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The increasing incidence of neurodegenerative diseases such as Alzheimer’s or
Parkinson’s disease represents a significant burden for patients and national health
systems. The conditions are primarily caused by the death of neurons and other
neural cell types. One important aim of current stem cell research is to find a way
to replace the lost cells. In this perspective, neural stem cells (NSCs) have been
considered as a promising tool in the field of regenerative medicine. The behavior of
NSCs is modulated by environmental influences, for example hormones, growth factors,
cytokines, and extracellular matrix molecules or biomechanics. These factors can be
studied by using well-defined hydrogels, which are polymeric networks of synthetic or
natural origin with the ability to swell in water. These gels can be modified with a variety
of molecules and optimized with regard to their mechanical properties to mimic the
natural extracellular environment. In particular modifications applying distinct units such
as functional domains and peptides can modulate the development of NSCs with regard
to proliferation, differentiation and migration. One well-known peptide sequence that
affects the behavior of NSCs is the integrin recognition sequence RGD that has originally
been derived from fibronectin. In the present review we provide an overview concerning
the applications of modified hydrogels with an emphasis on synthetic hydrogels based
on poly(acrylamides), as modified with either cationic moieties or the peptide sequence
RGD. This knowledge might be used in tissue engineering and regenerative medicine
for the therapy of spinal cord injuries, neurodegenerative diseases and traumata.

Keywords: cationic moieties, extracellular matrix, functional peptides, hydrogels, integrin, neural stem cells, RGD

INTRODUCTION

The loss of neural cells is followed by a dramatic dysfunction of the central nervous system with
symptoms like memory loss, paralysis and ataxia. The various reasons for the loss of neural cells
may be based in neurodegenerative diseases like Alzheimer’s disease, amyotrophic lateral sclerosis
and multiple sclerosis (Selkoe and Lansbury, 1999; Gironi et al., 2016; Grossman, 2019), as well
as traumatic brain injuries or stroke. However, the mammalian brain has a limited regenerative
capacity and is not able to cure the damage by replacing lost cells (Gage and Temple, 2013).
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Symptomatic pharmaceutical treatment for neurodegenerative
diseases are available, but so far no effective causal treatments
to cure the patients are available (Pandit and Murthy, 2011;
Yacila and Sari, 2014; Folch et al., 2016). Therefore, there
is a great interest in the research of new methods using
stem cells in the field of regenerative medicine. One objective
focuses on the opportunities to activate the self-renewal and
differentiation abilities of intrinsic neural stem cells (NSCs)
of the adult brain. Alternative strategies explore options to
implant NSCs or progenitors derived from embryonic central
nervous system (CNS) tissues or induced human pluripotent
stem cells (hIPSCs) into the damaged CNS of diseased recipients.
In this perspective, the work with stem cells constitutes a
promising tool in the attempt to treat neurodegenerative diseases
(Mahla, 2016; Napoli et al., 2018; Zhou et al., 2019). Not only
NSCs, but also mesenchymal and embryonic stem cells can
be transdifferentiated or differentiated into neural cell types,
e.g., neurons, astrocytes, and oligodendrocytes (Dhara and Stice,
2008; Jang et al., 2010; Selvaraj et al., 2012; Yan et al., 2013;
Zemel’ko et al., 2013; Urrutia et al., 2019). One critical factor
for the modulation of the behavior of NSCs of the CNS is
the extracellular matrix (ECM; Gattazzo et al., 2014; Roll and
Faissner, 2014; Faissner and Reinhard, 2015; Ahmed and ffrench-
Constant, 2016). The ECM is composed of glycoproteins and
proteoglycans that can be divided into heparan sulfate and
chondroitin sulfate proteoglycans according to specific core
proteins and attached glycosaminoglycan chains. About 300
distinct genes have been attributed to the core matrisome (Naba
et al., 2016). The composition of the secreted macromolecules,
which build a surrounding scaffold, influences the behavior and
maturation of NSCs, as well as the adhesion and migration
toward specific brain regions through the interaction of ECM
molecules with cell surface receptors. These receptors activate
intracellular signaling pathways to modulate the cytoskeleton,
activate kinases or induce gene expression (Saghatelyan et al.,
2004; Franco and Müller, 2011). Initially, numerous studies
examined the ECM as modulating agents in two-dimensional
(2-D) in vitro cell culture systems. Recently, the notion emerged
that the three-dimensional (3-D) organization of the ECM exerts
specific effects (Duval et al., 2017; Seidlits et al., 2019). In this
perspective, a novel aim consisted of finding an appropriate 3-D
scaffold for cultivating cells in what is considered a more natural
environment. To this end the natural-derived and artificial
hydrogels were developed. These polymers are designed to
mimic the in vivo characteristics of the ECM, which renders
them attractive biomaterials in regenerative engineering (Tibbitt
and Anseth, 2009; Geckil et al., 2010; Hellmund and Koksch,
2019; Mantha et al., 2019). The combination of both particular
ECM molecules and hydrogels represents a promising tool
to regulate the differentiation of stem cells into specific cell
types and can not only be used for in vitro culture systems,
but also in regenerative medicine as implant in injured or
diseased brains (Guan et al., 2017; Kim and Cho, 2018). In
this mini review we intend to give an overview about the
influence of the ECM on the development of NSCs, particularly
in the context of modified hydrogels and their applicability in
regenerative medicine.

NEURAL STEM CELL FATE DEPENDS
ON EXTRACELLULAR MATRIX
COMPOSITION

In the developing and adult CNS stem cells are located
in so called stem cell niches. The stem cells and their
descendants in these special compartments are surrounded
by supporting cells, proximal blood vessels and a special
composition of ECM molecules, which are called fractones
(Kazanis and ffrench-Constant, 2011; Rojas-Ríos and González-
Reyes, 2014; Theocharidis et al., 2014). The ECM environment
comprises different glycoproteins, like tenascins and laminins,
and proteoglycans, such as chondroitin or heparan sulfate
proteoglycans, which have a major impact on the maintenance
and development of NSCs (Faissner and Reinhard, 2015).
Especially the expression pattern of the glycoprotein tenascin-C
makes it an attractive molecule for neural stem cell research. It
was found expressed in the developing brain, more precisely in
the stem cell regions (Gates et al., 1995; Steindler et al., 1996;
Fietz et al., 2012), as well as after injuries and in tumors (Roll
and Faissner, 2019). Tenascin-C is a hexameric glycoprotein,
whereby one monomer consists of EGF-like repeats, eight
constant and six alternatively spliced fibronectin III domains
in mice, resulting in a variety of isoforms. In the developing
cerebellum 24 different variants of tenascin-C were found (Joester
and Faissner, 1999, 2001; Theocharidis and Faissner, 2012),
whereas neurospheres derived from NSCs express 20 isoforms
(von Holst et al., 2007). Tenascin-C was found to interact with
a diversity of ECM molecules, receptors and growth factors,
which activate different signaling cascades. This indicates a great
spectrum of functions based on the number of isoforms and
the different cell types. Thus it can have repulsive, inhibitory
or stimulatory effect on axon growth and guidance (Faissner,
1997; Joester and Faissner, 2001; Rigato et al., 2002; Michele and
Faissner, 2009), as well as on cell migration, cell attachment,
and cell spreading and cell survival (Giblin and Midwood,
2014). Other glycoproteins, which are prominent for the neural
stem cell niche, are laminins (Mercier et al., 2002; Kerever
et al., 2007). They are heterotrimeric molecules and are a
major component of the basement membrane (Colognato and
Yurchenco, 2000). They interact with a variety of molecules,
like other matrix molecules, and cell surface receptors. Via the
interplay with receptors, laminins may influence the behavior
of the cells through the activation of intracellular signaling
pathways and thus is responsible for differentiation, survival,
and movement and maintenance of the cells (Colognato and
Yurchenco, 2000). Laminins are important in the developing
cortex and its disruption results in cortical disorganization
(Halfter et al., 2002; Radner et al., 2013). The importance of
laminin for NSCs can also be seen in vitro, where laminin is
the preferred substrate of adult NSCs (Pollard et al., 2006),
and promotes the proliferation of human NSCs (Hall et al.,
2008). On the other hand, laminin is also important for the
maturation of neural cells, for example for the differentiation of
neural cells into neurons and astrocytes (Flanagan et al., 2006).
In particular, it is a well-known neurite outgrowth inducing
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and neuron differentiation supporting substrate (Plantman et al.,
2008). Another important protein of the ECM is fibronectin. It is
expressed in the developing cortex and the subependymal niche,
the location of adult NSCs (Letourneau et al., 1994; Morante-
Redolat and Porlan, 2019). It is a dimer and has different
isoforms, that arise from alternative splicing (ffrench-Constant,
1995), and therefore plays an important role in cell adhesion,
migration and differentiation (Mosher, 2012; Carsons, 2018).
Additionally it could be shown to promote neurite outgrowth
(Tonge et al., 2012) and plays a major role in regeneration of
peripheral nerves (Lefcort et al., 1992).

The major receptor family for ECM molecules are the
integrins, which are present in the human CNS in 23 different
variants depending on their combination of their α- and
β-subunit (Gardiner, 2011; Berezin et al., 2014; Senkov et al.,
2014). Particularly the β1-integrin subunit is strongly represented
in neural progenitor cells (NPCs), for example in neurospheres
and inside the ventricular zone of the developing cortex, which
is the location of the proliferating NSCs (Campos et al., 2004;
Hall et al., 2006). It is important for neural stem cell maintenance
and its inactivation or deletion caused process retraction and
altered neurogenesis (Graus-Porta et al., 2001; Loulier et al.,
2009; Radakovits et al., 2009; Fietz et al., 2010). Furthermore,
integrins cooperate with growth factor receptors and affect the
activation of several intracellular signaling pathways, like Erk
and phosphoinositide 3-kinase through the activation of protein
tyrosine kinases like the focal adhesion kinase (FAK) and Src, as
well as G-proteins like Cdc42, Rac and Rho, which influences
the behavior of cells especially via the modulation of actin
(see Figure 1; Dalby et al., 2014). The decision which pathway
will be activated depends on different parameters, for example
the stiffness of the environment. So it could be shown that
the phosphoinositide 3-kinase and the Rho-associated–protein-
kinase were two parallel signaling pathways, which were activated
by the same input of the ECM to integrin, but have opposite
effects regarding their protrusive activity. The outcome of the
activation of this signaling depends on the balance between
these two pathways, which is associated with the stiffness of the
ECM environment (Park et al., 2018). These results support the
conclusion that the interaction of ECM molecules with integrin
receptors has an influence on the maintenance and development
of NSCs (Campos et al., 2006; Alam et al., 2007; Rallis et al., 2010;
Arora et al., 2012; Brizzi et al., 2012).

Remarkably, the receptor binding sites of the ECM
glycoproteins can be attributed to short amino acid sequences
such as Arg–Gly–Asp (RGD; Ruoslahti and Pierschbacher, 1987).
This peptide was originally discovered in fibronectin but is
also encoded in several other ECM molecules like vitronectin,
collagens and fibrinogen. Along these lines, functionally active
peptide sequences uncovered in other ECM molecules include
IKVAV from laminin-1 and VSWRAPTA, and VFDNFVLK
from tenascin-C glycoproteins (Tashiro et al., 1989; Mercado
et al., 2004; Jarocki et al., 2018). These peptides are all known to
support the attachment of cells and/or to promote the outgrowth
of neurites. The discovery of these short functional peptides
opened new doors for the researchers in two different ways. On
the one hand the handling of short peptides compared to larger

protein domains is more convenient. Especially the tethering of
these sequences to substrates and materials by chemical coupling
is more straightforward than the use of large glycoproteins.
On the other hand, however, the small peptides are limited in
their functional potential in contrast to the integral proteins
they originate from, which may have more than one biologically
active domain, and hence offer more receptor binding sites to
interacting cellular partners. In view of the fact that the peptides
target one distinct receptor they may be more specific for the
regulation of the behavior of NSCs and represent a promising
tool in regenerative medicine.

HYDROGELS AS MATRICES FOR CELL
CULTIVATION

Extracellular matrix molecules are often used in cell culture
systems as coatings to create a natural cellular environment.
However, it was found that the cells not only need the cell-
cell- and cell-matrix-interaction, but also the mechanical support
to adopt the behavior of cells inside the organism (Lopes
et al., 2019). One modern approach for the cultivation of stem
cells is the use of hydrogels as scaffolds with the ability to
mimic the ECM of those cells. Hydrogels are three-dimensional
hydrophilic polymeric networks that are insoluble in water
due to their crosslinks which can be formed by covalent but
also non-covalent bonds like hydrogen bonds or ionic bridges
(Kloxin et al., 2009). Nowadays many different polymers are
used as hydrogels such as natural derived polymers like Collagen
(Trappmann et al., 2012), Hyaluronic acid (HA; Collins and
Birkinshaw, 2013), Chitosan (Payne and Raghavan, 2007), or
Gelatin (Nichol et al., 2010). But also different fully synthetic
polymers like poly(ethylene glycol) (Slaughter et al., 2009),
poly(hydroxyethyl methacrylate) (Guiseppi-Elie, 2010), or more
complex structures like block copolymers (Tokarev and Minko,
2009) are being tested. While natural polymers often have very
good biocompatibilities and mechanical properties, they are also
very expensive in their production, are often not very well
characterized and display considerable batch-to-batch variation.
On the other hand, fully synthetic hydrogels are cheap in their
production and properties such as their mechanical stability,
hydrophilicity, and biocompatibility can be easily adjusted to
the needs of different cell types. Additionally, these gels can be
modified with different moieties to influence the behavior of
cells during the cultivation process, which is necessary if the
cells are to be used to treat different diseases or disabilities. The
most commonly used moieties which are known to influence
the behavior of cells are cationic charges or peptide sequences
like the very well-known Arg-Gly-Asp (RGD) sequence derived
from fibronectin or laminin α1 and α5 chain (Tashiro et al.,
1991; Sasaki and Timpl, 2001), Ile-Lys-Val-Ala-Val (IKVAV)
derived from laminin-1 or Val-Phe-Asp-Asn-Phe-Val-Leu-Lys
(VFDNFVLK) derived from tenascin-C (Zhu, 2010).

As early as in 1974 Yavin and Yavin demonstrated that the
polycationic polymer polylysine enhanced the adhesion of cells
to the surface of petri dishes through ionic interactions of
the positively charged amine side chain of the lysine and the
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FIGURE 1 | Integrin-mediated intracellular signaling activated by adhesion of cells to a RGD-modified hydrogel. The crosstalk of integrin to the peptide sequence
RGD activates many signaling pathways, which are mostly initiated by the activation of the focal adhesion kinase (FAK). Together with the protein tyrosine kinase Src,
FAK may regulate small GTPases of the RhoA subfamily like CDC42, Rac and Rho-A, which may modulate the actin cytoskeleton. Furthermore the cytoskeleton may
be regulated by the activation of the focal adhesion core region, which is build by FAK and paxillin in the first stratum, followed by talin and vinculin, which interact
with actin through molecules like α-actinin. The interaction with actin has influences on the adhesion and migration of cells, as well as on the gene expression via the
organization of the nucleus, which is linked to the cytoskeleton. Additionally integrins may have direct influence on the gene expression through the shuttle of FAK
into the nucleus. There FAK targets the ubiquitination of the cell cycle mediator p53 and may act as a transcription co-regulator. The differentiation, proliferation and
survival of the cells may be influenced through integrins alone or in combination with growth factor receptors like the epidermal growth factor receptor and the
platelet-derived growth factor via the activation of mitogen-activated protein kinase/Erk, Jnk or phosphoinositide 3-kinase/Akt (Schwartz and Ginsberg, 2002;
Yamada and Even-Ram, 2002; Giancotti and Tarone, 2003; Guarda et al., 2009; Ivaska and Heino, 2011; Dalby et al., 2014).

negatively charged cell membrane (Yavin and Yavin, 1974). It
was shown that 75% of brain cells readily adhered to the surface
in only 15 minutes and afterwards proliferate and differentiate.
Comparing the results of polylysine to different other amino
acid coatings containing thiols or carboxylic acids, they could
attribute the enhanced adhesion of the cells to the present free
amine group of lysine. Several years later Cai et al. (2012)
reported a hydrogel system comprised of poly(ethylene glycol)
diacrylate and poly(L-lysine) or [2-(methacryloyloxy)ethyl]-
trimethylammonium chloride, which enhances proliferation,
differentiation, and survival of encapsulated NPCs (Cai et al.,
2012). It was demonstrated that compared to a neutral reference
the viability of cells on hydrogels bearing cationic charges
was significantly higher after day 1 and day 7. Furthermore,
the proliferation on these gels was also much faster and
an enhanced differentiation could be observed in both gels

bearing cationic charges. Some differences between the two
gels were visible which indicated a difference of the cationic
moieties in lysine bearing a primary amine group and in
[2-(methacryloyloxy)ethyl]-trimethylammonium chloride gels
bearing a quaternary ammonium group (Cai et al., 2012).
The differentiation was also dependent on the stiffness of
the hydrogel in that softer gels that are closer to natural
brain tissue were favored. It turned out that poly(L-lysine)
is superior to gels bearing quaternary ammonium ions and
is therefore a promising material for the regeneration of
the CNS (Cai et al., 2012). Hynes et al. (2009) reported
that lateral concentrations of amines ranging from 0.1 to
3.0 µmol mg−1 are sufficient to promote the survival and
proliferation of NSCs on hydrogels without further modifications
(Hynes et al., 2009). The best results regarding migration
and formation of neurons were obtained from gels with an
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elastic modulus of 3800 to 5300 Pa and a lateral concentration
of 0.32–0.60 µmol mg−1. While these results already show
that hydrogels containing cationic charges are promising tools
to influence the behavior of NSCs, many researchers focus
their interest on hydrogels with peptide sequences derived
from natural proteins from the ECM (Sun et al., 2017;
Stukel and Willits, 2018).

One of the most intensively investigated peptide sequences for
cell cultivation is the RGD sequence. Saha et al. (2007) established
a fully synthetic hydrogel network with different layers, a so
called interpenetrating polymer network, with poly(ethylene
glycol), and poly(acrylamide) as their main component and
an RGD functionalized upper layer (Saha et al., 2007). With
this hydrogel system they could demonstrate that a lateral
peptide concentration greater than 5.3 pmol/cm2 on the surface
was sufficient to support adhesion of NSCs to the gel via
integrin receptors. It was shown that the RGD sequence used
in this study provided comparable results as the glycoprotein
laminin-1 with respect to cell adhesion, differentiation and
morphology. Also, a concentration dependent increase in cell
proliferation could be shown. In contrast to these observations
cells did not adhere on gels containing the peptide IKVAV
that is derived from laminin-1 and no difference in cell
differentiation or proliferation was observed. This indicates
that RGD alone can substitute laminin-1 with regard to
some aspects of cell differentiation. Furthermore, the data
emphasizes that the different peptide sequences contained in
ECM glycoproteins have different functions and effects on neural
stem cell behavior. In a subsequent paper Saha et al. (2008)
further described the importance of the substrate modulus on
the behavior of NSCs (Saha et al., 2008). They studied the
influence of the substrate modulus in a range of 10 Pa to
10 kPa with the same hydrogel system mentioned before. The
adult NSCs proliferated and differentiated on all gels with a
modulus greater than 100 Pa and a peak level of the neuronal
marker β-III tubulin was observed on gels with a modulus of
around 500 Pa which resembles the stiffness of brain tissue.
Also the neurite outgrowth was increased in hydrogels with
a similar stiffness of 400 Pa in a HA based RGD-modified
hydrogel (Tarus et al., 2016) and in a PEGDA-RGD-based
hydrogels the neurite outgrowth was increased at a stiffness
of 0.1 and 0.8 kPa, which were the lowest consistence tested
(Stukel and Willits, 2018). Together this indicates that neurites
preferentially grow toward an environment that is less stiff
(Long and Huttner, 2019). Additionally Stukel and Willits (2018)
carried out adhesion studies with the 2-D modified PEGDA
hydrogels and could show that the concentration of the peptide
and the cell density are important for the adhesion effect of
RGD. More precisely they exposed that a high concentration
of 2.5 mM RGD decreased the adhesion at a cell density of
50 × 103 cells cm−2, whereas a concentration of 0.1 and 1 mM,
as well as a lower cell density of 10 × 103 cm−2, exhibited a
better result. Another 3-D artificial hydrogel based on PEG was
modified with RGD in combination with tenascin-C (Naghdi
et al., 2016). This hydrogel promoted the viability of NSCs and
provoked an increased differentiation of NSCs into a neuronal
phenotype (Table 1).

While cationic charges, substrate modulus and peptides on
their own are promising tools to influence the behavior of NSCs,
they are very often not combined in a single hydrogel (Jaiswal
et al., 2013; Macková et al., 2016). Therefore, Sallouh et al. (2017)
investigated the effect of both the cationic charge and the peptide
sequence GRGDSF in a cross-linked hydrogel system based on
poly(acrylamide). In total the effect of three different hydrogels,
namely a neutral gel bearing the peptide GRGDSF, a gel with
cationic charges based on 2-aminoethylmethacrylate and a gel
bearing both cationic charges and the peptide GRGDSF, on the
behavior of NSCs were analyzed (see Figure 2).

The analysis of neural stem cell adhesion showed a 10.8-
fold increase in the number of adherent cells for the cationic
gel and a 22-fold increase for the gel that combined cationic
charges with the RGD peptide compared to the pure RGD-
functionalized gel with a RGD-concentration well below the
threshold concentration of Saha et al. (2007). These results
suggest that early cell adhesion is mediated by the electrostatic
interaction of cationic charges with the negatively charged
pericellular matrix of the cell membrane. The importance of the
pericellular matrix for early cell adhesion has also been reported
for other cell types such as osteoblasts, chondrocytes or epithelial
cells (Cohen et al., 2003; Fotia et al., 2013; Scrimgeour et al.,
2017). RGD-integrin interaction and focal adhesion formation
take place in a second step when the cell-substrate distance is
in a range of 25–50 nm leading again to a doubling in adherent
cells compared to the cationic gel whereas the pure RGD-
functionalized gel did not show any cell adhesive properties. The
results suggest a synergistic effect of the cationic moieties (non-
specific electrostatic interactions with the pericellular matrix) and
the RGD-peptides (specific interactions with integrins) that take
place on a different distance and time scale.

Although the majority of studies using hydrogels investigated
cell behavior in two dimensions (2-D) on top of a hydrogel
film 3-D cell encapsulation has gained significant interest in
the past years since 3-D hydrogel constructs may mimic the
tissue environment of the cells more accurately (Caliari and
Burdick, 2016). Moreover, 3-D cell encapsulation has become
an important tool for cell delivery and therapy based on 3-D
bioprinting or injectable hydrogels (Thomas and Willerth, 2017;
Liang et al., 2019).

One hydrogel system that has been used for 3-D applications
is based on self-assembling peptides (SAP). The components of
these hydrogels, for example the RADA16 peptide, may also be
modified with peptide sequences like RGD or IKVAV (Table 1;
Zhang et al., 2010; Cunha et al., 2011; Gao et al., 2017). It
could be shown that the cells cultured in RGD-functionalized
SAP proliferate and differentiate, for example into neurons, and
more than in unmodified hydrogels (Cunha et al., 2011; Gao
et al., 2017). The modification with IKVAV promotes beside the
proliferation of NSCs also the migration of the NSCs into the SAP
hydrogel to form a 3-D culture in comparison to defunctionalized
SAPs (Zhang et al., 2010). Furthermore, the differentiation into
neurons was promoted by IKVAV-modified SAPs, whereas the
differentiation into astrocytes was decreased.

An often used hydrogel system are the HA based hydrogels
(Table 1; Tarus et al., 2016; Adil et al., 2017; Perera et al., 2019;
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TABLE 1 | Different modified hydrogels with their effect on NSC.

Hydrogel Moiety Effect References

RADA16-I self-assembling peptides 2D and 3-D RGD Increased proliferation and differentiation of NSC Cunha et al., 2011

RADA 16 self-assembling peptides IKVAV Increased proliferation, migration and differentiations into
neurons of NSC

Zhang et al., 2010

RADA16 self-assembly peptides, RADA16
cyclo-RGD 3-D

RGD Increased proliferation and neuronal differentiation of NSC Gao et al., 2017

Polyethylene glycol–hydrogel 3-D RGD and
tenascin-C

Higher viability, proliferation, and differentiation into neuronal
phenotype and neurite outgrowth of bone marrow stem
cells-derived neurospheres

Naghdi et al., 2016

PEGDA 2D RGD NSPC adhesion and neurite extension Stukel and Willits, 2018

Hyaluronic acid matrix 3-D IKVAV and LRE
(laminin)

Neurite extension of embryonic stem cells through matrix
metalloprotease-dependent mechanism

Perera et al., 2019

Hyaluronic acid hydrogel 3-D RGD Neurite outgrowth of neural progenitor cells Tarus et al., 2016

Hyaluronic acid-based hydrogels 3-D RGD Improved viability and proliferation of NSCs Seidlits et al., 2019

Hyaluronic acid-based hydrogel 3-D RGD and heparin Increased survival of midbrain dopamineric neurons after
implantation

Adil et al., 2017

Gellan gum GRGDS Pronounced differentiation, proliferation, migration and
expansion throughout the hydrogel, of NSCs

Silva et al., 2012

Poly (methylsulfone
acrylate-co-acrylamide-co-acrylic
acid-co-N,N’-methylene-bis-acrylamide)

IKVAV Differentiation of NSCs into neurons Farrukh et al., 2017

Poly (2-hydroxyethyl methacrylate-co-2-aminoethyl
methacrylate-co-ethylene dimethacrylate)

RGDS and
SIKVAVS

RGDS shows better cell attachment, proliferation, and
growth than SIKVAVS

Macková et al., 2016

Polyethylene glycol (PEG), agarose and polyacrylic
acid 3-D

RGD Increased proliferation of NSC and more cells in active
phase

Mauri et al., 2018

Elastin-like polypeptides (ELP), 3-D RGD Neurite outgrowth at optimal gel stiffness Lampe et al., 2013

Elastin-like polypeptides (ELP), 3-D RGD + protease
degradation sites

Matrix remodeling is required for NPC stemness
maintenance and differentiation

Madl et al., 2017, 2019

FIGURE 2 | Exemplary synthesis of a synthetic hydrogel system and examples for hydrogels bearing cationic moieties and the RGD sequence.

Seidlits et al., 2019). The HA based 3-D hydrogel alone shows an
increased differentiation of human NSCs into oligodendrocytes
and neurons and a decreased formation of reactive astrocytes
compared to a 2-D laminin-coated culture (Seidlits et al.,
2019). Additionally, the modification with RGD increased the
viability of the human NSCs. Furthermore the modification

with RGD exhibits the neurite outgrowth into the soft hydrogel
of NPC (Tarus et al., 2016; Adil et al., 2017). Moreover 3-D
HA based hydrogels, which were modified with RGD and
heparin, were used in transplantation studies (Adil et al., 2017).
These hydrogels support the neuronal differentiation of midbrain
dopaminergic neuronal progenitors and enhance the survival of
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implanted midbrain dopaminergic neurons after injection into
the adult striatum of rats. Another class of bioactive materials
for cell encapsulation is based on elastin-like polypeptides (ELPs;
Lampe et al., 2013). These materials were fabricated by protein
engineering and studied the effect of RGD-concentration and
biomechanics on neurite outgrowth from dorsal root ganglia.
Greatest neurite outgrowth was found for ELP gels with
elastic moduli between 0.5 and 2.1 kPa and identical RGD-
concentrations. In a more recent study, they could show that
the stemness of a NPC culture within a 3-D ELP gel modified
with RGD-peptides and protease degradation sites is correlated
with gel degradability and showed that matrix remodeling is
required for NPC stemness maintenance in 3-D gels (Madl et al.,
2017). This matrix remodeling was also necessary to enable
NPC differentiation into astrocytes and neurons (Madl et al.,
2019). This study shows the importance of 3-D hydrogels for
regenerative medicine.

While some hydrogels are already used for medical
applications such as wound treatments, many challenges have
to be overcome for them to be used in patients for different
applications. Using human embryonal stem cells for research is
associated with ethical problems. In this respect, adult stem cells
and induced pluripotent stem cells circumvent these problems
and are the main target in clinical trials for hydrogels. Using
patient-derived cells reduces immune responses of the body to
the hydrogel implant. Furthermore, endogenous stem cells inside
the injured tissue may be stimulated by the implanted modified
hydrogel to proliferate and differentiate into the required cell
types (Liu et al., 2020). On the other hand, the patient-derived
cells may be burdened by the same neuropathological deficits that
cause the neurodegenerative disease. Another major challenge is
the vascularization of the newly built tissue, which is important
to provide transportation of nutrients. Mainly two different
approaches are used at the moment to overcome this latter
challenge. The first one is a cell-based strategy which uses
endothelial cells to induce neo-angiogenesis and the second one
is a scaffold-based strategy which focuses on providing vessel
like structures in the scaffold (Novosel et al., 2011). Other issues
refer to the ease of handling the hydrogel during the application
and the cost efficiency. Depending on the cells the scaffolds need
different mechanical properties, but surgeons need a durable
and easy to handle implant for the application. One solution
might be the injection of fluid gels with subsequent in situ-
gelation inside the injury (Yang et al., 2014). Depending on
the injury or disease type the hydrogels have to be stable or
degradable (Li et al., 2012; Lim et al., 2018). The degradability
is particularly important for the invasion and the repopulation
of the hydrogel by invading cells. Therefore, the hydrogel has
to be modified with biodegradable groups like esters that can
be broken by enzymes secreted by the cells of interest, for
example matrix metalloproteases. Another problem of most

hydrogels is the orientation of the structure inside the hydrogel,
because many tissues have an ordered structure and provide
cells a direction to grow and migrate (Rose et al., 2020). In
addition, natural and synthetic hydrogels are often subject to
numerous modification steps and therefore not very cost efficient.
Overcoming these challenges may eventually lead to competence
to generate fully functional implants, or even full organs using
hydrogels as a matrix.

In summary, the great interest in regenerative medicine
to cure neurodegenerative diseases resulted in an expansion
on research concerning the development of the nervous
system. Soon it became obvious that ECM molecules, like
laminins, tenascins, and fibronectins, are important for normal
brain development. Single domains and peptides of these
molecules have specific functions regarding the behavior
of NSCs by activating intracellular signaling pathways via
binding to cell surface receptors, like integrins. Nevertheless,
in vitro experiments using distinct ECM molecules generate
impressive results, but are limited in their abilty to mirror the
in vivo situation in an organism. In order to create a more
natural environment artificial and natural-derived hydrogels are
investigated. Recent advances in materials science have led to
innovative biomaterials for use in stem cell research. While in
the beginning the research effort was mainly focused on a better
understanding of the influencing parameters such as topological
cues, biomechanics or bioactive components on neural stem cell
behavior in 2-D hydrogel films, there is a clear shift toward the
development and application of 3-D cell encapsulation materials
that resemble the natural environment of NSCs more closely.
Synthetic 3-D hydrogels with multiple functionalities such as
peptides or growth factors have been demonstrated to support
very efficiently the differentiation of human NSCs into neurons
and the formation of neural networks (Marchini et al., 2019).
Therefore, the development of synthetic or natural materials that
are able to mimic important features of the ECM and can be
utilized for 2-D and 3-D cell experiments remains a topic of high
priority in stem cell research.
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