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Models of memory consolidation posit a central role for reactivation of brain activity
patterns during sleep, especially in non-Rapid Eye Movement (NREM) sleep. While
such “replay” of recent waking experiences has been well-demonstrated in rodents,
electrophysiological evidence of reactivation in human sleep is still largely lacking. In
this intracranial study in patients with epilepsy (N = 9) we explored the spontaneous
electroencephalographic reactivation during sleep of spatial patterns of brain activity
evoked by motor learning. We first extracted the gamma-band (60–140 Hz) patterns
underlying finger movements during a tapping task and underlying no-movement during
a short rest period just prior to the task, and trained a binary classifier to discriminate
between motor movements vs. rest. We then used the trained model on NREM sleep
data immediately after the task and on NREM sleep during a control sleep period
preceding the task. Compared with the control sleep period, we found, at the subject
level, an increase in the detection rate of motor-related patterns during sleep following
the task, but without association with performance changes. These data provide
electrophysiological support for the reoccurrence in NREM sleep of the neural activity
related to previous waking experience, i.e. that a basic tenet of the reactivation theory
does occur in human sleep.

Keywords: memory reactivation, human sleep, NREM sleep, intracranial recordings, machine-learning

INTRODUCTION

Numerous empirical studies (Plihal and Born, 1997; Walker et al., 2002) and theoretical accounts
(Diekelmann and Born, 2010; Stickgold and Walker, 2013) highlight the reprocessing of memories
from recent waking experiences by the sleeping brain. This sleep-dependent processing of newly
acquired memories refers to multiple processes as reflected by its behavioral correlates, including
memory enhancement (e.g. Walker et al., 2002), integration (e.g. Tamminen et al., 2010), selection
(e.g. Wilhelm et al., 2011) or stabilization (e.g. Nettersheim et al., 2015).
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At the brain level, a fundamental question concerns the
neural mechanisms underlying such processing. Thanks to the
monitoring of the spike activity from multiple neurons, neural
replay has been observed in non-human animals (see, e.g.
Pavlides and Winson, 1989; Wilson and McNaughton, 1994; Lee
and Wilson, 2002; Ji and Wilson, 2007; Gulati et al., 2014).
Neural replay refers to the spontaneous (as opposed to externally
cued) recapitulation during rest, of the ensemble firing patterns
observed during prior waking experience, and has been proposed
as a potential mechanism underlying the offline processing of
recent memories (for reviews, see Schwindel and McNaughton,
2011; Abel et al., 2013; Atherton et al., 2015).

In humans, indirect measure of neural replay, often termed
neural reactivation, has been demonstrated, especially using
positron emission tomography (PET) or functional magnetic
resonance imaging (fMRI) (e.g. Maquet et al., 2000; Peigneux
et al., 2004; Deuker et al., 2013; Schapiro et al., 2018). In a
seminal series of PET studies, it has been shown that several
brain areas activated during the execution of a motor task were
significantly more active during rapid-eye movement (REM)
sleep in subjects previously trained on the task than in those who
were not (Maquet et al., 2000), and that the level of hippocampal
reactivation during non-REM (NREM) sleep was correlated with
performance improvement in a navigation task (Peigneux et al.,
2004). More recently, fMRI studies have reported reactivation
of patterns specific to individual learning experiences in both
wake and sleep following a paired-associate learning task (Deuker
et al., 2013; Staresina et al., 2013; Tambini and Davachi, 2013;
Schapiro et al., 2018), as well as motor-related reactivation in
NREM sleep following a motor learning task (Fogel et al., 2017;
Vahdat et al., 2017).

Other work exploited electroencephalography (EEG)
recordings to provide more direct, electrophysiological evidence
of (spontaneous) reactivation in humans (Jiang et al., 2017;
Schönauer et al., 2017; Zhang et al., 2018). Using pattern analysis
applied on scalp EEG, Schönauer et al. (2017) showed that
human sleep EEG contains features specific to the type of visual
task previously experienced. Thanks to the intracranial EEG
(iEEG) recordings in patients undergoing clinical monitoring
for epilepsy, Jiang et al. (2017) reported the reactivation in
NREM sleep of spatiotemporal sequences of gamma activity
peaks that were identified in previous waking periods. Similarly,
Zhang et al. (2018) reported awake and NREM sleep reactivation
of item-specific gamma activation patterns that were initially
identified in a visual memory task. However, electrophysiological
evidence of spontaneous reactivation in humans is still sparsely
documented, especially in the motor learning domain.

The neural activity in the high-frequency band (above∼50 Hz,
i.e. gamma-band) is thought to be an index of a multitude
of cognitive processes, including memory and motor functions
(for reviews, see Lachaux et al., 2012; Johnson and Knight,
2015). In addition, gamma activity is correlated with local
spiking activity (Manning et al., 2009), and hemodynamic
signals (Nir et al., 2007), and, as described above, have been
recently related to reactivation mechanisms in human sleep
(Jiang et al., 2017; Zhang et al., 2018). Based on these results,
the present study aimed to explore the spontaneous (i.e.

non-externally cued) reactivation during sleep of gamma-band
patterns underlying previous motor learning in human iEEG
recordings. We hypothesized that the gamma-band activity
patterns underlying finger-movements re-occurs more often
during sleep following the task than during an earlier control
sleep period. First, we trained a support vector machine model
(binary classification: “motor” vs. “rest”) to extract the spatial
gamma-band patterns underlying finger movements during a
tapping task and underlying no-movement during a short rest
period just prior to the task. Then we applied the trained model
on the “unlabeled” NREM sleep data immediately after the task
and on control data from a sleep period preceding the task. We
observed, at the single subject level, an increase in the proportion
of windows labeled as motor activity during sleep following the
task, showing that gamma-band patterns recorded during motor
learning re-occurred during subsequent sleep. These data provide
electrophysiological evidence for the occurrence of reactivation
mechanisms in human sleep and highlight the role of gamma
activity in such processing.

MATERIALS AND METHODS

Subjects
The data were collected from January 2014 to September 2015
at Massachusetts General Hospital and Brigham and Women’s
Hospital in fifteen patients with long-standing pharmaco-
resistant epilepsy. The patients gave informed consent, and the
research protocol was approved by the local Institutional Review
Board (Partners IRB).

Intracranial EEG (iEEG) recordings were made over
the course of clinical monitoring for spontaneous seizures.
Participants were implanted with multi-lead depth electrodes
(i.e. stereotactic-EEG, sEEG) or subdural grid electrode arrays
(i.e. Electrocorticography, ECoG) to confirm the hypothesized
seizure focus and locate epileptogenic tissue in relation to
essential cortex, thus directing surgical treatment. The decision
to implant, the electrode targets and the duration of implantation
were made on clinical grounds without reference to this research.

From this dataset, we studied nine patients (age range: 17–
59 years; 4 females; Supplementary Table 1) who satisfied the
following inclusion and exclusion criteria. Inclusion criteria
included a post-learning sleep session (between the end of the
learning and start of the retest sessions) lasting 2 h maximum
and containing at least 1 epoch of NREM (N2 or N3) sleep.
The exclusion criteria included the occurrence of identified
electroclinical or electrographic seizures 2 h before and after
the experiment (including sleep periods). These criteria were
selected to obtain a reasonable degree of uniformity across
participants and avoid potential confounds. Participants were all
right-handed, with intelligence in the normal range.

Electrodes and Recordings
sEEG subjects (N = 5, Supplementary Table 1) had 10 to
12 probes implanted orthogonally to the midsagittal plane.
Probes had a diameter of 1.2 mm and consisted of 6 or 8
platinum/iridium-contact leads 2.4 mm long at 10 mm centers.
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In one sEEG participant, two linear ECoG arrays (4× 1 contacts-
arrays) completed the spatial coverage but were not considered
in the current analysis. ECoG subjects (N = 4) received ECoG
contacts that were 3 mm platinum/iridium disks spaced 10 mm
center-to-center, embedded in a main 8 × 8 (N = 2), 6 × 8
(N = 1) or 4 × 7 (N = 1) grid array. In some ECoG participants,
additional arrays/probes completed the spatial coverage but were
not considered in the current analysis.

Recordings were made using a research-dedicated system
(Neural Signal Processor, Blackrock Microsystems, Salt Lake City,
UT, United States) with a 2000 Hz sampling rate or with a clinical
EEG monitoring system (XLTEK, Natus Medical Inc., Peasanton,
CA, United States) with a 250 Hz sampling rate. At the time
of acquisition, depth recordings were referenced to scalp EEG
and grid recordings were referenced to epidural electrodes facing
away from the cortex.

Electrode Coordinates and Labeling
Algorithm
Electrode coordinates were computed using a volumetric
image coregistration procedure. Using Freesurfer scripts1, the
preoperative T1-weighted MRI (showing the brain anatomy) was
aligned with a postoperative CT (showing electrode locations).
Electrode coordinates were manually determined from the
CT and placed into the native space. To take into account
misalignment between MRI and CT scans due to craniotomy
in patients implanted with subdural grid electrode arrays,
we applied an energy-minimization procedure to project grid
contacts onto the cortical surface (Dykstra et al., 2012).

An electrode labeling algorithm2 was used to assign a labeled
brain region to each electrode using the Freesurfer’s DKT 40 atlas
(Klein and Tourville, 2012) in combination with a subcortical
mapping enabled through Freesurfer. Succinctly, ELA identifies
the probability that a given labeled region of the brain is a source
of a given electrode. It operates with the assumption that this
probability is estimated based on the Euclidean distance between
the brain label and the electrode; both being defined by means of
the “brain label” and “electrode” voxels, respectively. Brain label
voxels are all voxels where at least one of the label vertices is
positioned inside the voxel volume as mapped in the structural
MRI. Electrode voxels are the voxels where the distance from
the center to the electrode is smaller than a given threshold,
Dc, circumscribing a “cloud” around the electrode. For depth
electrode, the cloud was cigar-shaped with length 4.0 mm and
diameter 3.0 mm, and the center was localized in between each
two adjoining electrodes on the same lead since a bipolar montage
was applied. For grid electrode, the cloud was a 2D sphere on
the cortical surface with a diameter of 3.0 mm. To estimate the
probability, the ELA counts the number of intersecting voxels
between the electrode voxel “cloud” and the label voxels and
divides that count by the number of the electrode voxels i.e. the
probability that the given electrode is getting a signal from a given
label. In the case where none of the labels voxels intersects with
the electrode voxels for a given electrode, Dc is expanded by 1Dc

1http://surfer.nmr.mgh.harvard.edu
2https://github.com/pelednoam/ieil

(depth electrode: length was expanded of 1.0 mm and diameter of
0.5 mm; grid electrode: diameter was expanded of 0.5 mm). This
expansion continued until a detectable intersection between a
label voxels and the electrode voxels is found. For each electrode,
the brain label with the highest probability was finally extracted
and used for further analysis.

Motor Learning Paradigm
Presentation Software (Neurobehavioral System, Berkeley, CA,
United States) was used for the stimulus delivery and motor
response recording. Participants were seated comfortably on
their hospital bed in front of a computer monitor, and the
instruction was displayed on the screen at the beginning of
the task. The finger tapping task required participants to press
four numeric keys on a standard computer keyboard with four
different fingers, repeating a unique sequence of six digits (e.g. 4-
2-1-3-4-1) “as quickly and accurately as possible” for a period of
30 s. The sequence was continuously displayed on the screen to
minimize any working memory component of the task. During
each repetition, each key press produced a gray dot below the
ongoing number, forming a row from left to right, to inform
participants about the ongoing sequence while not providing
accuracy feedback. Participants were instructed to keep going if
they realized an error was made.

The learning session consisted of ten 30 s blocks with 30 s
breaks between blocks. After each 30 s break, the instruction
reminded on the screen (“Repeat the sequence displayed on the
screen as quickly and accurately as possible – you have 30 s”)
and the participants were asked to press enter when ready to
start the next 30 s-long tapping block. The retest session (e.g.
after the nap period) consisted of at least three 30 s blocks
(some participants performed up to 6 30 s blocks but only
the first three 30 s-trials were considered during retest). Motor
performance was calculated as the time (in seconds) to correctly
play the 6-digit sequence. To exclude extremely slow sequences,
repetitions lasting more than mean +3 (standard deviation, SD)
were excluded. On average, the percentage of excluded sequences
was 1.92% (range: 1.16–3.61%) and the number of accepted
sequences was 88.11 (range: 56–166). Each repetition was finally
divided by the mean from all accepted repetitions. This yields
performance values expressed relative to a “baseline level,” thus
facilitating comparison between participants.

Procedure
The experiment was performed during the day in accordance
with participant and clinical team schedules and was set up to
last ∼120 min in total (mean = 104.6, SD = 22.5 min; from
the initial rest session to the final retest). The participants were
initially briefed about the task. They were aware that the study
was focused on sleep and that they would be retested after the
nap session. During the initial rest session that immediately
preceded the learning task, participants were instructed to stay
relaxed with eyes closed for ∼4 min (mean = 240.0, SD = 52.0 s;
except participant P#1 who stayed eyes opened and fixed on a
cross on the screen). Following that rest session, the participants
performed the motor learning task (learning session). They
were then allowed to sleep during a nap session (post-learning

Frontiers in Neuroscience | www.frontiersin.org 3 May 2020 | Volume 14 | Article 449

http://surfer.nmr.mgh.harvard.edu
https://github.com/pelednoam/ieil
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-00449 May 10, 2020 Time: 19:26 # 4

Eichenlaub et al. Gamma-Band Reactivation in Human Sleep

sleep, “sleepPost”) before being retested on the same task
(retest session).

Based on the hypnogram during this post-learning sleep and
by going backward in time, a control sleep period prior to the
motor learning (“sleepPre”) was identified so that the 2 sleep
periods did not differ in terms of their sleep characteristics.
This approach permitted close correlation of the amount of
elapsed time between the task and the 2 sleep periods, and also
minimization of potential brain signal nonstationarity effects.
Figure 1A summarizes the procedure.

Sleep-Stage Scoring
Stages of vigilance (wake, NREM sleep, REM sleep) were scored
visually (JBE) and in 30-s epochs using Python 3.5 with phypno3.
The scoring was performed from sEEG or ECoG electrodes (in
combination with scalp electrodes when available) and followed
as closely as possible the standard sleep stage classification
(Iber et al., 2007). Electrooculography (EOG), electromyography
(EMG) and digital video recording completed the sleep scoring
apparatus when available.

Data Preprocessing
Data analysis was performed using custom analysis code
in Matlab (MathWorks Inc) and using the Fieldtrip
toolbox (Oostenveld et al., 2011), an open-source software
implemented in Matlab.

3https://github.com/gpiantoni/phypno

EEG Preprocessing
Each iEEG segment (sleepPre, rest/learning, sleepPost, and retest)
was preprocessed independently for computational purposes.
Channels which were non- or mal-functioning were first visually
identified and excluded (mean = 4.0, SD = 3.5 channels per
participant). The data were de-meaned and the line-noise
removed using band-stop filters ([58–62, 118–122], zero-phase
forward and reverse Butterworth filter, 4th order, implemented in
Fieldtrip). The data were then re-referenced with respect to their
direct neighbors (bipolar montage, depth electrodes) or using a
common average reference (grids electrodes).

Pathological channels contaminated by interictal epileptiform
discharges (IEDs) were identified in an automatic manner by
using an IED detection algorithm (Janca et al., 2015; version
v21, default settings except -h 60). The algorithm adaptively
models statistical distributions of signal envelopes and enables
discrimination of IEDs from background EEG (for details and
code, see Janca et al., 2015). Channels exhibiting IEDs rate higher
than 6.5 IEDs/minute (above the algorithm’s false positive rate)
were excluded (mean = 5.0, SD = 5.1 channels per participant,
Supplementary Table 1).

Channel Selection
A significant number of human studies have explored the cerebral
correlates of motor memory acquisition and consolidation. These
studies have highlighted the importance of the frontal, cingulate
and parietal cortices, the striatum, hippocampus and cerebellum
in learning and subsequent consolidation of newly acquired

FIGURE 1 | (A) Schematic representation of the experiment, including the rest, learning and retest sessions, and the two sleep periods before (pre-learning sleep or
“sleepPre”) and after (post-learning sleep or “sleepPost”) learning, respectively. (B) Main steps of the neural decoding approach. Gamma band activity during rest
and finger tapping were first used as features (i.e. predictors) to train a support vector machine (SVM) model for two-class classification i.e. “motor” vs. “rest”
classes. The trained model was then applied to the unlabeled sleep samples: the gamma band activity during sleep was processed by the model to return for each
windowed sleep trial a class label (motor- or rest-vote). Finally, the proportion of sleep windows classified as “motor” (i.e. the proportion of motor-votes) was
compared between the two sleep periods (sleepPre vs. sleepPost).
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motor sequence (Walker et al., 2005; Albouy et al., 2008, 2013;
Debas et al., 2014; Doyon et al., 2018). Accordingly, channels
which were assigned to one of these brain regions were defined
as being part of the “motor-learning network.”

Gamma-Band Envelope Estimation
The instantaneous signal amplitude in the gamma-band was
computed using the Hilbert Transform. Continuous EEG signals
were first bandpass filtered in multiple successive 10 Hz
wide frequency bands between 60 and 140 Hz (or between
60 and 100 Hz for data with a sampling rate of 250 Hz,
N = 2 participants) using zero-phase forward and reverse
Finite Impulse Response filters (FIR, order = 3 cycles of the
low frequency cut-off, implemented in Fieldtrip). Next, for
each bandpass filtered signal, the envelope signal (analytic
amplitude) was (i) computed using the standard Hilbert
transform (implemented in Fieldtrip), (ii) smoothed using a
0.03 s moving average temporal smoothing window, and (iii)
normalized to the rest session (i.e. the mean and the standard
deviation from the rest session were used to normalize (z-
score) the entire data-set, including the rest session). Finally, the
normalized and smoothed envelope signals per frequency band
were averaged together to provide one single time series (the high
gamma-band envelope) across the entire data-set. This approach,
as the broadband gamma selection, is inspired by numerous
previous studies (Swann et al., 2009; Ossandón et al., 2011; Vidal
et al., 2012; Combrisson et al., 2017).

Feature Extraction for Classification
Data Epoching
Data were epoched using a time-window of 0.3 s. Data during
the finger tapping task were epoched in 0.3 s windows around
each correct button press. Data from the∼4 min-long rest session
was epoched into consecutive (non-overlapping) 0.3 s-long time-
windows, and data from each 30 s-long sleep epoch was epoched
into consecutive (half-overlapping) 0.3 s-long time-windows.
Trials exhibiting values > 10 a.u. were excluded. On average
(± SD), the percentage of rejected 0.3 s long trials was 1.87%
(±2.07), 1.43% (±1.06), 6.18% (±4.80), and 7.33% (±7.07),
during the task, rest, sleepPre and sleepPost sessions, respectively.

Feature Extraction
Each 0.3 s-long epoch corresponded to one “trial” (also known as
“observation”) for classification. The mean gamma amplitude per
electrode was computed resulting in N features per trial (where
N is the number of electrodes). Trials from the learning/retest
sessions were labeled as “motor-class.”. Trials from the rest
session were labeled as “rest-class.” Trials from the two sleep
periods were designated as “unlabeled.”

For each participant, the final data-set contained the same
number of motor- and rest-trials. This number was determined
by the class having fewer trials (random selection when required).
In 1 participant (P#1), the trials during retest were excluded due
to excessive artifacts during that period. The total number of
sleep-trials was dependent on the number of 30 s-epochs scored
in NREM sleep during the 2 sleep periods, respectively.

Support Vector Machine Approach
We implemented support vector machine (SVM) binary
classification algorithms (Boser et al., 1992; Cortes and Vapnik,
1995) using Matlab (Statistics and Machine Learning Toolbox).
The SVM training algorithm searches for an optimal hyperplane
that maximizes the margins between the nearest features of
different classes. Different kernel methods can be used, such
as linear, radial basis function or polynomial kernels. The
classification approach was performed in 2 consecutive steps
schematized in Figure 1B. Please note that we also implemented
Linear Discriminant Analysis classification algorithms that
confirmed the results we observed with SVM.

Step1: Train an SVM Model Using Wake Data and
Cross-Validate the Model
An SVM model was built using the labeled waking data (“motor”
and “rest”-trials). We used a linear kernel in the function fitscvm
implemented in Matlab (parameters: “KernelFunction,” “linear”;
“Standardize,” true; “KernelScale,” 1).

Classification performance was calculated using 5-fold cross-
validation. The data set (i.e. “motor-” vs. “rest-trials”) was first
randomly partitioned into 5 equal sized subsamples. Then, of
the five subsamples, four subsamples were used as training data
while the remaining subsample was retained as validation data.
The cross-validation process was repeated five times, with each
of the subsamples used once as the validation data. Each of the
five trained classifiers was then applied on its corresponding
validation data, and its predictive accuracy computed (i.e. the
percentage of trials correctly classified). Finally, the mean of
the five predictive accuracies was calculated and defined as
the decoding accuracy (DA). The functions crossval followed
by kfoldLoss implemented in Matlab were used to cross-
validate the model.

Step 2: Apply the Validated SVM Model on Sleep Data
The SVM model (from step1) was used to predict the class labels
(“motor” or “rest”) of the unlabeled “sleep”-trials using Matlab
function predict. For each sleep epoch scored as NREM sleep,
a label was assigned to each of its accepted “sleep”-trials (0.3 s-
long each, 50% overlap, see data epoching above). Finally, the
proportion of motor-votes was computed per 30 s-long NREM
epochs and in respect to the sleep period (sleepPre vs. sleepPost).

Statistical Analysis
SPSS software (v22, IBM SPSS Statistics, Armonk, NY,
United States) and Matlab were used to perform statistical
analysis. Memory performance extracted from blocks 2:3, 9:10,
and 12:13 were compared using repeated measures ANOVA (two-
tailed, p < 0.05, Greenhouse-Geisser correction), and post-hoc
comparisons using paired-sample t-test (two-tailed, p < 0.05).

For each participant, the proportions of motor-votes for
sleepPre and sleepPost were compared using a Wilcoxon rank
sum test (left-tailed since we hypothesized an increase in the
proportion of motor-votes during sleepPost in comparison with
sleepPre, p < 0.025). The effect size r of the test was computed
by dividing the z-statistic value by the square root of the total
number of observations.
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At the group level, the median proportion of motor-votes
during sleepPre and sleepPost were compared using a paired-
sample t-test (two-tailed, p < 0.05). The correlation between the
level of reactivation and memory performance was assessed using
Pearson’s r (two-tailed, p < 0.05).

RESULTS

Motor Memory Performance
The mean time to play the 6-digit sequence across the 10-
blocks of the learning session and the 3-blocks of the retest is
displayed in Figure 2A (at the group level) and in Figure 2B
(individual performances). Overall, we observed time-dependent
improvements in performance across the course of the learning
session i.e. participants were getting faster across trials as reflected
by a decrease in the time to play the sequence. There was a
statistically significant effect of trials (i.e. blocks 2:3, 9:10, and
12:13, respectively), on memory performance [F(1.5,10.5) = 14.1;
p = 0.002]. During the learning session, performance improved
by 18.04% [mean = 1.125, SEM = 0.044 a.u. in blocks 2:3,
and mean = 0.922, SEM = 0.019 in blocks 9:10; t(8) = 3.5,
p = 0.008]. This improvement was preserved after the nap
session [mean = 0.892, SEM = 0.025 in blocks 12:13; t(7) = 4.3,
p = 0.003 in comparison with blocks 2:3], but no significant
improvement was observed in comparison with blocks 9:10
[t(7) = 0.8, p = 0.453].

Electrodes Localization
In total, 550 channels were initially considered (mean = 61.1,
SD = 16.8), 505 were analyzed (mean = 56.1, SD = 16.5), and
372 (mean = 41.3, SD = 13.3) were identified as being part of the
motor-learning network (Supplementary Table 1 and Figure 3).

Sleep Periods
The mean (±SD) sleep period time (SPT, from the first to the
last sleep epoch) in the nap following the rest/learning sessions
(i.e. “sleepPost”) was 38.4 ± 16.1 min (see Supplementary
Table 2). The sleep period was predominated by NREM sleep
(34.3 ± 14.1 min, 88.3 ± 10.0% of SPT). The mean sleep
period time in the control “sleepPre” was 51.8 ± 27.4, including
42.8± 20.3 NREM sleep (85.1± 12.4% of SPT).

Power spectra of the two sleep periods were computed and are
displayed in Figure 4. In comparison with the spectrum during
the task, the two sleep EEG spectra exhibit a clear increase in
slow-frequencies (below 4 Hz). In addition, a relative increase can
be seen in the spindle-band, especially using the “task-related”
channels (see legend). The two sleep EEG spectra (using all
the channels) did not show any significant difference (two-way
repeated measure ANOVA; sleep effect: F(1,8) = 1.1, p = 0.34).

Neural Classification and Decoding
Accuracy During the Task
We trained a support vector machine (SVM) binary classification
model to discriminate between “motor” vs. “rest” trials. The
decoding accuracy (DA) achieved by the classifier was computed

using standard 5-fold cross-validation (see section “Materials
and Methods”). DA was computed using all the channels (505
channels in total), and using the channels within (372 channels)
and outside (133 channels) the motor-learning network. The
mean DA across participants was 90.6% (SD = 7.3; min = 76.5,
max = 98.8), 88.8% (SD = 6.9; min = 75.8, max = 96.3) and
72.3% (SD = 15.7; min = 57.5, max = 97.7; 5 participants
below 70%) using all the channels, the channels within- and
the channels outside- the motor-learning network, respectively
(Figure 5A). Figure 5B illustrates “motor” vs. “rest” trials used
for classification in one participant.

To assess the contribution of the different brain areas
in the decision function, the linear predictor coefficients β

were analyzed as a function of the anatomical localization of
the channels. The larger is |βj|, the more important is the
contribution of the jth feature in the decision function (e.g.
Chang and Lin, 2008). After being rescaled from 0 to 1, |β|
was extracted for each brain area. When more than 1 feature
(i.e. channel) was localized in a given brain area, the largest
|β| was used. The analysis was done across participants, and
for the two sets of channels (all the channels vs. the channels
within the motor-learning network) separately (Figure 5C).
Not surprisingly, this analysis highlighted the importance of
the channels implanted in the precentral gyrus in the decision
function. Over the seven participants having at least 1 channel
in the precentral gyrus, 5 (71%) and six participants (86%)
exhibited the largest |β| from this area when, respectively, all
the channels (left panel) and the channels from the motor-
learning network (right panel) were considered. Nevertheless,
this analysis also revealed the relative importance of other brain
areas, mainly from the frontal lobe, in the classification decision,
while the contribution of medial temporal lobe structures were,
in comparison, relatively low.

Proportion of Sleep-Windows Classified
as Motor- vs. Rest-Classes During Sleep
and Correlation With Performance
Change
We hypothesized that the gamma-band pattern underlying
finger-movements’ from rest re-occurred more often during
sleep following learning than during an earlier control sleep
period. After having trained and cross-validated a support vector
machine (SVM) model (binary classification i.e. “motor” vs.
“rest”), we applied the trained model on the “unlabeled” NREM
sleep data immediately after the task as well as during a control
sleep period preceding the task.

Using all the channels (Figure 6A and Table 1), a significant
increase in the proportion of motor-votes during sleepPost was
observed in six participants (Ps#1, 3, 6, 7, 8, and 9). At the
group level, the comparison of the median values between the 2
sleep periods (paired-sample t-test, two-tailed, p < 0.05) revealed
a significant difference [t(8) = −2.66; p = 0.029]. There was
no significant correlation between the reactivation index (i.e.
difference in the median proportion of motor-votes [Post-Pre]
multiplied by the number of sleep epochs in sleepPost) and
the performance index (i.e. difference between blocks 9, 10 of
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FIGURE 2 | (A) Motor performance at the group level. Left panel: scatter plots (dots) and best second degree polynomial fit (black line) of the mean time (± SEM;
arbitrary units, a.u.) to play the 6-digit sequence across the 10-blocks of the learning session and the 3-blocks of the retest, respectively. Right panel: mean time
(± SEM; a.u.) to play the sequence in blocks 2:3, 9:10, and 12:13, respectively. (B) Individual motor performances. Scatter plots (dots) of the mean time (± SEM;
a.u.) to play the 6-digit sequence across blocks for each participant. The last panel displays, for each participant, the mean performance (in seconds) across all the
sequences (mean = 2.81, range: 1.52–4.25). Per participant, each sequence’s repetition was divided by this mean value. This yields performance values expressed
relative to a “baseline level”, thus facilitating comparison between participants. Note that motor performance in Participant P#2 was not record during the first block
for technical reasons and P#7 declined to run the retest session at the end of the nap session.

learning and blocks 12, 13 of the retest [blocks9,10-blocks12,13];
Pearson’r =−0.15, p = 0.73).

Using the channels within the motor-learning network
(Figures 6B and Table 1, see also Supplementary Figure 1),
a significant increase in the proportion of motor-votes during
sleepPost was observed in six participants (Ps#1, 3, 4, 6, 7 and 8).
At the group level, the comparison of the median values between
the two sleep periods (paired-sample t-test, two-tailed, p < 0.05)
revealed a significant difference [t(8) = −2.50; p = 0.037]. There
was no significant correlation between the reactivation index and
the performance index (Pearson’r = 0.31, p = 0.46).

DISCUSSION

In this study, we employed machine learning methods (SVM)
applied to intracranial EEG (iEEG) signals to investigate
spontaneous motor-related reactivation of neural patterns in

human sleep. This approach allowed identification, at the single-
subject level, of the reactivation of gamma-band patterns in
NREM sleep that were first identified in wake during a motor
task. This study provides electrophysiological evidence for the
reactivation in human sleep of neural activity related to prior
waking experience, i.e. that a central tenet of the reactivation
theory does occur in human sleep.

Electrophysiological Evidence of
Motor-Related Reactivation Events in
Human Sleep
In humans, several non-invasive functional neuroimaging (TEP,
fMRI) studies have provided evidence of spontaneous (Maquet
et al., 2000; Peigneux et al., 2004; Deuker et al., 2013) or
triggered (Rasch et al., 2007; van Dongen et al., 2012) reactivation
of learning-related cerebral activity during sleep. In addition,
recent electroencephalography (EEG) studies provided more
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FIGURE 3 | (A) Examples of 3-D reconstruction of the brain of two participants implanted with ECoG (P#6, top panel) and sEEG (P#8, bottom panel). Red dots
represent the localization of the electrodes onto the participants’ pial surface. (B) Anatomical distribution of the electrodes across participants. The histogram
displays the number of participants with at least one electrode in the different targeted brain areas. The “motor-learning network” includes the frontal, cingulate and
parietal cortices, the striatum and the hippocampus (in total 372 electrodes; no electrode targeted the cerebellum).

direct, electrophysiological evidence of spontaneous reactivation
in humans by showing that sleep scalp EEG contains features
specific to the task previously experienced (Schönauer et al.,
2017), and by showing, using intracranial EEG (iEEG), the
reactivation in NREM sleep of spatiotemporal sequences of
gamma activity peaks that were identified in wake (Jiang
et al., 2017), and the reactivation in wake and NREM sleep
of item-specific gamma activation patterns that were initially
identified in a memory task (Zhang et al., 2018). However,
electrophysiological evidence of spontaneous reactivation in
humans is still sparsely documented, and the current study
importantly extends this research area by showing that the
gamma-band patterns that distinguished motor from non-motor
periods during a learning task were more prevalent during the
sleep that followed learning compared to a control sleep period
that took place before the task. This relative increase in the
amount of motor-related events shows that the iEEG activity
patterns recorded during motor learning were spontaneously

reactivated (i.e. recapitulated) in NREM sleep. A recent scalp
EEG study identified triggered motor-related reactivation during
sleep using a classifier approach (Belal et al., 2018). The re-
exposure of auditory cues (i.e. sounds presented as context
during prior motor learning) during sleep was associated with an
increase in the correct classification rate as identified by applying
trained classifiers on the corresponding EEG data (Belal et al.,
2018). Here, we expand the use of classifiers in the detection of
spontaneous iEEG reactivation during sleep, and using gamma-
band activity as a proxy of motor-information processing.

Reactivation in NREM Sleep and Memory
Function of Gamma-Band Activity
Our results support the hypothesis that NREM sleep plays a
role in the processing of motor skills (Walker et al., 2002;
Albouy et al., 2008; Antony et al., 2012), and emphasize
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FIGURE 4 | (A) Averaged Power spectrum in NREM sleep and during the task. Per electrode, the power spectrum was calculated for each 30 s-long NREM sleep
epochs (“sleepPre” and “sleepPost”), for each block of the tapping task (“Task”) and for each consecutive 30 s-long windows in rest (“Rest”) using Fieldtrip’s
ft_freqanalysis function (method: “mtmfft,” taper: “dpss,” from 0.5 to 25 Hz in steps of 0.5 Hz). Per participant and condition (sleepPre, sleepPost, task and rest),
power spectrum was then averaged across epochs and across electrodes and log-transformed before being finally averaged across participants. The procedure
described above was performed using all the channels, and using the five channels exhibiting the highest vs. lowest linear predictor coefficients β. Since the larger is
|βj|, the more important is the contribution of the jth feature (i.e. channel) in the decision function (e.g. Chang and Lin, 2008), this approach allowed to compare
channels that contributed the most to the motor-task (e.g. precentral gyrus, middle frontal gyri) from channels that contributed the least (e.g. superior and middle
temporal gyri). (B) Example of EEG recordings in two participants. Ten seconds-long segments of EEG recording during the task (left panel) and in NREM sleep (right
panel) in two participants (P#2 and P#3). The displayed channels are the channels exhibiting the highest linear predictor coefficients |β|.

the involvement of gamma activity in these NREM sleep-
dependent mechanisms. While high-frequency neural activity is
generally related to complex cognitive functions in wakefulness
(Lachaux et al., 2012), our results suggest a link between
such high-frequency activity in human NREM sleep and the

ongoing processing of recently experienced events. It suggests
that gamma-band activity during sleep might complement its
critical role in memory encoding and retrieval in wakefulness
(Johnson and Knight, 2015), by supporting the re-processing
of recent experiences in NREM sleep through reactivation
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FIGURE 5 | (A) Individual decoding accuracy achieved by the classifier (mean across all folds per participant) using all the channels (“All,” 505 channels), and using
the channels within (“Motor,” 372 channels) and outside (“No-Motor,” 133 channels) the motor-learning network, respectively. (B) Example of gamma-band activity
(Participant #1) used as predictors to which SVM classifier was trained. Each row corresponds to one 0.3 s-long trial (i.e. observation), and each column
corresponds to one feature (i.e. channel). The squares point-out features/channels outside the motor-learning network. The horizontal line separates the motor-trials
(first-half) from the rest-trials (second-half). (C) Linear predictor coefficient β across brain areas. Per participant and brain area, the absolute β (rescaled [0–1]) value
was extracted. It allowed exploring the contribution of the different brain areas in the decision function. The analysis was performed using the two set of channels (all
the channels vs. the channels within the motor-learning network), separately.

mechanisms. However, we did not observe any significant
correlation between the level of reactivation and performance
change over the rest period, and thus could not confirm that the
gamma-band reactivation observed in the current study actually
strengthened or stabilized the motor memory representation,
i.e. is of functional significance. Other work did not find a
link between neural reactivation and motor performance in
humans (Belal et al., 2018), and as pointed out by the authors,
“it is noteworthy that the vast majority of the rodent work on
reactivation bears no reference to behavioral consolidation” (p.212;
Belal et al., 2018). Furthermore, memory consolidation is an
umbrella notion that covers multiple types of memory processes
(for a review, see Stickgold and Walker, 2013). Accordingly, it is

possible that the gamma-band pattern reactivation participated
in subtle offline processing that was not measured in the
current study. It is also possible that reactivation as reported
here is not of functional significance and thus does not relate
to consolidation mechanisms. The relatively low number of
participants might also account for the lack of relationship to
memory consolidation, and future studies are needed to clarify
the link between gamma-band motor reactivation during sleep
and subsequent performance changes in humans. Regardless,
our results show that gamma-band activity during sleep was
influenced by the motor task, and thus highlights the role of
such high-frequency activity in the reactivation of recent waking
experiences by the sleeping brain.
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FIGURE 6 | Proportion of motor votes during sleep and correlation with performance improvement using all the channels (A) and the channels within the
motor-learning network (B). The left-panel displays the median proportion of motor votes during sleepPre and sleepPost, respectively. The p-value is of a
paired-sample t-test (two-tailed, p < 0.05). The middle-panel displays, for each participant and sleep period, boxplots of the proportion of motor-votes within
30 s-long sleepPre and sleepPost NREM sleep epochs (Wilcoxon rank sum test, left-tailed, *p < 0.025). The right-panel displays the correlation between the
reactivation index (i.e. difference in the median proportion of motor-votes [Post-Pre] multiplied by the number of sleep epochs in sleepPost) and the performance
index (i.e. difference between blocks 9,10 of learning and blocks 12,13 of the retest [blocks9,10-blocks12,13]; Pearson’s r, two-tailed, p < 0.05). ns, non-significant.

TABLE 1 | Median (± SD) proportions of motor-votes during sleep before (sleepPre) and after (sleepPost) the learning task, and their comparison (z-statistic, p-value and
effect size r of a Wilcoxon rank sum test, left-tailed, p < 0.025) using all the channels and the channels within the motor-learning network, respectively.

P# All channels Channels within the motor-learning network

sleepPre sleepPost z p r sleepPre sleepPost z p r

1 0.16 ± 0.14 0.30 ± 0.15 −4.64 1.73e-06 −0.36 0.14 ± 0.14 0.29 ± 0.15 −4.91 4.54e-07 −0.38

2 0.49 ± 0.13 0.53 ± 0.15 −0.87 0.19 −0.07 0.49 ± 0.13 0.53 ± 0.15 −0.87 0.19 −0.07

3 0.25 ± 0.06 0.40 ± 0.08 −8.42 1.82e-17 −0.74 0.25 ± 0.06 0.38 ± 0.09 −7.76 4.23e-15 −0.68

4 0.41 ± 0.08 0.39 ± 0.08 2.31 0.99 0.22 0.12 ± 0.05 0.27 ± 0.09 −7.48 3.73e-14 −0.70

5 0.15 ± 0.12 0.10 ± 0.08 2.65 1.00 0.22 0.13 ± 0.12 0.08 ± 0.08 2.60 1.00 0.21

6 0.47 ± 0.11 0.61 ± 0.13 −7.24 2.18e-13 −0.46 0.44 ± 0.10 0.58 ± 0.14 −7.72 5.77e-15 −0.49

7 0.91 ± 0.17 0.96 ± 0.06 −5.10 1.71e-07 −0.34 0.12 ± 0.08 0.21 ± 0.09 −7.46 4.38e-14 −0.50

8 0.02 ± 0.15 0.40 ± 0.19 −3.94 4.14e-05 −0.55 0.03 ± 0.02 0.17 ± 0.04 −4.66 1.59e-06 −0.65

9 0.24 ± 0.20 0.58 ± 0.17 −6.44 5.95e-11 −0.52 0.39 ± 0.23 0.29 ± 0.12 1.88 0.97 0.15

Methodological Considerations and
Future Directions
A large number of motor patterns were identified by the classifier
during the pre-learning control sleep, prior to the participants
having performed the experimental motor learning task. In

addition, a large inter-subject variability was observed in the
detection rate of motor patterns during both sleep periods.
The production of sequential motor movements is a central
human behavior that is omnipresent in our daily life (e.g. typing
on a computer keyboard or on a cellphone). These behaviors
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might evoke activity during sleep which would be classified as
motor-related during both sleep periods. Furthermore, multiple
subject-dependent parameters such as the electrode locations or
type, determined to what extent models draw strict boundaries
between different activities, including within the motor activities,
and consequently, to what extent they distinguish between task
and non-task related memory events during sleep. Together,
these parameters could account for the proportion of sleep-
windows classified as motor-class during pre-learning sleep,
but also for the large inter-subject variability in the detection
rate of motor patterns. Accordingly, this within-subject control
sleep period before the task allowed separating task-related
from non-task related reactivation events, and then allowed
testing the reactivation of the task-related brain activity during
sleep following the task. Importantly, to test a potential effect
of the time elapsed between the two sleep periods on the
results, the correlation between the difference in the median
proportion of motor votes between sleepPost and sleepPre and
the time elapsed (in minutes) between the two sleep periods
was tested using Pearson’s r (two-tailed, p < 0.05). The analysis
showed no significant correlation using both all the channels
(Pearson’r =−0.14, p = 0.71) and the channels within the motor-
learning network (Pearson’r = 0.31, p = 0.42), suggesting that the
increase in the proportion of motor-votes during sleep following
the task was not dependent on the time elapsed between the
two sleep periods.

The present findings show that the study of spontaneous
reactivation of gamma-band patterns related to a motor learning
task is feasible in human NREM sleep and by using a machine
learning framework. In accordance with studies in rodents
showing “true” replay that is the recurrence of sequential firing
patterns during sleep (e.g. Lee and Wilson, 2002; Ramanathan
et al., 2015), future studies should investigate the feasibility
of using multiclass classifiers to discriminate individual finger
movements that would allow testing the reactivation of the
exact sequence of digits in human sleep. In addition, and since
different grapho-elements in NREM sleep (i.e. slow-oscillations
and spindles) appear to be linked to replay events in rodent
sleep (e.g. Peyrache et al., 2009; Gulati et al., 2014; Ramanathan
et al., 2015), it would be informative in the future to explore
the relationship between these reactivation events and NREM
oscillations in human sleep.

CONCLUSION

The results reported here provide electrophysiological support
for the hypothesis that reactivation of neural patterns
during sleep underlies the reprocessing of memories from

recent waking experiences in humans. Gamma-band patterns
characterizing motor learning were found to recur more often
in a subsequent nap, as compared to comparable sleep periods
preceding learning.
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