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INTRODUCTION

Lactate has become one of the most re-evaluated metabolites in energy metabolism, particularly
as a shuttle in neuroenergetics (Mason, 2017; Ferguson et al., 2018). In a comprehensive review
in 2018, Brooks, one of the originators of the “lactate shuttle” concept, discusses the roles that
lactate plays in the delivery of oxidative, and gluconeogenic substrates, as well as in cell signaling
(Brooks, 2018). Brooks also appraises clinical studies that feature lactate to treat pro-inflammatory
conditions, as well as reports on historic and recent studies of lactate metabolism and shuttling.
A pioneering astrocyte–neuron lactate shuttle (ANLS) hypothesis was first proposed in 1994 by
Pellerin and Magistretti for homeostatic conditions within the brain (Pellerin and Magistretti,
1994). The ANLS hypothesis has withstood challenges for 25 years but remains controversial
as scientists continue to debate its validity (Bak and Walls, 2018; Barros and Weber, 2018). I
believe, however, that the ANLS hypothesis can be extended beyond homeostatic conditions into
neuropathophysiological states. The focus of this short opinion paper is to highlight studies over
the past 2 years that support the notion that the route of lactate, as it acts as a shuttle in the
brain, in neuropathophysiological states is emerging as crucial in neuroenergetics. This behavior is
reviewed inmore detail byMason (2017). Further, this paper presents recent experimental evidence
that has emerged supporting an extension of the ANLS—the newly postulated astrocyte–microglia
lactate shuttle (AMLS) hypothesis (Mason et al., 2015), as described for the infectious, chronic
neuroinflammatory disease tuberculous meningitis (TBM).

MULTIFACETED ROLE OF LACTATE IN NEUROMETABOLISM

The neuroprotective role of lactate, particularly during cerebral ischemia (Castillo et al., 2015),
is well-substantiated in the literature (Mason, 2017). Recent studies on central nervous system
injury show that induction of glycolytic flux in astrocytes generates an accumulation of lactate
in these cells. It is the release of lactate into the extracellular space that incites lactate-mediated
neuroprotection (Huang et al., 2019; Tauffenberger et al., 2019; Vohra et al., 2019; Vohra and Kolko,
2020).

New insights into lactate cellular compartmentation have been gained by measuring great
variations in lactate diffusion properties in vivo (Ligneul et al., 2019), which show that intracellular
lactate is predominantly present within astrocytes under control conditions, but comes to be
predominate in neurons during “pure” astrocyte reactivity (in the absence of both neuronal death
andmicroglial activation). The novel results of Ligneul et al. indicate extensive remodeling of lactate
metabolism, as lactate compartmentation is tightly linked to the ANLS mechanism.

When considering neuroenergetics and the importance of lactate supply to sustain neuronal
activity, it has been shown (Mazuel et al., 2017) that knockdown of the protein monocarboxylate
transporter 2 (MCT2) in the rat somatosensory cortex prevents both the transient lactate
rise caused by whisker stimulation as well as the concomitant blood oxygen level-dependent
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response, suggesting an altered neuronal response if lactate
supply to neurons is impaired. It has also been shown that
enhancing the expression of MCT2—using the recombinant
Lonomia obliqua Stuart-factor activator—together with
providing lactate is beneficial for cultured neurons against
serum deprivation stress (Alvarez-Flores et al., 2019). Alvarez-
Flores et al. proposed that this might represent a novel
therapeutic approach based on the possibility of boosting brain
energy metabolism.

Computational models of neurostimulation show rapid
shuttling of lactate from astrocytes into the extracellular space
for use by neurons (Coggan et al., 2018). Glycogen in astrocytes
is needed for rapid lactate production by astrocyte glycolysis;
however, this can be bypassed by nitric oxide (NO) production,
which results in immediate and reversible intracellular glucose
depletion and modulation of the extracellular lactate reservoir
originating from astrocytes (San Martín et al., 2017). The causal
relationship between the NO of the cerebrospinal fluid (CSF) and
lactate of the CSF is a phenomenon that, in my opinion, needs
investigation in neuropathophysiological states.

EMERGING SUPPORT FOR THE NEW

AMLS HYPOTHESIS IN TBM

The new AMLS hypothesis (a derivative of the ANLS postulate)
is based upon an untargeted 1H-NMR metabolomics study on
CSF from a pediatric cohort of TBM patients (Mason et al.,
2015). The AMLS model requires that the increased levels of
lactate that are produced within the astrocytes are transported
into the extracellular space. Instead of being shuttled to the
neurons as described in the ANLS, the lactate is then redirected
toward the mitochondria of microglia for increased production
of mitochondrial energy. Increased mitochondrial activity within
the microglia leads to greater electron leakage and subsequently
raised production of free radicals. One such free radical—
superoxide—reacts with NO to produce reactive nitrogen species
(RNS) (Valerio and Nisoli, 2015). Reactive oxygen species (ROS)
and RNS are an essential defense produced by microglia to
deal with the immediate injury/infection during TBM; however,
chronic neuroinflammation leads to gliosis due to persistent
ROS/RNS. Recently, using the same analytical platform and
similar sample size, but based upon a cohort of adults, Zhang et al.
(2019) found metabolic markers distinguishing between TBM
and controls consistent with our original data. This adult cohort
demonstrated CSF lactate to be on average 4.2 times higher in
TBM cases than in controls. In our pediatric cohort (Mason et al.,
2015), we similarly found the CSF lactate levels to be elevated—an
average of 3.2 times higher in TBM cases than in controls.

A prospective hospital-based cross-sectional study (Siddiqi
et al., 2018) of adults over 15 years identified 55 patients, out
of 220 meningo-encephalitis cases, with TBM of statistically
significant class differences, with possible, probable, and definite
classes (based upon a uniform definition given by Marais et al.,
2010) having mean CSF lactate levels of 3.7 ± 1.6, 6.1 ± 2.8,
and 8.1 ± 1.7mM, respectively. Thus, mean CSF lactate levels
increased corresponding to improvement in the certainty of TBM

diagnosis, indicating that CSF lactate is therefore apparently
linked to the severity of TBM. Mean CSF lactate values were
also increased (to 1.2, 2.4, and 4.4mM) in severity of clinical
TBM stages 1, 2, and 3, respectively. Hence, CSF lactate increases
with severity of infections that cause chronic neuroinflammation,
significantly more so than in cases of acute viral meningitis (Li
et al., 2017; Zhang et al., 2019). Siddiqi et al. correctly state that
there is a “scarcity of studies of CSF lactate in TBM and its role
as a diagnostic and prognostic marker has not been elucidated.”
Therefore, further research should be conducted to validate CSF
lactate as a diagnostic and prognostic marker in TBM.

DIVERSE NEUROLOGY, BUT A COMMON

FACTOR—PERTURBED LACTATE

Biochemical disturbances, and their causal effects, within the
brain can be temporal, diverse, and severe. Using Cx43 cKOGFAP

mice, Clasadonte et al. (2017) demonstrated that delivery of
lactate from astrocytes to neurons is required for normal
orexinergic neuronal activity. Insufficient supply of lactate from
astrocytes leads to a marked and selective loss of orexin neurons
in the lateral hypothalamic area. This has been identified as one
of the main causes of narcolepsy (Peyron et al., 2000; Thannickal
et al., 2000).

In an experiment using neonatal piglets to simulate newborn
hypoxic-ischemic encephalopathy (Zheng and Wang, 2018),
uptake values of lactate (peaking at 2–6 h) and glucose (peaking
at 6–12 h) in the basal ganglia and basal ganglia/occipital cortex
increased following hypoxic-ischemic reperfusion brain injury.
Lactate levels remained higher than controls for up to 72 h
and, histologically, astrocyte damage occurred earlier and more
severely than neuronal damage. In another study, induced tonic–
clonic seizure in rats (Oses et al., 2019) was associated with
increased glucose and lactate levels immediately within the
brain, with the CSF lactate/glucose ratio remaining >2:1 for
24 h except at the 10min mark, where it was 1:1. However,
mitochondria were not able to increase energy production due
to an uncoupling between mitochondrial oxygen consumption
and ATP synthesis via FoF1-ATP synthase, thereby affecting cell
viability. Thus, across diverse types of neurology, recent studies
continue to demonstrate that lactate remains a focal point of
biological importance.

LACTATE IS INDISPENSABLE IN

NEURODEGENERATIVE DISEASES

Neurodegenerative diseases, which is more complicated the
more deeply we explore them, rely upon a common simple
metabolite—lactate. Research on Alzheimer’s disease (AD), using
the APP/PS1 mouse model and 13C-NMR metabolomics, has
revealed a decrease in the lactate–alanine shuttle in the brain
(Zhou et al., 2018), limiting the source of ammonia nitrogen
from alanine that is used in the glutamate–glutamine cycle
(Schousboe et al., 2003). Immunohistochemistry showed that
APP/PS1 mice exhibited less MCT2 staining in the cerebral
cortex and hippocampus than the WT mice (Lu et al., 2019).
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Reduced lactate and downregulated MCT2 in the cerebral cortex
and hippocampus can decrease the lactate content in the neurons,
associated with an energy crisis, downregulated expression of
long-term memory-related proteins, and consequently cause
memory decline in AD. Interestingly, curcumin treatment of
APP/PS1 mice, which presented significantly increased lactate
content and markedly higher MCT2 protein levels in the cerebral
cortex and hippocampus, correlated with improvement of
memory (Lu et al., 2019). Furthermore, the observations of Harris
et al. (2019) suggest that lactate production may be required
for memory acquisition but not retrieval. Hence, boosting the
neuroprotective properties of astrocytes (by boosting lactate
production of astrocytes) has potential applications in delaying
the onset and progression of AD, as originally proposed by
Demetrius et al. (2015) and summarized in a review by Zulfiqar
et al. (2019). Furthermore, glucose hypometabolism is typically
observed in AD. Based upon recent 18FDG-PET imaging studies
(Zimmer et al., 2017; Carter et al., 2019), a deficit in glucose
metabolism in astrocytes (but not in neurons) has been observed
that would reduce lactate supply to neurons and render them
more vulnerable.

Another important lactate shuttling system exists between
oligodendrocytes and axons, first demonstrated by Lee et al.
(2012). It has also been shown that oligodendrocytes prefer
lactate over glucose as a substrate for myelin production
(Rinholm et al., 2011). The disruption of this oligodendrocyte–
axon lactate shuttle contributes to the pathogenesis of another
form of neurodegenerative disease—multiple sclerosis (MS). In
a 2018 review Rosko et al. describe how lactate is critical for
oligodendrocyte function and oligodendrocyte–axon coupling
(Rosko et al., 2018). Evidence that lactate is an important
metabolite during the course of AD and MS pathogenesis
is becoming increasingly better understood. The potential
therapeutic role of lactate in neurodegenerative diseases is one
that awaits more attention.

THERAPEUTIC ROLE OF LACTATE IN

ACUTE BRAIN INJURIES

The therapeutic role of lactate in acute brain injuries such as
subarachnoid hemorrhage and traumatic brain injury (TBI)—
identified by a high lactate/pyruvate ratio despite adequate brain
glucose and oxygenation—was recently reviewed by Killen et al.
(2019). Two TBI studies in 2018 revealed: (1) constant perfusion
of 8mM sodium 3-13C lactate over 24 h using microdialysis
catheters in the brains of nine patients with severe TBI exhibited

13C-glutamine enrichment above the non-TBI control range,
suggesting lactate oxidative metabolism as a TBI “emergency
option” (Jalloh et al., 2018). (2) Transcriptional analysis of
gene expression modulation in neurons evoked by exposure
to L-lactate indicated that lactate effectively regulates activity-
dependent and synaptic genes and highlighted new signaling
effects of lactate in plasticity and neuroprotection (Margineanu
et al., 2018). A study byWolahan et al. (2018), in whichmoderate,
constant intravenous infusions of 2mM sodium L-lactate for
TBI patients (over a median time of 137 h post-injury) showed
arterial lactate concentrations increased from 0.92 to 1.84mM,
no changes in systemic glucose, decreased intracranial pressure
of 3.6 mmHg after 1 h and increased cerebral uptake of lactate
and raised concentrations of systemic metabolites. Wolahan
et al. concluded that at moderate infusion rates and variable
changes to the patients’ systemic lactate that the net balance of
cerebral lactate uptake and release shifts toward uptake, which
could improve cerebral neuroenergetics by generating additional
ATP to fuel the cellular recovery processes. Further studies,
such as those by Ligneul et al. (2019), are needed to determine
compartmentalization of cerebral lactate during TBI.

These new studies contribute to the concept that lactate can
be used as a putative treatment for TBI patients (Quintard
et al., 2016; Mason, 2017). However, a limitation when involving
human TBI studies, as expressed by Jalloh et al. (2018), is that
there are no truly normal controls and that during treatment,
surgery itself may constitute some degree of trauma (altered
metabolic profile) that cannot be ruled out.

FINAL THOUGHT

Lactate is a chemically simple metabolite, yet its dynamics within
shuttling systems in neurology is profoundly complex. It has been
shown (Mason et al., 2016) that highly lactic acidotic CSF from
infants and children with confirmed TBM exhibits only the L-
enantiomer—meaning that it is a response solely by the host to
the infection. In TBM cases, it appears that lactate is a crucial
energy substrate, used preferentially over glucose by microglia,
and exhibits neuroprotective capabilities. Lactate levels should
be carefully considered by clinicians during diagnosis, especially
when considering communicable neuroinflammatory diseases.
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