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Neuropathic pain (NP) is the result of irregular processing in the central or peripheral
nervous system, which is generally caused by neuronal injury. The management of
NP represents a great challenge owing to its heterogeneous profile and the significant
undesirable side effects of the frequently prescribed psychoactive agents, including
benzodiazepines (BDZ). Currently, several established drugs including antidepressants,
anticonvulsants, topical lidocaine, and opioids are used to treat NP, but they exert a
wide range of adverse effects. To reduce the burden of adverse effects, we need to
investigate alternative therapeutics for the management of NP. Flavonoids are the most
common secondary metabolites of plants used in folkloric medicine as tranquilizers, and
have been claimed to have a selective affinity to the BDZ binding site. Several studies in
animal models have reported that flavonoids can reduce NP. In this paper, we emphasize
the potentiality of flavonoids for the management of NP.

Keywords: neuropathic pain, neuronal injury, flavonoids, benzodiazepines, GABA

INTRODUCTION

Neuropathic pain (NP) is caused by damage or disease affecting the somatosensory nervous system
(SSNS) (Colloca et al., 2017; Murnion, 2018). NP may be connected with aberrant sensations,
known as dysesthesia, or pain from usually non-painful stimuli, called allodynia. The SSNS plays a
pivotal role in the transfer of noxious stimuli to the central nervous system (CNS) under normal

Abbreviations: BDZ, benzodiazepines; CNS, central nervous system; CIPN, chemotherapy-induced peripheral neuropathy;
CCI, chronic constriction injury, EGCG, epigallocatechin gallate; GABA, γ-amino butyric acid; MDA, malondialdehyde;
NMDA, N-methyl-D-aspartate; NP, neuropathic pain; NF-κB, nuclear factor kappa B; Nrf2, nuclear factor erythroid 2-related
factor 2; SDH, spinal dorsal horn; SNL, spinal nerve ligation; SSNS, somatosensory nervous system.
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circumstances (Myers and Bennett, 2008). Therefore, lesion of
the SSNS leads to the innervations of nerve cells stopping and
causes pain with or without a sensory hypersensitivity event in the
painful region (Jensen and Baron, 2003). Furthermore, an injury
in the SSNS could reveal itself as negative sensory symptoms or
positive sensory symptoms. The positive sensory symptoms occur
because of the regeneration as well as disinhibition of the nerve
cells, whereas the negative sensory symptoms occur owing to the
partial or complete loss of input to the nervous system (Shehla,
2019; von Hehn et al., 2012). Moreover, positive symptoms can
be either spontaneous or stimulus-induced.

Paresthesia (i.e., aberrant sensations of the skin including
tingling, chilling, numbness, burning, and pricking), spontaneous
or shooting stimulus-independent pain, as well as electric
shock-like sensations are involved in spontaneous positive
symptoms; whereas, stimulus-induced positive symptoms
of neuropathy include allodynic and hyperalgesia pain
(Rasmussen et al., 2004; Beran, 2015). On the other hand,
hypoesthesia (i.e., decreased sensations to non-painful stimuli),
hypoalgesia (i.e., decreased sensations to toxic stimuli),
pallhypesthesia (i.e., decreased sensations to vibration), and
thermohypoesthesia (i.e., decreased sensations to cold/warm
stimuli) are negative symptoms of NP (Jensen and Baron, 2003;
Toh et al., 2018).

Many studies have revealed the prospective efficacy of
phenytoin, mexiletine, dextromethorphan, tricyclic anti-
depressants, gabapentin, tramadol, pregabalin, opioids, and
lamotrigine for painful sensory neuropathy (Harden, 1999;
Attal, 2001). Conversely, these treatments cause a 30–50%
decline in pain and are frequently restricted owing to their
noticeable adverse effects, with dominant sedative action.
Nowadays, natural products like plant secondary metabolites
are widely used to treat several chronic diseases due to their
limited adverse effects as well as high efficacy (Uddin et al.,
2018b, 2020e; Begum et al., 2019; Samsuzzaman et al., 2019;
Thangapandiyan et al., 2019; Basu and Basu, 2020). Flavonoids
are a broad group of secondary metabolites, extensively found
in many fruits, vegetables, wine, cocoa, and tea (Chun et al.,
2007; Egert and Rimbach, 2011). Flavonoids are recognized to
have antioxidant, analgesic, and anti-inflammatory properties
(Uddin and Upaganlawar, 2019). Moreover, these effects are
associated with the suppression of nuclear factor kappa B
(NF-κB)-dependent pro-inflammatory cytokines (Borghi et al.,
2018), vascular endothelial growth factor, intercellular adhesion
molecule 1, signal transducer and activator of transcription 3
(Verri et al., 2012), and activation of antioxidant transcription
factor including nuclear factor erythroid 2-related factor 2 (Nrf2)
(Borghi et al., 2018).

Numerous flavonoids have been demonstrated to be safe
natural alternative treatments against neuropathic pain,
oxidative stress, and neuroinflammatory diseases (Azevedo
et al., 2013; Quintans et al., 2014; Anusha et al., 2017;
Carballo-Villalobos et al., 2018; Ginwala et al., 2019). Hence,
flavonoids are considered as multi-target drugs, which elucidate
their wide range of actions. Here, we have reviewed the
recent studies on the promising effects of flavonoids for the
treatment of NP.

MECHANISMS OF NEUROPATHIC PAIN

Copious research in animal models have delivered some hint as
to the pathophysiological mechanisms that produce NP, which
involves both central and peripheral mechanisms (Baron, 2006;
Campbell and Meyer, 2006; Gilron et al., 2006) as shown in
Figure 1. Furthermore, the peripheral sensitization is performed
through unmyelinated C- as well as finely myelinated Aδ-primary
afferent neurons, which usually produce the sensation of pain
in response to noxious stimuli. Conversely, the peripheral nerve
injuries sensitize these neurons that develop a spontaneous
activity. Moreover, these injuries result in significant alterations
on the molecular and cellular levels activating the nerve cells
(Baron, 2006).

Overexpression of messenger ribonucleic acid (mRNA) for
voltage-gated sodium channels in the primary afferent neurons
is accountable for ectopic spontaneous activity after nerve
damage. This event might cause the clustering of these channels,
which declines the action potential threshold, leading to
hypersensitivity. Therefore, sodium channel blockers, including
lidocaine, demonstrate pain relief action in NP through this
mechanism (Lai et al., 2003).

Peripheral nerve injury is also responsible for the upregulation
of various receptor proteins. These receptors are usually found at
the membranes of the primary afferents and are partly expressed
during physiological conditions. Vanilloid receptors, including
the transient receptor potential cation channel subfamily V
member 1 (TrpV1), play a crucial role in the sensing of toxic
heat exceeding 43◦C (Patapoutian et al., 2003), while transient
receptor potential cation channel subfamily M (melastatin)
member 8 (TRPM8) has been recognized as cold and menthol-
sensitive which increase at temperature ranges from 8 to 28◦C.
Furthermore, the TRPM8 receptor is expressed in neurons that
are small in diameter from the dorsal root ganglia (McKemy et al.,
2002). Nerve injuries can cause the upregulation of this channel,
contributing to peripheral sensitization of C-nociceptors, which
results in cold hyperalgesia (Wasner, 2004).

In addition, acid-sensing ion channels are thought to take
part in static mechanical hyperalgesia (Price et al., 2001).
In contrast, both α1- and α2-adrenoceptors situated on the
cutaneous afferent fibers play an essential role in hypersensitivity
from nerve damage (Baron et al., 1999). Furthermore, adrenergic
sensitivity has extensively been expressed in complex regional
pain syndromes II, post-traumatic neuralgias, and postherpetic
neuralgias; while there is no sensitivity in the primary afferent
neurons, which have been claimed in the case of polyneuropathies
(Schattschneider et al., 2006). Therefore, sympathetically-
induced and temperature-mediated pain can be cured by
inhibiting their relevant receptors on nociceptive neurons.

Ectopic activity is mediated by inflammation in both injured
and contiguous typical primary afferent nociceptors, which
are activated by nerve damage that generates proinflammatory
cytokines, particularly tumor necrosis factor-α (TNF-α)
(Sommer, 2003). Furthermore, deep proximal, as well as
paroxysmal pains are noticeable symptoms in the case of
patients who have peripheral neuropathies, including human
immunodeficiency virus-neuropathy. Increased concentrations
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FIGURE 1 | The outlines of the mechanism of neuropathic pain from nerve damage with probable clinical interventions. Nerve damage leads to peripheral nerve injury
as well as spinal cord injury (central). The peripheral sensitization and hyperexcitability take place due to the peripheral nerve injury. Furthermore, the hyperexcitability
of peripheral nociceptor leads to the generation of ectopic impulses, which plays a crucial role in producing spontaneous pain, superficial pain, and paroxysmal pain
that ultimately leads to neuropathic pain. Conversely, selective sodium (Na) channel blockers such as lidocaine and carbamazepine inhibit the generation of ectopic
impulses that reduces the sensation of neuropathic pain. On the other hand, the hyperexcitability of the central dorsal horn is caused by spinal cord injury that
subsequently decreases intraspinal inhibitory interneurons, which finally leads to neuropathic pain. However, GABA agonists, including baclofen, inhibit the
decreased intraspinal inhibitory interneurons that plays an essential role in reducing the sensation of neuropathic pain. DRG, dorsal root ganglion; Na, sodium.

of proinflammatory cytokines and cyclooxygenase-2 (COX-2)
have been found in the nerve biopsy specimens of these patients
(Lindenlaub and Sommer, 2003).

CNS forms precise anatomical connections with the thalamus,
brain stem, cortex, and spinal cord. Furthermore, these relations
can connect the sensations that are produced in the high
threshold primary afferents with the cortical areas of the CNS,
which subsequently processes it into final painful sensations
(Woolf, 2011). The constant hyperactivity is produced by
damaged nerves that are considered to be a causative factor

for central sensitization, as well as triggering activity-dependent
synaptic flexibility occurring inside the cortex. Moreover, various
factors are involved in central sensitization such as excitatory
amino acid, changes in ion channel kinetics, different synaptic
modulators, pre- and post-synaptic activation of kinases, and
increased bulk of ionotropic receptors.

Most of the patients who have peripheral as well as central
neuropathy demonstrate dominant synaptic facilitation leading
to hypersensitivity and allodynia (Campbell and Meyer, 2006).
Additionally, peripheral nerve damage results in pre-synaptic
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changes such as alterations in the synthesis of neuromodulators,
neurotransmitters, and modifications in the calcium channels
density (Hendrich et al., 2008). In contrast, post-synaptic
changes take place due to the increased density of receptors
on account of increased synthesis of ion channels and scaffold
proteins and the phosphorylation of N-methyl-D-aspartate
(NMDA) subunits (Cheng et al., 2008). These alterations also
lead to aberrant expression of the mitogen-activated protein
kinase system and Nav 1.3 (Hains et al., 2004; Ji and Woolf,
2001). Furthermore, pathologically sensitized C-fibers sensitize
neuropeptide substance P as well as a spinal dorsal horn (SDH)
through the release of glutamate, which cannot be neglected.
Subsequently, glutamate demonstrates an excitatory action by
acting upon the postsynaptic NMDA receptor contributing to
central sensitization (Ultenius et al., 2006). It has been observed
that the involvement of loss of function of tonic γ-amino
butyric acid-A (GABAA)-conciliated inhibition and enhanced
excitatory neurotransmitters are caused by an induction of
central sensitization, leading to peripheral hypersensitivity,
specifically hyperalgesia and allodynia (Knabl et al., 2008). When
this sensitivity is developed, the generally harmless tactile stimuli
can trigger Aβ as well as Aδ low threshold mechanoreceptors
(Tal and Bennett, 1994).

GABA AND NEUROPATHIC PAIN

The most abundant inhibitory neurotransmitter in the brain
is GABA (Uddin et al., 2018a). GABA regulates diverse
physiological functions such as anxiety, sleep, reward, and
memory formation (Zeilhofer et al., 2009; Spiering, 2018; Uddin
and Amran, 2019). GABA also regulates the excitatory action of
neuronal cells of the CNS, assisting and maintaining the neural
circuit’s homeostasis. Previously, it has been described that the
role of inhibitory neurons, especially in SDH, act and monitor
transmission of pain via the periphery to greater intensities of the
brain (Melzack and Wall, 1965). After this, GABA was established
to be the primary inhibitory neurotransmitters in the brain’s SDH
(Yaksh, 1989).

GABA, releasing from presynaptic neurons, acts
postsynaptically with several receptors; G protein-coupled
channels, GABAA, GABAB, as well as GABAC, are ligand-gated
ion channels (Gavande et al., 2011). Generally, ionotropic
GABAA receptors are comprised of 5 heteropentameric subunits
that form transmembrane protein complexes (Uddin and Rashid,
2020). Meanwhile, the α1β2γ2 subunit is thought to be the most
dominant one in the human brain (Wafford, 2005). GABA
initiation stimulates the membrane penetrability to chloride and
carbonate ions that produce a net inner flow of anions as well as
resulting in hyperpolarization. Therefore, this hyperpolarizing
post-synaptic reaction is known as inhibitory post-synaptic
potential (Semyanov et al., 2003).

Physiologically, GABA-liberating interneurons impose a
robust inhibitory regulation through dorsal horn neuronal cells.
Besides, damage of these neurons might additionally stimulate
the dominant sensitization of the models of peripheral partial
nerve injury. In rodents, injury caused the reduction of GABA

release from the spine, with reduced GABA-producing glutamic
acid decarboxylase (Moore et al., 2002). However, in diseased
conditions, an improved excitation state arises that is recognized
as an enormous GABAergic neuronal loss or deterioration of
interneurons. Therefore, an imbalance of this condition could
culminate into several neurological as well as psychiatric diseases
such as Alzheimer’s disease, Parkinson’s disease, schizophrenia,
epilepsy, NP, and the collective role of inhibitory and excitatory
neurons show a dynamic role in regulating many brain activities
(Tyson and Anderson, 2014).

It has been found that peripheral and central sensitization
causes nerve injury and NP. GABAergic interneuronal loss
is considered to be the main contributor to persistent pain
states (Bráz et al., 2012). In the spinal cord, pharmacological
inhibition of GABAergic neurotransmission causes hyperalgesia
and allodynia (Gwak et al., 2006; Jergova et al., 2012).
Likewise, GABAA receptor blockage could prompt a behavioral
reaction, which was revealed by electrophysiological studies
(Hwang and Yaksh, 1997). Furthermore, the GABAergic system
impaired chronic NP in animals (Zeilhofer, 2008). As a result,
spinal inhibitory neurotransmission may be appreciated as a
pharmacological NP treatment.

Additionally, the crucial function of GABA in opioid-
mediated antinociception has long been recognized (Ossipov
et al., 2010). Also, agonists of GABAA receptor-mediated
antinociceptive activity have been recognized to stimulate or
inhibit additional neurotransmitters (McCarson and Enna, 2014).
As a consequence, the agonists of the GABA receptor might
play a dynamic role in considering chronic and acute pain
(McCarson and Enna, 2014). Incidentally, isoguvacine and
muscimol, agonists of GABAA receptors, are described to oppose
nerve injury-stimulated tactile allodynia (Hwang and Yaksh,
1997). These receptors are strictly linked to huge diameter
afferents involved in innocuous sensation (Price et al., 1984;
Sivilotti and Woolf, 1994; Reeve et al., 1998; Ataka et al.,
2000; Riley et al., 2001; Turner, 2003). Pharmacological as
well as behavioral examinations have stated that a single or
continuous intrathecal GABA response to spinal cord or GABA
liberating cells reduce NP (Eaton et al., 1999a,b; Stubley et al.,
2001; Malan et al., 2002). In addition, spinal GABAA receptors
inhibition shows annoying peripheral nerve injury connected to
hyperalgesia (Yamamoto and Yaksh, 1993).

In contrast, intrathecal administration of benzodiazepines
(BDZs) and allosteric positive modulators of GABAA receptors
have been extensively used in sleep complaints, convulsions,
anxiety, and analgesic activity (Tucker et al., 2004). Even though
it has analgesic properties, its usage in pain relief is limited
due to sedation. Therefore, study is urgently needed in to
GABAergic modulators which might play a prominent role in the
attenuation of NP.

FLAVONOIDS

Flavonoids are polyphenolic compounds found in fruits, flowers,
barks, grains, vegetables, roots, tea, stems, and so on (Uddin
et al., 2020a). Chemically, flavonoids are 15-carbon skeletons
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FIGURE 2 | Basic structure of flavonoids and their sub-classes.

comprising of two benzene rings (A and B) linked via a
heterocyclic pyrane ring (C) (Kumar and Pandey, 2013) as shown
in Figure 2. Flavonoids can be divided into diverse subgroups
according to the carbon of the C ring whereon the B ring is
connected as well as the oxidation and degrees of unsaturation
of the C ring (Panche et al., 2016).

In 1930, a novel constituent derived from an orange was
believed to be a vitamin and called vitamin P. It was subsequently
proved to be a flavonoid, rutin, that played an essential role in
the isolation as well as the study of the mechanisms of several
individual flavonoids. In fact, several traditional medicines are
mainly flavonoids. In past centuries, Tanacetum parthenium has
been used as a prophylactic drug in the treatment of migraine,
while Matricaria recutita, chamomile flowers, has been used
as a tranquilizer for many decades, with both comprising of
the active constituent apigenin (Jäger et al., 2009). Moreover,
linden flowers, Tilia sp. Tiliaceae, have been used as sedative
agents, and Calluna vulgaris might serve as a nerve-calming
medicine, which has active components of kaempferol and
quercetin (Aguirre-Hernández et al., 2010). Apart from the
separation of natural flavonoids, several synthetic and semi-
synthetic products have been synthesized and separated for their
therapeutic potential (Cushnie and Lamb, 2005). Up to now,
6000 diverse flavonoids have been isolated. Flavonoid compounds
show different biological effects, such as neuroprotective (Cho
et al., 2013; Uddin et al., 2016; Uddin and Kabir, 2019; Zaplatic

et al., 2019), antifungal (Ammar et al., 2013), antimicrobial
(Cushnie and Lamb, 2005; Górniak et al., 2019), anticancer (Liu
et al., 2010; Abotaleb et al., 2019), anti-inflammatory (Wang
et al., 2010; Begum et al., 2019), anxiolytic (Ognibene et al.,
2008), antioxidant (Heim et al., 2002; Uddin et al., 2017), antiviral
(Orhan et al., 2010; Dai et al., 2019), cardioprotective (Yu
et al., 2005; Mahmoud et al., 2019), and antinociceptive activities
(Wang et al., 2014; Hossain et al., 2017a,b).

ROLE OF FLAVONOID ON IONOTROPIC
GABAA RECEPTORS

Flavonoids are widely targeted for their peripheral events;
though, their selective affinity for GABAA receptors has
extensively been demonstrated in studies using bovine and rat
brain membrane binding analyses (Hong and Hopfinger, 2003).
Numerous behavioral tests have also widely been performed,
which confirm the sedative effects of flavonoids in an animal
model of anxiety that was devoid of the additional side effects of
BDZs (Griebel et al., 1999). Remarkably, negative, positive, and
neutral allosteric modulatory flavonoid actions of an extensive
variety of ionotropic GABA receptors have been focused on and
intensely supported through enormous evidence. In the 1990s,
flavonoids had been well-defined as a novel family of BDZ
receptor ligands (Medina et al., 1997; Marder and Paladini, 2002).
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Typically, they were believed to be acting upon BDZ receptors, as
well as many synthetic flavonoids having a remarkable affinity for
BDZ binding site (Yao et al., 2007), until they were claimed to be
insensitive to the BDZ receptor antagonist, flumazenil, therefore
focusing a distinctive site of action (Hanrahan et al., 2011).

It has been found that the replacement at 6- or 3′-positions
of flavones with an electronegative functional group improved
the affinity toward the receptors of BDZ (Paladini et al., 1999).
Moreover, GABA ratios were measured by the impact of ligand
binding on the GABA binding site. These ratios displayed that
flavones showed substantial biological actions at BDZ receptors
(Hanrahan et al., 2011). 6-Bromo-3′-nitroflavone, 6-chloro-3′-
nitroflavone, and 6-bromoflavone with a GABA ratio of 1.38, 2.0,
and 1.6–2.0 were demonstrated as a partial agonist, an antagonist,
and full agonist at these receptors respectively (Marder et al.,
1996; Wolfman et al., 1998; Viola et al., 2000).

GABAA receptors were enhanced by the flux of chloride ion
that deliver a robust inhibitory effect via positive ionotropic
modulators. As a result, these modulators are the strongest
candidates for the management of CNS-associated diseases such
as generalized anxiety, seizure disorders, sleep disturbances,
panic disorders, muscle spasms, and NP (Rudolph and Möhler,
2006). Furthermore, flavonoids might act upon a new binding
site, excluding the classical BDZ binding site, which plays a
pivotal role in searching for novel therapeutic candidates with
limited adverse effects (Rudolph and Möhler, 2006). Incidentally,
6-methoxyflavonone has been described to act as a positive
allosteric modulator at α1β2γ2L and α2β2γ2L subunits of
GABAA receptors (Hall et al., 2014).

The substitution at 6-position on flavones is linked to its role
in recombinant GABAA receptors. 6-Hydroxyflavone showed a
remarkable effect at the flumazenil-sensitive BDZ site (Ren et al.,
2010). Furthermore, 6-methoxyflavone and 6-methoxyflavanone
have been claimed to display anti-allodynic effects in cisplatin-
and streptozotocin-stimulated NP models (Akbar et al., 2016;
Shahid et al., 2017). Therefore, these defensive properties against
NP have been recognized to cause allosteric positive modulatory
effects on opioid and GABAA receptors (Akbar et al., 2016).

Additionally, myrcitin and baicalin exerted antiallodynic
effects in sciatic nerve ligation models (Cherng et al.,
2014; Meotti et al., 2006). Besides, quercetin and rutin
have widely been claimed to suppress oxaliplatin-mediated
chronic peripheral neuropathic pain (Azevedo et al., 2013).
Meanwhile, the antiallodynic potential of streptozotocin-
induced painful diabetic neuropathy has been reported by
naringin (Kandhare et al., 2012).

ROLE OF FLAVONOIDS IN DIFFERENT
NEUROPATHIC PAIN MODELS

Effect of Flavonoids on Diabetic
Neuropathy
NP is arduous to treat properly and is related to the remarkable
impairment of health conditions as well as economic problems
(O’Connor, 2009; Langley et al., 2013). Diabetic neuropathy

is one of the most common causes of neuropathy and affects
about 382 million people in the world (Boulton et al., 1998).
Furthermore, genistein (Valsecchi et al., 2011), luteolin (Li et al.,
2015), catechin (Addepalli and Suryavanshi, 2018), rutin (Tian
et al., 2016), and pelargonidin (Mirshekar et al., 2010) have
been revealed to decrease the levels of malondialdehyde (MDA)
in animal models of diabetes. Moreover, MDA serves as a key
biomarker for lipid damage as well as oxidative stress that can
be caused by free radicals. In diabetic patients, the increased
level of MDA has widely been observed in the serum as well
as other tissues, which significantly affects the peripheral nerves
(Feldman et al., 1994; Perkins et al., 2001). Some flavonoids,
such as genistein (Valsecchi et al., 2011), naringenin (Al-Rejaie
et al., 2015), luteolin (Li et al., 2015), hesperidin, catechin
(Addepalli and Suryavanshi, 2018), kaempferol (Kishore et al.,
2018), fisetin (Zhao et al., 2015), rutin (Tian et al., 2016),
and morin (Bachewal et al., 2018) have been shown to reduce
the ROS level by increasing the level of diverse antioxidative
enzymes including glutathione peroxidase, reduced glutathione
peroxidase, superoxide dismutase, glutathione reductase, and
catalase in various tissues such as the liver, sciatic nerve, and
brain of diabetic animals (Table 1). In the diabetic animal
model, rutin, luteolin, and morin have been demonstrated to
raise the expression of Nrf2 as well as its downstream effector’s
heme oxygenase-1 (HO-1) in nerve tissues. Numerous studies
have found that Nrf-2/HO-1 could fight against oxidative stress-
mediated neuroinflammation and nerve damage in diabetic
animal models (Cardozo et al., 2013; Agca et al., 2014; Kumar
and Mittal, 2017). Moreover, kaempferol decreased advanced
glycation end products and epigallocatechin gallate (EGCG)
causes a reduction of 8-hydroxy-2-deoxyguanosine, which is
considered as the major form of free radical-mediated oxidative
stress in the nucleus and mitochondria (Valavanidis et al., 2009).
It has also been found that in the diabetic animal model, genistein
and naringenin raised nerve growth factor (NGF) in sciatic
nerves (Basu and Basu, 2020). Therefore, NGF servesas the
survival and life maintenance of the neurons.

Diabetic neuropathy in animal models has widely been
marked by evaluating behavioral signs, such as chemical,
mechanical, thermal hyperalgesia, and tactile allodynia (Pittenger
et al., 2005). It has also been observed that flavonoids
considerably downregulated thermal, mechanical, chemical
hyperalgesia, and tactile allodynia in diabetic animal models
(Figure 3). A number of flavonoids including fisetin (Zhao et al.,
2015), baicalin (Li et al., 2018), naringenin (Al-Rejaie et al.,
2015), pelargonidin (Mirshekar et al., 2010), rutin (Tian et al.,
2016), naringin (Kandhare et al., 2012), hesperidin (Visnagri
et al., 2014), and luteolin (Li et al., 2015) reduced diabetes-
mediated thermal hyperalgesia, although kaempferol (Kishore
et al., 2018), EGCG (Raposo et al., 2015), rutin (Tian et al.,
2016), naringenin (Al-Rejaie et al., 2015), luteolin (Li et al.,
2015), morin (Bachewal et al., 2018), and naringin (Kandhare
et al., 2012) attenuated mechanical hyperalgesia (Figure 3).
Furthermore, fisetin (Zhao et al., 2015), baicalein (Li et al.,
2018), hesperidin (Visnagri et al., 2014), morin (Bachewal et al.,
2018), and puerarin (Liu et al., 2014) ameliorated mechanical
allodynia, while naringin (Kandhare et al., 2012) and genistein
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TABLE 1 | Promising studies of flavonoids for the management of neuropathic pain.

Flavonoids Species/studied
materials

Experimental model Dose Route of
administration

Effects References

Genistein C57BL/6J male mice Chronic constriction
sciatic nerve injury

1, 3, 7.5, 15, and
30 mg/kg

Subcutaneous
injection

Ameliorate painful neuropathy
by decreasing the mRNA
expressions of IL-1β and IL-6 in
sciatic nerve as well as protein
expression of IL-1β in dorsal
root ganglion and spinal cord

Valsecchi et al., 2008

Male C57BL/6J mice Streptozotocin-induced
diabetic

3 and 6 mg/kg Subcutaneous
injection

Ameliorates diabetic peripheral
neuropathy by inhibiting
proinflammatory cytokine and
the overproduction of reactive
oxygen species, as well as
restored the NGF content in
diabetic sciatic nerve

Valsecchi et al., 2011

Male Sprague-Dawley
rats

High-fat diet 4 and 8 mg/kg/day Intragastrical Decreases the levels of TNF-α
and IL-6 in serum that produce
anti-inflammatory actions

Ji et al., 2011

Quercetin Male albino mice Streptozotocin-induced
diabetic

50 and 100 mg/kg Oral Antinociceptive activity via the
modulation of opioidergic
mechanism that attenuates
diabetic neuropathic pain

Anjaneyulu and
Chopra, 2003

Male Sprague−Dawley
rats

Streptozotocin-induced
diabetic

10 mg/kg Oral Effective in diabetic neuropathy Anjaneyulu and
Chopra, 2004

Male Sprague-Dawley
rats and mice

Paclitaxel-induced
neuropathic pain

20 and 60 mg/kg –
in vivo and 3, 10, 30
µM/L – in vitro

Intraperitoneal
injection

Ameliorates neuropathic pain
by decreasing the levels of
protein kinase C (PKC)ε and
TrpV1 in the spinal cord dorsal
horns and dorsal root ganglions

Gao et al., 2016

Quercetin and rutin Male Swiss mice Oxaliplatin-induced
peripheral neuropathy

Rutin and quercetin (25,
50, and 100 mg/kg)

Intraperitoneal
injection

Ameliorates peripheral
neuropathy

Azevedo et al., 2013

Myricitrin Adult Swiss mice Partial Sciatic Nerve
Ligation

30 mg/kg Intraperitoneal
injection

Antinociceptive activity via the
inhibition of PKC and nitric
oxide cell signaling

Meotti et al., 2006

Adult male Wistar rats Spinal nerve ligation 0.1, 1 and 10 mg/kg Intraperitoneal
injection

Reduces neuropathic pain that
might be related to its
PKC-induced decrease of
voltage-gated calcium channel
currents in dorsal root ganglia
neurons

Hagenacker et al.,
2010

Epigallocatechin
gallate

Adult male Wistar rats Alcoholic neuropathy 25, 50, 100 mg/kg Oral Reduces neuropathic pain
through the modulation of
oxido-inflammatory pathway

Tiwari et al., 2011

Male Sprague-Dawley
rats

Chronic constriction
injury

1 mg/kg Intrathecal injection Ameliorates neuropathic pain
through the suppression of
TLR4 signal pathway that
reduces the expressions of
NF-κB, IL-1β and TNF-α

Kuang et al., 2012

Male Wistar rats Streptozotocin-induced
diabetic

2 g/L Oral gavage Ameliorates diabetic
neuropathy by preventing
oxidative stress

Raposo et al., 2015

Puerarin Male Sprague-Dawley
rats

Chronic constriction
injury

100 mg/kg/day Intraperitoneal
injection

Reduces neuropathic pain
through the P2X3 receptors in
dorsal root ganglion neurons

Xu et al., 2012

Male Sprague-Dawley
rats

Chronic constriction
injury

4, 20, and 100 nM Intrathecal injection Reduces neuropathic pain by
the inhibition of spinal NF-κB
activation and the upregulation
of cytokines

Liu et al., 2014

2′ ′− O−
rhamnosylswertisin

Female Swiss and
C57/BL6 mice

Partial Sciatic Nerve
Ligation

125, 250 or 500 mg/kg Oral Antinociceptive activity by
reducing the neutrophil
migration and IL-1β levels

Quintão et al., 2012

(Continued)
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TABLE 1 | Continued

Flavonoids Species/studied
materials

Experimental model Dose Route of
administration

Effects References

Naringin Adult male
Wistar rats

Streptozotocin-induced
diabetic

20, 40, and
80 mg/kg

Oral Reduces neuropathic pain by
down−regulation of cytokine
including TNF-α

Liu et al., 2017

Wistar rats. Cisplatin-Induced
Cognitive Dysfunction

25, 50, and
100 mg/kg

Oral gavage Ameliorates neuropathic pain
through the involvement of
oxidative-stress-mediated
inflammatory signaling

Chtourou et al., 2015

Male Wistar rats Streptozotocin-induced
diabetic

40 and 80 mg/kg Intraperitoneal
injection

Ameliorates diabetic
neuropathy by downregulation
of free radical, cytokine
mediator including TNF-α

Kandhare et al., 2012

Male Wister
albino rats

Streptozotocin-induced
diabetic

25 and
50 mg/kg/day

Intraperitoneal
injection

Ameliorates diabetic
neuropathy through its
antioxidant and
anti-inflammatory properties

Al-Rejaie et al., 2015

Icariin Male Sprague-
Dawley rats

Paclitaxel-induced
neuroinflammation and
peripheral neuropathy

25, 50, and
100 mg/kg

Intrathecal injection Reduces neuropathic pain by
the level of TNF-α, IL-1β, and
IL-6, astrocytes, NF-κB (p65)
phosphorylation in spinal cord

Gui et al., 2018

6-Methoxyflavone Male Sprague-
Dawley rats

Chemotherapy-induced
peripheral neuropathy

25, 50 and
75 mg/kg

Intraperitoneal
injection

Reduces neuropathic pain Shahid et al., 2017

Female Sprague-
Dawley rats and
BALB/c mice

Streptozotocin-induced
diabetic

10 and 30 mg/kg Intraperitoneal
injection

Attenuates neuropathic pain
through interactions with the
GABAergic and opioidergic
systems

Akbar et al., 2016

Catechin Male Sprague-
Dawley rats

Streptozotocin-induced
diabetic

25 mg/kg and 50
mg/kg

Intraperitoneal
injection

Attenuation of diabetic
autonomic neuropathy through
the improvement in antioxidant
enzymes in vagus nerves

Addepalli and
Suryavanshi, 2018

Morin Male Sprague-
Dawley rats

Streptozotocin-induced
diabetic

50 and
100 mg/kg –
in vivo, 10 and 20
µM – in vitro

Oral gavage Reduces diabetic neuropathy
by inhibiting NF−κB−mediated
neuroinflammation and
increasing Nrf2−mediated
antioxidant defenses in high
glucose−induced N2A cells

Bachewal et al., 2018

Male Sprague-
Dawley rats

Chronic constriction
injury

15 and 30 mg/kg Oral gavage Ameliorates neuropathic pain
by decreasing the inflammatory
markers (PARP, iNOS, COX-2,
NF-κB and phospho-NF-κB,
TNF-α, and IL-6) in the spinal
cord

Komirishetty et al.,
2016

Kaempferol Male Wistar rats Streptozotocin-induced
diabetic

5 and 10 mg/kg Reduces diabetic neuropathy
by attenuating oxidative
stress-mediated release of
pro-inflammatory cytokines

Kishore et al., 2018

Rutin Male Sprague-
Dawley rats

Streptozotocin-induced
diabetic

5, 25, and
50 mg/kg

Intraperitoneal
injection

Ameliorates diabetic
neuropathy through the
up-regulation of the expression
of Nrf2

Tian et al., 2016

Baicalin Male Sprague-
Dawley rats

Streptozotocin-induced
diabetic

10, 20, and
40 µg/kg

Intraperitoneal
injection

Analgesic activity in diabetic
neuropathic pain through
transient receptor potential
vanilloid 1

Li et al., 2018

C57Bl6/J mice Streptozotocin-induced
diabetic

30 mg/kg Intraperitoneal
injection

Reduces diabetic peripheral
neuropathy via the suppression
of oxidative-nitrosative stress as
well as p38MAPK activation

Stavniichuk et al., 2011

(Continued)
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TABLE 1 | Continued

Flavonoids Species/studied
materials

Experimental
model

Dose Route of
administration

Effects References

Luteolin Male Sprague-
Dawley rats

Streptozotocin-
induced
diabetic

50, 100, and
200 mg/kg

Intraperitoneal injection Ameliorates diabetic neuropathy
through the up-regulation of the
expression of Nrf2

Li et al., 2015

Male Sprague-
Dawley rats

Chronic constriction
injury

0.1–1.5 mg Intrathecal or
intracerebroventricular
injection

Reduces mechanical and cold
hyperalgesia by activating GABAA

receptors in a flumazenil-insensitive
manner as well as µ-opioid
receptors in the spinal cord

Hara et al., 2014

Fisetin Male C57BL/6J
mice

Chronic constriction
injury

10 mg/kg Oral gavage Ameliorates chronic neuropathic
pain

Zhao et al., 2015

Male C57BL/6J
mice

Chronic constriction
injury

5, 15 and 45 mg/kg Oral gavage Exerts antinociceptive activity
through the serotonergic system
(coupled with 5-HT7)

Zhao et al., 2015

Diosmin Male Swiss mice Chronic constriction
injury

1, 10 mg/kg Intraperitoneal injection Ameliorates neuropathic pain by
activating the
NO/cGMP/PKG/KATP channel
signaling

Bertozzi et al., 2017

Hesperidin Sprague Dawley
rats

Streptozotocin-
induced
diabetic

25, 50 and
100 mg/kg

Oral gavage Reduces diabetic neuropathy by
down-regulating the production of
free radical, release of cytokines
(TNF-α and IL-1β) and elevation in
membrane bound enzyme

Visnagri et al., 2014

Diosmin and
hesperidin

Male Wistar rats Chronic constriction
injury

Hesperidin (10,
100, 316.2, 562.3,
1000 mg/kg);
Diosmin (10,
100 mg/kg)

Intraperitoneal injection Ameliorates neuropathic pain by
the modulation of D2 dopamine,
and opioids receptors

Carballo-Villalobos
et al., 2016

Pelargonidin Male Albino Wistar
rats

Streptozotocin-
induced
diabetic

10 mg/kg Oral gavage Ameliorates diabetic neuropathic
hyperalgesia via attenuation of
oxidative stress

Mirshekar et al., 2010

Isoorientin Male pathogen-free
Institute of Cancer
Research (ICR)
mice

Chronic constriction
injury

7.5, 15, and
30 mg/kg

Intragastrical Ameliorates neuropathic pain by
decreasing the expression of IL-6,
IL-1β, and TNF-α levels

Zhang et al., 2019

Grape seed
proanthocyanidins

Wistar rats Chronic constriction
injury

100 and 200 mg/kg Oral gavage Anti-nociceptive and
anti-inflammatory effect by inhibiting
the inflammatory pathways

Kaur et al., 2016

(Valsecchi et al., 2011) decreased mechano-tactile allodynia, and
rutin (Tian et al., 2016) and luteolin (Li et al., 2015) improved
cold allodynia. Numerous investigations have demonstrated
that short term diabetes mediated mechanical, chemical, and
thermal hyperalgesia (Dyck et al., 2000; Freshwater and Calcutt,
2005), however chronic diabetes induces mechanical and thermal
hypoalgesia (Calcutt et al., 2004). Besides, baicalein attenuated
thermal hypoalgesia (Stavniichuk et al., 2011).

Effect of Flavonoids on
Chemotherapy-Induced Peripheral
Neuropathy
The use of diverse chemotherapeutic agents and other anticancer
drugs leads to the impairment of the peripheral nerves.
Chemotherapy-induced peripheral neuropathy (CIPN) is
another form of neuropathy caused by anticancer drugs
(Hershman et al., 2014). Platinum compounds are extensively
used in the management of several solid tumors. Oxaliplatin,

a third-generation platinum agent, plays a pivotal role in
diminishing antitumoral resistance with noticeable cytotoxicity
(Argyriou et al., 2008; Stein and Arnold, 2012). It has been
observed that (Azevedo et al., 2013) rutin and quercetin
suppressed oxaliplatin-mediated mechanical as well as
cold nociceptive thresholds. In a study by Schwingel et al.
(2014) it was demonstrated that rutin and nanoemulsion
of quercetin ameliorated oxaliplatin-mediated mechanical
allodynia. According to the study by Shahid et al. (2017) 6-
methoxyflavone showed antinociceptive activity in a rat model of
CIPN (Table 1). Hence, 6-methoxyflavone considerably reduced
cisplatin-mediated mechanical allodynia by raising the paw
withdrawal threshold as well as thermal hypoalgesia (Figure 3)
by improving the paw thermal threshold.

Effect of Flavonoids on Sciatic Nerve
Chronic Constriction Injury
Chronic constriction injury (CCI) is considered to be the
most extensively studied model for chronic neuropathic
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FIGURE 3 | Effects of flavonoids on different neuropathic pain models.

pain. There are various symptoms of CCI-induced pain
including hyperalgesia, allodynia, paraesthesia, dysesthesia, and
spontaneous pain (Austin et al., 2012). Flavonoids including
hesperidin (Carballo-Villalobos et al., 2016), diosmin (Bertozzi
et al., 2017), and grape seed proanthocyanidins (Kaur et al.,
2016) decreased both mechanical and thermal hyperalgesia
(Figure 3). In contrast, other flavonoids including genistein
(Valsecchi et al., 2008), EGCG (Kuang et al., 2012), EGCG-
derived compounds (Xifró et al., 2015), morin (Komirishetty
et al., 2016), and isoorientin (Zhang et al., 2019) decreased only
thermal hyperalgesia (Table 1). As compared to morphine and
gabapentin, quercetin decreased the mechanical and thermal
hypersensitivities to a greater extent (Çivi et al., 2016). When
quercetin was administered in a pre-injury condition, it exerted
long term actions on mechanical hypersensitivity, which further
suggests the antinociceptive properties of quercetin in the CCI
model (Çivi et al., 2016). Additionally, flavonoids including
genistein (Valsecchi et al., 2008), EGCG (Kuang et al., 2012),
puerarin (Liu et al., 2014), morin (Komirishetty et al., 2016),
and isoorientin (Zhang et al., 2019) decreased CCI-mediated
mechanical allodynia. On the other hand, cold allodynia was
reduced by morin (Komirishetty et al., 2016) and isoorientin
(Zhang et al., 2019). Although mechanical and cold hyperalgesia
was reduced by luteolin, it did not affect thermal hyperalgesia
(Hara et al., 2014). However, thermal hyperalgesia was decreased
by fisetin, but did not affect the nociceptive sensitivity to
mechanical stimuli (Zhao et al., 2015).

An elevated level of nitro oxidative stress can cause DNA
damage, which can cause the activation of poly-ADP ribose
polymerase (PARP) (Figure 4), which can further lead to

PARP-induced DNA repair by transferring ADP-ribose units
to the nuclear proteins. Nevertheless, activation of PARP can
cause NF-κB activation, which can subsequently activate various
inflammatory markers including interleukin (IL)-6, TNF-α,
inducible nitric oxide synthase (iNOS), and cyclooxygenase-2
(COX-2) (Obrosova et al., 2004; Sommer and Kress, 2004) that
lead to neuroinflammation (Figure 4). Studies involving the CCI-
induced neuropathic pain model revealed that flavonoids exert
effects on various pro-inflammatory biomarkers (Bertozzi et al.,
2017; Figure 3). A single administration of diosmin decreased
the levels of mRNA expressions of IL-33/ST2 and IL-1β, while
chronic administration decreased the mRNA expression level
of TNF-α along with ST2, IL-33, and IL-1β. Furthermore, a
single administration also decreased the expression levels of
oligodendrocytes and microglia, whereas chronic treatment
decreased astrocytes together with oligodendrocytes and
microglia (Bertozzi et al., 2017). Puerarin decreased the
elevated immunoreactivity of glial fibrillary acidic protein and
ionized calcium-binding adaptor protein-1, which are astroglia
and microglial activation markers, successively (Liu et al.,
2014). In the CCI-induced neuropathic pain model, morin
decreased various inflammatory biomarkers including IL-6,
TNF-α, phospho-NF-κB, NF-κB, COX-2, iNOS, and PARP
(Komirishetty et al., 2016). Deoxyribonucleic acid (DNA)
damage was found to be increased due to the CCI-induced
nerve injury, which resulted in PARP overactivation (Jagtap
and Szabo, 2005). It was found that overactivation of PARP
caused bioenergetic failure because overactivity of PARP requires
a high amount of nicotinamide adenine dinucleotide (NAD)
during DNA repair, and finally, NAD synthesis also requires
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FIGURE 4 | Effects of flavonoids on peripheral neuropathy. Flavonoids act on different peripheral neuropathic pain conditions by blocking oxidative stress, activation
of glial cells, and mitochondrial dysfunction. PARP, poly-ADP ribose polymerase.
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adenosine triphosphate (ATP), which can eventually lead to the
disruption of biochemical processes that are dependent on ATP
(Hyo and Snyder, 1999).

Treatment with morin caused marked restoration
of CCI-mediated reduction in the ATP levels and also
restored the neuronal cells from the bioenergetic crisis
(Komirishetty et al., 2016). In a study, Kuang et al. (2012)
revealed that treatment with EGCG reduced the mRNA
and protein expressions of the toll-like receptor (TLR4)
and its endogenous ligand HMGB1. It is known that TLR4
is a pattern recognition receptor and plays roles in the
immune system and inflammatory diseases. When endogenous
ligands bind with TLR4, it gets activated and stimulates
the generation of pro-inflammatory cytokines by causing
NF-κB activation (Janeway and Medzhitov, 2002; Akira
et al., 2006). Furthermore, EGCG elevated the level of IL-
10, reduced the downstream pro-inflammatory cytokines
(i.e., TNF-α and IL-1β) of the TLR4 signaling pathway, and
reduced the expression of NF-κB in the lumbar SDH of CCI
rats (Kuang et al., 2012). In the dorsal horn of the spinal
cord, an EGCG-derived compound decreased the levels of
mRNA and protein expressions of IL-6, NF-κB, IL-1β, and
TNF-α (Xifró et al., 2015). Administration of isoorientin
and puerarin also decreased the level of CCI-induced pro-
inflammatory cytokines including IL-6, IL-1β, and TNF-α
(Liu et al., 2014; Zhang et al., 2019). Interestingly, genistein
reduced the level of IL-1β expression in the spinal cord and
dorsal root ganglion, while genistein also decreased mRNA
expressions of both IL-6 and IL-1β in the sciatic nerve
(Valsecchi et al., 2008).

Effect of Flavonoids on Other
Neuropathic Pain Signaling Pathways
Flavonoids show anti-inflammatory as well as antioxidant
effects due to their action on GABAA receptors (Hanrahan
et al., 2011). Maximum metabolic disorders are the result
of oxidative stress. Along with exogenous factors, regular
metabolism of oxygen inside the tissues and cells produce
reactive oxygen species (ROS) and free radicals that steadily
endanger them (Forrester et al., 2018; Uddin et al., 2019).
Flavonoids are well-recognized for their antioxidant properties
and are also confirmed to show beneficial effects in several
chronic diseases, including neurodegenerative disease, diabetes,
atherosclerosis, and cancer (de Teles et al., 2018; Kozłowska
and Szostak-Węgierek, 2019; Uddin and Kabir, 2019; Uddin
et al., 2020c,d). Moreover, certain flavonoids play a crucial
role in the iron chelation thus stopping the development
of free radicals (Nelson et al., 1992; Ferrali et al., 1997).
Rutin and epicatechin are shown to have the capability
to be oxidized themselves through free radicals, producing
a less reactive and stable species (Hanasaki et al., 1994).
Correspondingly, quercetin, a plant pigment flavonoid, prevents
nitric oxide (NO)-mediated cell injury. A combination of
NO and free radicals generates the enormously injurious
peroxynitrite, which directly oxidizes low-density lipoprotein
and plays a crucial role in the permanent damage of the cell

membrane. Therefore, free radicals are scavenged by quercetin
and restrained from reacting with NO, whereas, silibin reacts
directly with NO (Dehmlow et al., 1996; Shutenko et al., 1999).
Mechanical allodynia induced by spinal nerve ligation (SNL)
was found to be decreased by various flavonoids including
myricetin (Hagenacker et al., 2010), EGCG (Choi et al., 2012),
and baicalein (Cherng et al., 2014). SNL-induced thermal
hyperalgesia was reduced by myricetin (Hagenacker et al.,
2010) and baicalein (Cherng et al., 2014), while quercetin
decreased both cold and thermal hyperalgesia in SNL rats (Ji
et al., 2017). In addition to this, hesperetin and quercetin
decreased partial sciatic nerve ligation-stimulated neuropathic
pain and spared nerve injury (Figure 3; Aswar et al., 2014;
Muto et al., 2018).

Physiologically, xanthine dehydrogenase plays an important
role in the metabolism of xanthine to uric acid, however, this
enzyme alters into xanthine oxidase in the case of ischemic-
reperfusion, which works as a precursor of free radicals.
There are various flavonoids, such as quercetin, silibinin,
and luteolin, that are recognized to work as antioxidants
through stopping xanthine oxidase (Chang et al., 1993;
Shoskes, 1998). Similarly, reperfusion is also caused by the
mobilization of leucocytes producing the subsequent release
of inflammatory mediators as well as cytotoxic oxidants,
which provokes the complement system. Many flavonoids play
a key role in the immobilization of leucocytes, eventually
resulting in a decline in the serum complement system as
well as inflammation (Friesenecker et al., 1995; Ferrándiz
et al., 1996). It has been observed that the connection of
the same pathophysiological mechanisms takes place with both
NP of peripheral origin and inflammation. Both kinds of
pathologies express as hyperalgesia and allodynia (Clatworthy
et al., 1995; DeLeo and Yezierski, 2001; Jin et al., 2003).
Moreover, inflammatory cells infiltration and their main
secretory products, including cytokines and arachidonic acid,
affect peripheral nerve damage, which is accountable for the
production and maintenance of the constant pain (Tracey
and Walker, 1995; Cui et al., 2000; Ma and Eisenach,
2003). When cytokines such as IL-1, IL-6, and TNF-α were
injected into a rat paw, it would result in the initiation
of thermal and mechanical hyperalgesia (Cunha et al., 1992;
Ferreira et al., 1993). On the other hand, the inhibition
of TNF-α in the animal models with painful neuropathy
led to the reduction of hyperalgesia (Sommer et al., 1998).
The release of cytokines also activates COX-2 dependent
prostanoid releases. Furthermore, prostaglandins (PGs) also
play a pivotal role in triggering inflammation that increases
sensitivity to pain (Uddin et al., 2020b). It had been found
that intrathecal injection of PGs such as PGE2 and PGF2α

triggered allodynia in conscious mice (Minami et al., 1992,
1994), while intrathecal administration of PGD2 and PGE2 led
to the initiation of hyperalgesia (Uda et al., 1990). Additionally,
synthesis of NO and PG through COX-2 as well as iNOS
is increased in the microglia on account of peripheral nerve
damage, leading to hypersensitization (Hanisch, 2002). It is
evident that flavonoids show anti-inflammatory activity both
in vitro and in vivo. One of the imperative mechanisms
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of anti-inflammatory action is recognized by inhibiting
eicosanoid producing enzymes such as phospholipase A2,
lipoxygenases, and COX (Kim et al., 2004). Along with anti-
inflammatory activity, flavonoids also block arachidonic acid
metabolism (Ferrándiz and Alcaraz, 1991).

CONCLUSION

In this review, we discuss the effects of flavonoids in
improving different NP conditions and how flavonoids
control diverse pain biomarkers in animal models of
NP. Allosteric modulators at GABAA receptors can alter
either the affinity or efficacy of agonists including GABA,
subsequently controlling their activity. Flavonoids are strong
allosteric modulators and may serve as valuable candidates
in the management of NP. Hence, it can be said that
there is huge potentiality in flavonoids for the development

of novel therapeutics agents for NP, however, further
studies are needed.
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