-efficiency. (Top) Same as (B), but measured on 1,280 random samples of the training

set and for three different values of nsf. (Bottom) The ratio ρ between the area under curve of the ANN (shaded red) and SNN (shaded blue) for different values of nsf
over the number of operations. The number next to each datum is its respective number of simulation steps per frame nsf. The accuracy ratio ρ saturates at nsf = 15,

which we therefore consider as a good trade-off between accuracy and energy-efficiency. (D) Average classification accuracy over the number of operations for ANN

(red) and SNN (blue). For all data points in (B–D), averages over 10 trials are plotted. Standard error of the means are always plotted, but sometimes too small to be

visible.

to the next rollout frame, which can slow down the convergence
of the approximation of firing rates.

To be able to execute the SNN, we have to determine the
number of simulation steps per frame nsf. Observe, that this
hyperparameter comes with a trade-off between accuracy and
energy-efficiency: With increasing nsf, the rate approximation
error decreases, leading to higher accuracies but also to a higher
number of operations, decreasing energy-efficiency. In order
to determine a good trade-off between accuracy and energy-
efficiency, we sweep over different values for nsf using 1,280
randomly chosen samples from the training set. The area under
the curve is calculated for both the ANN and SNN accuracy over
simulation steps, and the accuracy ratio ρ is calculated as the
ratio between these areas. The difference between the accuracies
of ANNs and SNNs decreases, i.e., ρ increases, with larger nsf
(see Figure 2C). Note that reaching ρ = 1 implies that ANN
activations would have to be approximated by SNN firing rates
instantaneously, i.e., within one simulation step, which is very
unlikely in practice. The accuracy ratio ρ starts to saturate at
nsf = 15 simulation steps per rollout frame and, consequently,

we consider this value as a good trade-off for our experiments in
Figure 2D.

In terms of efficiency, achieving the peak accuracy of 100%
for this task requires 8.4 ± 0.6 MOps operations in the SNNs,
which is approximately a factor of 13 lower compared to their
ANN counterparts (105 MOps, see Figure 2D).

3.2. N-CARS
In this section, we apply our methods to real-world event-based
vision data from driving scenes, for which the task is to classify
the presence of a car in the recorded scene (Sironi et al., 2018).
N-CARS uses event streams with continuous spike times for
ON and OFF events that are triggered by positive and negative
changes in light intensity, respectively. For this experiment, we
choose ANN rollouts with Nl = 5 layers per block resulting in
τ = 16 input slots for the rollout and a spatio-temporal receptive
field of duration τ = 16 (for details, see Appendix A).

Our goal is to obtain good early predictions without sacrificing
accuracies at later outputs (as already discussed in Section 2.2).
This enables us to use early outputs for fast but relatively

Frontiers in Neuroscience | www.frontiersin.org 7 May 2020 | Volume 14 | Article 439

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Kugele et al. SNNs for Efficient Sequence Processing

FIGURE 3 | Results for the N-CARS dataset. (A) Average validation accuracies over the index k of the outputs of the network rollouts. Different choices for weighting

these outputs in the loss function are depicted with different colors (for details, see legend and Section 3). (B) Average accuracies of ANNs over real time of the input

sequences for different values for N (see legend). The inset shows the maximum accuracies. (C) Determining the trade-off between accuracy and energy-efficiency.

(Top) Accuracy of ANN and converted SNN over simulation time for N = 16 and nsf ∈ {5, 15, 35}. Note that the first prediction occurs at the fourth rollout frame after

input onset, since the shortest path from input to output has the length ls = 4. (Bottom) The ratio ρ between the area under curve of the ANN (shaded red) and SNN

(shaded blue) for different values of nsf over the number of operations. The number next to each datum is its respective number of simulation steps per frame nsf. The

accuracy ratio ρ saturates at nsf = 15, which we therefore consider as a good trade-off between accuracy and energy-efficiency. (D) Average peak accuracies over

number of operations for the ANNs of (B) and the converted SNNs [same color coding as in (B)]. For all shown data, the error of the mean values are plotted after

averaging over 10 trials, but are often too small to be seen.

inaccurate results and later outputs for slower results with higher
accuracy. This trade-off between early and late performance can
be tuned by the factors ak of the loss function, which weight
the losses from outputs at rollout frames k = 5 to k = 21
(see Eq. (1)). The index starts at k = 5, because the shortest
path through the network is ls = 5. In order to determine a
good choice for ak that achieves good early and late performance,
we evaluated seven different options. Figure 3A shows resulting
accuracies for each output k separately, after training, for the
following proposals of sets of ak:

• ak = 1: Uniformweighting: the factor is identical for all k, such
that early and late accuracy is considered equally important
• ak = k + 1: Linearly increasing weighting: emphasizing

late performance
• ak = exp (k): Exponentially increasing weighting: even

stronger emphasis on late performance
• a0 = 1, others 0: Only consider first output
• ak = 1/(k+1):Moderately decreasing weighting: Emphasizing

early performance
• ak = exp (−k): Exponentially decreasing weighting: even

stronger emphasis on early performance

• a15 = 1, others 0: Only consider last output

In practice, we normalize each set of ak such that
∑

k ak = 1, to
avoid influencing the learning rate. Note that we share weights
over time and, consequently, the very same weights have to fulfill
multiple objectives at once, which could potentially deteriorate
the accuracy of the network outputs. Weighting early outputs
higher improves the early accuracy by up to 4.3% compared
to constant ak (77.9 ± 0.2% for exp (−k) vs. 73.6 ± 0.8% for
ak = 1). However, increasing the accuracy for early outputs
degrades late performance by up to 13.5 % (exp (−k)). This effect
can be explained by the trade-off between using the available
capacity of the network to decrease the loss at early outputs and
to provide meaningful features for further processing required to
decrease the loss at later outputs. Weighting early outputs much
higher than late outputs (exp (−k)) shifts this trade-off toward
using most of the network capacity for instant classification and
suppressing feature generation for later outputs and temporal
integration. In all cases in which the late performance was
prioritized (including ak = 1), the maximum accuracies are
similar to each other (< 0.04% difference). In conclusion,
a uniform weighting ak = 1 represents a good trade-off

Frontiers in Neuroscience | www.frontiersin.org 8 May 2020 | Volume 14 | Article 439

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Kugele et al. SNNs for Efficient Sequence Processing

between early and late performance indicating synergies between
generating rich features required to achieve peak performance
and generating sufficient features for immediate classification.
Other choices for the weighting ak either result in lower peak or
lower early accuracy (see Figure 3A).

For ANN training, each event-stream of duration 100 ms is

divided into N input frames and in the following we investigate
the impact of different choices for N on accuracy, latency and

energy-efficiency. The value of each pixel of these input frames

is computed by averaging the firing rate during the resulting
time intervals TF (see also Section 2.3). The sampling frequency

1/TF of event streams has to be chosen high enough to resolve
the temporal information present in the input sequence and to

achieve higher spatial sparsity of the generated input frames, but
higher frequencies also cause lower signal-to-noise ratios due
to fewer events per input frame. In real-time scenarios, higher
sampling frequencies, i.e., smaller TF, result in more frequent
and earlier network responses (see Figure 3B). For example for
N = 16, the first prediction occurs atTF = 100ms/16 = 6.25ms,
while for N = 1 the first prediction occurs at TF = 100 ms.
Note that for simplicity, we assume the computation of the
network output y to be instantaneous in Figure 3B, and hence,
the shown time axis reflects the time scale of the input sequence.
Using the classification accuracies as evaluation criteria, we find
N = 16 to reach the same accuracy with a higher temporal
resolution as other frame intervals (see Figure 3B). For all N,
we observe that the first network outputs (leftmost data points in
Figure 3B) are already above chance level, although they only see
the first input frame via the shortest path of the network. These
early approximate predictions are then refined in later rollout
frames, in which deeper networks can integrate information
over multiple input frames. Overall, although sampled with
different frequencies, the peak accuracy is almost the same across
different N. This indicates that, for the N-CARS dataset, the
information encoded in time is much less important than the
spatial information. We conclude that the information present
in the first 25 ms is already sufficient for a successful classification
close to peak accuracy. This can be observed in the example given
in Figure 1A, where the shape of the car can be distinctively
identified after 25 ms.

After conversion, we have to choose the simulation steps per

rollout frame nsf, which significantly influences the accuracy and

energy-efficiency of our network. As in Rueckauer et al. (2017),

the approximation error of activations in ANNs by firing rates

in SNNs increases over time. However, in our case this only

holds on a per-frame basis, i.e., in our case the approximation

error depends on the number of simulation steps per frame

nsf. Like for the moving rectangles dataset, we measure the

accuracy ratio ρ over nsf to find a good trade-off between energy-

efficiency and accuracy. The accuracy ratio ρ starts to saturate
at nsf = 15 simulation steps per rollout frame (see Figure 3C)

and, consequently, we consider this value as a good trade-off

for our experiments in Figure 3D. For smaller nsf, mostly the

early accuracy (e.g., between simulation step 50 and 150 in
Figure 3C) suffers, which can be explained as follows: First,
SNNs perform worse than ANNs, because for early network

TABLE 1 | Average accuracies for the N-CARS dataset for ANNs and SNNs

(10 rials each).

N-CARS Acc. # params # ops [MOps]

HATS/linear SVM (Sironi et al., 2018) 90.2 – –

Rec. U-Net+CNN (Rebecq et al., 2019) 91.0 > 106 –

ResNet-34 (Gehrig et al., 2019) 92.5 107 –

Streaming rollout ANN (ours) 94.00(±0.05) 105 1, 420(±47)

Converted SNN (ours) 94.07(±0.05) 105 212.9(±2.5)

Numbers in parentheses are standard errors of the mean values. # params are the number

of parameters, i.e., the number of weights and biases of the network. # ops are the

number of operations as defined in section 2.5. A minus sign indicates that the number

of parameters or operations could not be estimated from the information available in the

respective reference. The highest accuracy is highlighted in bold.

outputs, spikes are present only in the short paths from input
to output of the networks. Consequently, the overall spiking
activity is low, slowing down the convergence of the firing
rate approximations. Second, neurons are initialized with lowest
(remember that V ∈ [0, 1]) membrane voltage V(0) = 0,
and, hence, it takes a few simulation steps until the neuron can
spike. Third, transmitting information from one layer to the
next requires at least one simulation step, resulting in a linear
increase of the delay from input to output with the number of
layers. In our case, the shortest path from input to output has
to pass four layers and, hence the information is delayed by four
simulation steps, such that the ideal case of r = 1 is impossible
to reach. Converting ANNs to SNNs and using our choice for
nsf during the simulations of SNNs, results in accuracies of SNNs
that are comparable to their corresponding ANNs, but requiring
less energy. Furthermore, the energy-efficiency increases with the
number of input frames N, up to an 8-fold factor for N = 16.
Overall, to the best of our knowledge, both our ANNs and SNNs
achieve the currently best results on the N-CARS dataset (see
Table 1). In addition, our network has 126 378 parameters for
Nl = 5, which is significantly lower than the other approaches.

Since objects, e.g., cars, in the N-CARS dataset only slightly
move during the short duration of the recordings, the frames of
the input sequence are similar to each other (e.g., see data sample
in Figure 1A). For almost static input, intermediate activations
do not vary between rollout frames, and, hence, activations of
ANNs can be approximated over multiple rollout frames in
SNNs. The low number nsf = 15 of simulation steps per rollout
frame supports this hypothesis. This might also explain, why
the SNN peak performance is above the ANN performance (see
Table 1), since SNNs intrinsically average activations over rollout
frames and may thereby increase the signal-to-noise ratio of the
network outputs.

3.3. N-MNIST
N-MNIST (Orchard et al., 2015) is a widely used benchmark
dataset for SNNs, which allows a comparison of our approach
to various alternatives. Each sample in the N-MNIST dataset
consists of a digit from the MNIST dataset projected onto a
white wall and recorded with an event-based vision sensor, while
performing three quick movements (saccades). The challenge is

Frontiers in Neuroscience | www.frontiersin.org 9 May 2020 | Volume 14 | Article 439

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Kugele et al. SNNs for Efficient Sequence Processing

TABLE 2 | Average accuracies for the N-MNIST dataset for ANNs and SNNs

(10 trials each).

N-MNIST Acc. # params # ops [MOps]

SNN with backprop (Lee et al., 2016) 98.66 2 · 106 –

SNN with backprop (Wu et al., 2019) 99.53 2 · 106 –

HATS/linear SVM (Sironi et al., 2018) 99.1 – –

Rec. U-Net+CNN (Rebecq et al., 2019) 98.3 > 106 –

Streaming rollout ANN (ours) 99.56(±0.01) 3 · 105 3, 500(±360)

Converted SNN (ours) 99.54(±0.01) 3 · 105 460(±38)

Numbers in parentheses are standard errors of the mean values. Columns like in Table 1.

The highest accuracy is highlighted in bold.

that as the digit moves the active pixels overlap, which means
that averaging events over longer time periods results in blurred
images, and classification becomes more difficult. We use the
same network as for N-CARS, but with N = 32 input frames
and a growth factor g = 15, which was determined by sweeping
over g ∈ {9, 12, 15, 18}. Competitive results compared to state-
of-the art methods are achieved (see Table 2) and the SNN
after conversion is ∼7 times more energy-efficient than its ANN
counterpart.

As the number of parameters is not directly listed in the
work we compare to, we estimate them from their experiment
description: Rebecq et al. (2019) use a U-Net + ResNet18, which
typically has 106 to 107 parameters. Gehrig et al. (2019) use a
ResNet-34, which has ∼107 parameters. In Lee et al. (2016),
three layers with (2312, 800, 10) neurons are used, resulting in
1,857,600 parameters. In Wu et al. (2019), they list different
network sizes but we expect their best result to be from
their largest network listed in Table 1 in their paper. Each
convolutional layer has CinCoutkxky parameters, with Cin/out

the number of input/output channels and ki the kernel sizes.
In total, we count 2,840,704 parameters. Our approach has
319,890 parameters for Nl = 5, which is significantly lower
than the other approaches. Sharing weights over time and
taking temporal integration into account through our rollout
mechanisms allows reaching state-of-the-art accuracy with a
small memory footprint.

3.4. Cifar10-DVS
The CIFAR10-DVS dataset (Li et al., 2017) consists of 10,000
images extracted from the popular CIFAR-10 dataset. Each
of the 10 classes is represented by 1,000 images. Each of these
images is scaled up and moves on a diamond-shaped trajectory
on a screen. The scene is recorded by a DVS128 sensor for
1.298 ± 0.040 s (mean and standard deviation over all samples)
corresponding to 6 repetitions of the trajectory. The monitor’s
refresh rate of 60 Hz is filtered out of the event stream after
recording. The dataset is split randomly into a training (90%) and
test (10%) set while maintaining the balance of classes in each set.
Then, the training set is further randomly split into a validation
(20%) and new training (80%) set. After each training epoch, the
accuracy on the validation set is calculated to determine the best
model to be used for testing.

TABLE 3 | Average accuracies for the CIFAR10-DVS dataset for ANNs and

SNNs (10 trials each).

CIFAR10-DVS Acc. # params # ops [MOps]

HATS/linear SVM (Sironi et al., 2018) 52.4 – –

SNN with backprop (Wu et al., 2019) 60.5 2 · 106 –

Streaming rollout ANN (ours) 66.75(±0.22) 5 · 105 8, 800(±1, 300)

Converted SNN (ours) 65.61(±0.20) 5 · 105 1, 551(±65)

Numbers in parentheses are standard errors of the mean values. Columns like in Table 1.

The highest accuracy is highlighted in bold.

The data is pre-processed by cutting out the first 1.3 s of the
event stream and splitting each sample into 48 frames resulting
in TF = 1.3/48 = 27.08 ms. Each edge of the diamond shape
is, therefore, resolved by 48/6/4 = 2 frames. To enable faster
training and inference, the spatial resolution of each frame is
reduced from 128 × 128 pixels to 32 × 32 pixels by bilinear
interpolation. We use the same hyperparameters for the network
architecture and training as for N-CARS and N-MNIST, but
optimize the growth factor by training networks with g ∈
{9, 12, 18, 22} and evaluating their accuracy on the validation set.
Networks with g = 18 result in the best mean accuracy on
the validation set, resulting in 480,852 parameters. The ANN-
to-SNN conversion is done like for N-CARS and N-MNIST
and nsf = 60 simulation steps are found to be a good trade-
off between accuracy and energy-efficiency. The accuracy of
our approach is better than of any other approach for ANNs
and SNNs reported to date, and our SNNs require 5-fold less
operations than their corresponding ANNs (see Table 3).

3.5. DvsGesture
DvsGesture (Amir et al., 2017) is an action recognition
dataset, where multiple participants performed 11 different
gestures under varying lighting conditions. The gestures have an
average duration of 6.5 ± 1.7 s and are recorded with a DVS128
sensor. The last class is an arbitrary gesture that each participant
came up with. Because this class is not clearly defined, we
train networks both with and without this additional target class,
which has also been done in the approaches we compare to. We
use the original dataset split of (Amir et al., 2017) and generate a
validation set by randomly selecting 10% of the training set.

To simplify training and testing we follow the approach by
Shrestha and Orchard (2018) and use only the first 1.5 s of each
sample, which still contains multiple repetitions of the gesture.
We split each sample into 240 frames corresponding to a frame
interval of TF = 240/1.5 = 6.25 ms. As for CIFAR10-DVS,
we reduce the spatial dimension of each frame from 128 × 128
to 32 × 32 pixels. Inspired by Amir et al. (2017), we use stacks
of 10 consecutive frames as input for each rollout frame in both
ANNs and converted SNNs, such that each of the 24 inputs has 20
channels (as each frame has an on and off channel). This enables
temporal integration over longer time scales without introducing
motion blur in the individual frames. Note that the frequency
of predictions is reduced to only every ten frames, i.e., every
10 · 6.25 ms = 62.5 ms. We use the same hyperparameters as

Frontiers in Neuroscience | www.frontiersin.org 10 May 2020 | Volume 14 | Article 439

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Kugele et al. SNNs for Efficient Sequence Processing

TABLE 4 | Average accuracies for the DvsGesture dataset for ANNs and SNNs

(10 trials each).

DvsGesture Acc. # params # ops [MOps]

10 CLASSES

SNN on TrueNorth (Amir

et al., 2017)

96.7 1.5 · 106 –

SNN with backprop

(Shrestha and Orchard,

2018)

93.64(±0.49) – –

PointNet-like ANN

(Wang et al., 2019)

97.08 – –

Streaming rollout ANN

(ours)

97.16(±0.11) 5 · 105 8, 150(±740)

Converted SNN (ours) 96.97(±0.17) 5 · 105 651(±43)

11 CLASSES

SNN on TrueNorth (Amir

et al., 2017)

94.59 1.5 · 106 –

PointNet-like ANN

(Wang et al., 2019)

95.32 – –

Streaming rollout ANN

(ours)

95.68(±0.32) 8 · 105 15.000(±1, 000)

Converted SNN (ours) 95.56(±0.14) 8 · 105 931(±24)

Numbers in parentheses are standard errors of the mean values. Columns like in Table 1.

The highest accuracy is highlighted in bold.

for CIFAR10-DVS, except for the growth factor. We sweep over
g ∈ {6, 9, 12, 15, 18} and find g = 9 to perform best for 10 classes
and g = 12 for 11 classes. Our networks therefore have 476,460
and 821,820 parameters, respectively. ANN and SNN accuracies
are on par with other state-of-the-art approaches (Table 4). For
our SNNs, the number of operations is ∼12.5 times lower than
for the corresponding ANNs.

We calculate the number of parameters of Amir et al. (2017)
from their Table 1 as params =

∑16
i=1 feat[i] · kernelx[i] ·

kernely[i] · feat[i− 1]/groups[i] = 1, 528, 536. Shrestha and
Orchard (2018) do not provide a detailed network description for
their DvsGesture experiments.

4. DISCUSSION

We have presented a novel way of training efficient SNNs for
sequence processing via conversion from ANNs. The crucial
observation is the connection between axonal delays in the SNN
and the rollout strategy in the ANN. Streaming rollouts of ANNs
are shown to be a particularly good fit, as they closely resemble
the fully model-parallel execution in SNNs. To unify the two
approaches, we introduced several additions to the existing
conversion approach, such as a more general weight rescaling
scheme, a new way to calculate predictions in the SNN, rescaling
of average pooling layers and axonal delays. As a result, we make
ANN-to-SNN conversion applicable in a principled manner to
input signals changing over time, including general time series
and the special case of event-based input data. Due to the fact that

the streaming rollout imposes constraints on the ANN during
training our approach can be interpreted as a “constrain-then-
train” approach for SNNs (Esser et al., 2015; Pfeiffer and Pfeil,
2018), for which the superior training mechanisms available for
ANNs are combined with the efficiency of SNN execution.

We identify and highlight in our experiments particular
advantages of applying conversion to rolled-out networks. Our
proposed training and conversion scheme results in SNNs
that efficiently integrate temporal information, provide early
approximate network outputs, and achieve state-of-the art results
on the N-MNIST, N-CARS, DvsGesture and CIFAR10-DVS
datasets with smaller networks than other approaches, and with
SNNs that are consistently more energy-efficient than their ANN
counterparts. A uniformweighting of the network outputs in the
loss function enables good early and late performance compared
to other weighting patterns, such that even for the first network
output, the prediction is significantly above chance level. Our
framework is flexible enough to allow different trade-offs between
early and late performance by choosing different weight factors
ak. In this study, for the first time, streaming rollouts were applied
to realistic and large-scale time series data, and were shown to
be competitive with other approaches on multiple widely used
event-based vision tasks (see Tables 1–4).

Although we use only delays of one rollout frame in our
experiments, in principle, arbitrary delays can be incorporated
into the network rollouts. This principle is useful to convert
advanced ANN architectures with temporal convolutions
(van den Oord et al., 2016b; Bai et al., 2018) that require multiple
delays when rolled out. This is a big advantage over previous
conversion approaches (e.g., Cao et al., 2015; Rueckauer et al.,
2017), which do not take delays of connections into account.
For purely feed-forward SNNs on suitable hardware (Farabet
et al., 2012; Pérez-Carrasco et al., 2013) a pseudo-simultaneous
spread of information, i.e., all delays in the network are zero,
is advantageous, but causes de-synchronization if information
needs to be integrated over time. Our approach generalizes
the work of Diehl et al. (2016), who have shown a conversion
approach for Elman-type recurrent networks using fixed
delays in the recurrent layer and zero delays for feed-forward
connections. Note that although our experiments only show
DenseNet architectures and therefore lead to a linear growth
of the size of the temporal receptive field with network depth,
this is not a general restriction of our approach. More complex
network graphs, for example containing temporal convolutions
or recurrent connections, lead to a super-linear growth of the
temporal receptive field.

Rescaling weights and biases during conversion by using
percentiles instead of maximum values as upper limits for
ANN activations increases the accuracy. However, the percentile
values of activations calculated over all rollout frames may
overestimate the size of ANN activations in single rollout frames
and would, hence, decrease the effective resolution of the firing
rate approximation (for details, see Section 2.4). For example,
in our network rollouts, the activity increases with each rollout
frame (which does not hold in general). This results in strong
overestimations of activations for early network outputs, which
in turn increase approximation errors and, hence, decrease

Frontiers in Neuroscience | www.frontiersin.org 11 May 2020 | Volume 14 | Article 439

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Kugele et al. SNNs for Efficient Sequence Processing

accuracy (see e.g., Figure 3C). As the activity increases with more
andmore paths from input to output of the network contributing
to later network outputs, this approximation error decreases until
an optimal effective resolution is reached when spiking activity is
present in all parts of the network. Adaptively rescaling the SNN
weights or firing thresholds could be a solution to alleviate this
effect. This can be seen as a kind of homeostasis mechanism that
keeps the overall firing rates of SNNs at a constant level.

Instead of simply averaging event rates to obtain input frames,
our approach generalizes to using more advanced features
for event-based vision, such as time surfaces (Sironi et al.,
2018), event spike tensors (Gehrig et al., 2019) or motion-based
features (Clady et al., 2017). As use-cases for event-based vision
are becoming increasingly challenging (Gallego et al., 2019),
and neuromorphic hardware platforms become more mature
(DeBole et al., 2019), our approach fills an important gap to
provide powerful SNNs ready for deployment on those platforms.

A major goal of our approach is achieving energy-efficiency,
which we measure by the number of operations necessary to
reach the desired performance. High efficiency during early
inference is enabled by temporal skip connections and carefully
choosing the weight factors ak in the loss function to achieve a
good early accuracy without deteriorating the later peak accuracy.
After ANN-to-SNN conversion, the SNNs are consistently
more energy-efficient than their corresponding ANNs, and the
achieved relative gain in efficiency is higher than, e.g., reported
by Rueckauer et al. (2017). This may be due to the different
neural architectures and the increased sparsity of the input in our
study. The sparsity of a single frame increases with a decreasing
time interval TF over which events are accumulated. To further
increase the efficiency we ran multiple experiments including
quantization and observed interesting dependencies between
quantization levels, network architectures, energy-efficiency, and
final accuracy. A thorough investigation would exceed the scope
of this study and is left for future studies.

In summary, our approach sets a new standard for spiking
neural networks for processing spatio-temporal event streams
both in terms of accuracy and efficiency. However, in this study,
information is encoded with firing rates, the underlying principle

of network conversions, and we did not exploit the potential of
encoding information with spike times that potentially allow for
evenmore energy-efficient solutions (for an overview, see Pfeiffer
and Pfeil, 2018). We are excited to see our results as a competitive
baseline for further studies in the direction of spike codes.

DATA AVAILABILITY STATEMENT

The datasets generated for this study are available on request to
the corresponding author.

AUTHOR CONTRIBUTIONS

AK and TP designed the study, contributed to the source code,
conducted the experiments, and evaluated the results. MP and
EC provided the feedback and scientific advice throughout the
process. All authors contributed to the final manuscript.

FUNDING

This publication has received funding from the EuropeanUnion’s
Horizon 2020 research innovation programme under grant
agreement 732642 (ULPEC project). This research was supported
by the Cluster of Excellence Cognitive Interaction Technology
CITEC (EXC 277) at Bielefeld University, which is funded by the
German Research Foundation (DFG).

ACKNOWLEDGMENTS

We acknowledge the financial support of the German Research
Foundation (DFG) and the Open Access Publication Fund of
Bielefeld University for the article processing charge.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fnins.
2020.00439/full#supplementary-material

REFERENCES

Amir, A., Taba, B., Berg, D., Melano, T., McKinstry, J., Di Nolfo, C., et al. (2017).

“A low power, fully event-based gesture recognition system,” in Proceedings of

the IEEE Conference on Computer Vision and Pattern Recognition (Honolulu,

HI), 7243–7252. doi: 10.1109/CVPR.2017.781

Bai, S., Kolter, J. Z., and Koltun, V. (2018). An empirical evaluation of

generic convolutional and recurrent networks for sequence modeling. CoRR

abs/1803.01271.

Cao, Y., Chen, Y., and Khosla, D. (2015). Spiking deep convolutional neural

networks for energy-efficient object recognition. Int. J. Comput. Vis. 113, 54–66.

doi: 10.1007/s11263-014-0788-3

Clady, X., Maro, J.-M., Barré, S., and Benosman, R. B. (2017). A motion-

based feature for event-based pattern recognition. Front. Neurosci. 10:594.

doi: 10.3389/fnins.2016.00594

Davies, M., Srinivasa, N., Lin, T., Chinya, G., Cao, Y., Choday, S. H., et al. (2018).

Loihi: a neuromorphic manycore processor with on-chip learning. IEEE Micro

38, 82–99. doi: 10.1109/MM.2018.112130359

DeBole, M. V., Taba, B., Amir, A., Akopyan, F., Andreopoulos, A., Risk,W. P., et al.

(2019). Truenorth: accelerating from zero to 64 million neurons in 10 years.

Computer 52, 20–29. doi: 10.1109/MC.2019.2903009

Deng, L., Wu, Y., Hu, X., Liang, L., Ding, Y., Li, G., et al. (2020). Rethinking

the performance comparison between SNNs and ANNs. Neural Netw. 121,

294–307. doi: 10.1016/j.neunet.2019.09.005

Diehl, P. U., Zarrella, G., Cassidy, A., Pedroni, B. U., and Neftci, E.

(2016). “Conversion of artificial recurrent neural networks to spiking

neural networks for low-power neuromorphic hardware,” in 2016 IEEE

International Conference on Rebooting Computing (ICRC) (San Diego, CA),

1–8. doi: 10.1109/ICRC.2016.7738691

Esser, S. K., Appuswamy, R., Merolla, P., Arthur, J. V., and Modha, D. S. (2015).

“Backpropagation for energy-efficient neuromorphic computing,” in Advances

in Neural Information Processing Systems (Montreal, QC), 1117–1125.

Farabet, C., Paz, R., Pérez-Carrasco, J., Zamarreño, C., Linares-Barranco, A.,

LeCun, Y., et al. (2012). Comparison between frame-constrained fix-pixel-value

and frame-free spiking-dynamic-pixel convnets for visual processing. Front.

Neurosci. 6:32. doi: 10.3389/fnins.2012.00032

Frontiers in Neuroscience | www.frontiersin.org 12 May 2020 | Volume 14 | Article 439

https://www.frontiersin.org/articles/10.3389/fnins.2020.00439/full#supplementary-material
https://doi.org/10.1109/CVPR.2017.781
https://doi.org/10.1007/s11263-014-0788-3
https://doi.org/10.3389/fnins.2016.00594
https://doi.org/10.1109/MM.2018.112130359
https://doi.org/10.1109/MC.2019.2903009
https://doi.org/10.1016/j.neunet.2019.09.005
https://doi.org/10.1109/ICRC.2016.7738691
https://doi.org/10.3389/fnins.2012.00032
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Kugele et al. SNNs for Efficient Sequence Processing

Fischer, V., Koehler, J., and Pfeil, T. (2018). “The streaming rollout of deep

networks-towards fully model-parallel execution,” in Advances in Neural

Information Processing Systems 31, eds S. Bengio, H. Wallach, H. Larochelle, K.

Grauman, N. Cesa-Bianchi, and R. Garnett (Montreal, QC: Curran Associates,

Inc.), 4039–4050.

Furber, S. B., Lester, D. R., Plana, L. A., Garside, J. D., Painkras, E., Temple, S., et al.

(2013). Overview of the spinnaker system architecture. IEEE Trans. Comput.

62, 2454–2467. doi: 10.1109/TC.2012.142

Gallego, G., Delbrück, T., Orchard, G., Bartolozzi, C., Taba, B., Censi,

A., et al. (2019). Event-based vision: a survey. CoRR abs/1904.

08405.

Gehrig, D., Loquercio, A., Derpanis, K. G., and Scaramuzza, D. (2019). “End-

to-end learning of representations for asynchronous event-based data,” in

The IEEE International Conference on Computer Vision (ICCV) (Seoul).

doi: 10.1109/ICCV.2019.00573

Gerstner, W., Kistler, W. M., Naud, R., and Paninski, L. (2014). Neuronal

Dynamics: From Single Neurons to Networks and Models of Cognition.

Cambridge: Cambridge University Press. doi: 10.1017/CBO978110744

7615

Huang, G., Liu, S., van der Maaten, L., and Weinberger, K. Q. (2018).

“Condensenet: an efficient densenet using learned group convolutions,” in The

IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (Salt

Lake City, UT). doi: 10.1109/CVPR.2018.00291

Huang, G., Liu, Z., and Weinberger, K. Q. (2017). “Densely connected

convolutional networks,” in The IEEE Conference on Computer Vision

and Pattern Recognition (CVPR) (Honolulu, HI). doi: 10.1109/CVPR.20

17.243

Lee, J. H., Delbruck, T., and Pfeiffer, M. (2016). Training deep spiking

neural networks using backpropagation. Front. Neurosci. 10:508.

doi: 10.3389/fnins.2016.00508

Li, H., Liu, H., Ji, X., Li, G., and Shi, L. (2017). Cifar10-dvs: an event-stream dataset

for object classification. Front. Neurosci. 11:309. doi: 10.3389/fnins.2017.00309

Liu, S.-C., and Delbruck, T. (2010). Neuromorphic sensory systems. Curr. Opin.

Neurobiol. 20, 288–295. doi: 10.1016/j.conb.2010.03.007

Manolopoulos, K., Reisis, D., and Chouliaras, V. (2016). An efficient multiple

precision floating-point multiply-add fused unit. Microelectron. J. 49, 10–18.

doi: 10.1016/j.mejo.2015.10.012

Martí, D., Rigotti, M., Seok, M., and Fusi, S. (2015). Energy-efficient neuromorphic

classifiers. Neural Comput. 28, 2011–2044. doi: 10.1162/NECO_a_00882

Merolla, P. A., Arthur, J. V., Alvarez-Icaza, R., Cassidy, A. S., Sawada, J.,

Akopyan, F., et al. (2014). A million spiking-neuron integrated circuit with

a scalable communication network and interface. Science 345, 668–673.

doi: 10.1126/science.1254642

Neftci, E. O., Mostafa, H., and Zenke, F. (2019). Surrogate Gradient Learning in

Spiking Neural Networks. New York, NY: IEEE.

O’Connor, P., Neil, D., Liu, S.-C., Delbruck, T., and Pfeiffer, M.

(2013). Real-time classification and sensor fusion with a spiking

deep belief network. Front. Neurosci. 7:178. doi: 10.3389/fnins.2013.

00178

Orchard, G., Jayawant, A., Cohen, G. K., and Thakor, N. (2015). Converting

static image datasets to spiking neuromorphic datasets using saccades. Front.

Neurosci. 9:437. doi: 10.3389/fnins.2015.00437

Osswald, M., Ieng, S.-H., Benosman, R., and Indiveri, G. (2017). A spiking neural

network model of 3d perception for event-based neuromorphic stereo vision

systems. Sci. Rep. 7:40703. doi: 10.1038/srep40703

Pérez-Carrasco, J. A., Zhao, B., Serrano, C., Acha, B., Serrano-Gotarredona, T.,

Chen, S., et al. (2013). Mapping from frame-driven to frame-free event-driven

vision systems by low-rate rate coding and coincidence processing-application

to feedforward convnets. IEEE Trans. Pattern Anal. Mach. Intell. 35, 2706–2719.

doi: 10.1109/TPAMI.2013.71

Pfeiffer, M., and Pfeil, T. (2018). Deep learning with spiking neurons: opportunities

and challenges. Front. Neurosci. 12:774. doi: 10.3389/fnins.2018.00774

Posch, C., Matolin, D., and Wohlgenannt, R. (2010). “High-DR frame-free PWM

imaging with asynchronous AER intensity encoding and focal-plane temporal

redundancy suppression,” in Proceedings of 2010 IEEE International Symposium

on Circuits and Systems, 2430–2433. doi: 10.1109/ISCAS.2010.5537150

Qiao, N., Mostafa, H., Corradi, F., Osswald, M., Stefanini, F., Sumislawska,

D., et al. (2015). A reconfigurable on-line learning spiking neuromorphic

processor comprising 256 neurons and 128k synapses. Front. Neurosci. 9:141.

doi: 10.3389/fnins.2015.00141

Rebecq, H., Ranftl, R., Koltun, V., and Scaramuzza, D. (2019). Events-to-video:

bringing modern computer vision to event cameras. CoRR abs/1904.08298.

doi: 10.1109/CVPR.2019.00398

Rieke, F., Warland, D., Ruyter, R. D., Steveninck, V., and Bialek, W. (1999). Spikes:

Exploring the Neural Code. Cambridge, MA: MIT Press.

Rueckauer, B., Lungu, I.-A., Hu, Y., Pfeiffer, M., and Liu, S.-C. (2017). Conversion

of continuous-valued deep networks to efficient event-driven networks for

image classification. Front. Neurosci. 11:682. doi: 10.3389/fnins.2017.00682

Schemmel, J., Brüderle, D., Grübl, A., Hock, M., Meier, K., and Millner, S.

(2010). “A wafer-scale neuromorphic hardware system for large-scale neural

modeling,” in Proceedings of 2010 IEEE International Symposium on Circuits

and Systems (Paris), 1947–1950. doi: 10.1109/ISCAS.2010.5536970

Shrestha, S. B., and Orchard, G. (2018). “Slayer: spike layer error reassignment in

time,” in Advances in Neural Information Processing Systems 31, eds S. Bengio,

H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett

(Montreal, QC: Curran Associates, Inc.), 1412–1421.

Sironi, A., Brambilla, M., Bourdis, N., Lagorce, X., and Benosman, R. (2018).

“HATS: Histograms of averaged time surfaces for robust event-based object

classification,” in The IEEE Conference on Computer Vision and Pattern

Recognition (CVPR) (Salt Lake City, UT). doi: 10.1109/CVPR.2018.00186

Thakur, C. S., Molin, J. L., Cauwenberghs, G., Indiveri, G., Kumar, K., Qiao,

N., et al. (2018). Large-scale neuromorphic spiking array processors: a

quest to mimic the brain. Front. Neurosci. 12:891. doi: 10.3389/fnins.2018.

00891

Tompson, J., Goroshin, R., Jain, A., LeCun, Y., and Bregler, C. (2015).

“Efficient object localization using convolutional networks,” in The IEEE

Conference on Computer Vision and Pattern Recognition (CVPR) (Boston, MA).

doi: 10.1109/CVPR.2015.7298664

van denOord, A., Dieleman, S., Zen, H., Simonyan, K., Vinyals, O., Graves, A., et al.

(2016a). Wavenet: A generative model for raw audio. CoRR abs/1609.03499.

van den Oord, A., Kalchbrenner, N., and Kavukcuoglu, K. (2016b). Pixel recurrent

neural networks. CoRR abs/1601.06759.

Wang, Q., Zhang, Y., Yuan, J., and Lu, Y. (2019). “Space-time event

clouds for gesture recognition: From RGB cameras to event cameras,”

in 2019 IEEE Winter Conference on Applications of Computer Vision

(WACV) (Honolulu, HI), 1826–1835. doi: 10.1109/WACV.2019.

00199

Werbos, P. J. (1990). Backpropagation through time: what it does and how to do

it. Proc. IEEE 78, 1550–1560. doi: 10.1109/5.58337

Wu, Y., Deng, L., Li, G., Zhu, J., and Shi, L. (2018). Spatio-temporal

backpropagation for training high-performance spiking neural networks.

Front. Neurosci. 12:331. doi: 10.3389/fnins.2018.00331

Wu, Y., Deng, L., Li, G., Zhu, J., Xie, Y., and Shi, L. (2019). “Direct

training of spiking neural networks: faster, larger, better,” in Proceedings

of the AAAI Conference on Artificial Intelligence (Honolulu, HI).

doi: 10.1609/aaai.v33i01.33011311

Zhang, Z., Liang, X., Dong, X., Xie, Y., and Cao, G. (2018). A sparse-view ct

reconstruction method based on combination of densenet and deconvolution.

IEEE Trans. Med. Imaging 37, 1407–1417. doi: 10.1109/TMI.2018.2823338

Zhu, Y., and Newsam, S. (2017). “Densenet for dense flow,” in 2017 IEEE

International Conference on Image Processing (ICIP) (Beijing), 790–794.

doi: 10.1109/ICIP.2017.8296389

Conflict of Interest:MP, TP, and AK were employed by Robert Bosch GmbH.

The remaining author declares that the research was conducted in the absence of

any commercial or financial relationships that could be construed as a potential

conflict of interest.

Copyright © 2020 Kugele, Pfeil, Pfeiffer and Chicca. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Neuroscience | www.frontiersin.org 13 May 2020 | Volume 14 | Article 439

https://doi.org/10.1109/TC.2012.142
https://doi.org/10.1109/ICCV.2019.00573
https://doi.org/10.1017/CBO9781107447615
https://doi.org/10.1109/CVPR.2018.00291
https://doi.org/10.1109/CVPR.2017.243
https://doi.org/10.3389/fnins.2016.00508
https://doi.org/10.3389/fnins.2017.00309
https://doi.org/10.1016/j.conb.2010.03.007
https://doi.org/10.1016/j.mejo.2015.10.012
https://doi.org/10.1162/NECO_a_00882
https://doi.org/10.1126/science.1254642
https://doi.org/10.3389/fnins.2013.00178
https://doi.org/10.3389/fnins.2015.00437
https://doi.org/10.1038/srep40703
https://doi.org/10.1109/TPAMI.2013.71
https://doi.org/10.3389/fnins.2018.00774
https://doi.org/10.1109/ISCAS.2010.5537150
https://doi.org/10.3389/fnins.2015.00141
https://doi.org/10.1109/CVPR.2019.00398
https://doi.org/10.3389/fnins.2017.00682
https://doi.org/10.1109/ISCAS.2010.5536970
https://doi.org/10.1109/CVPR.2018.00186
https://doi.org/10.3389/fnins.2018.00891
https://doi.org/10.1109/CVPR.2015.7298664
https://doi.org/10.1109/WACV.2019.00199
https://doi.org/10.1109/5.58337
https://doi.org/10.3389/fnins.2018.00331
https://doi.org/10.1609/aaai.v33i01.33011311
https://doi.org/10.1109/TMI.2018.2823338
https://doi.org/10.1109/ICIP.2017.8296389
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

	Efficient Processing of Spatio-Temporal Data Streams With Spiking Neural Networks
	1. Introduction
	2. Methods
	2.1. Classification With Spiking Neural Networks
	2.2. Sequence Processing With Streaming Rollouts
	2.3. Training of Artificial Neural Networks
	2.4. ANN-to-SNN Conversion
	2.5. Energy-Efficiency and Number of Operations

	3. Results
	3.1. Moving Rectangles
	3.2. N-CARS
	3.3. N-MNIST
	3.4. Cifar10-DVS
	3.5. DvsGesture

	4. Discussion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References

