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This study presents a computational model to reproduce the biological dynamics of
“listening to music.” A biologically plausible model of periodicity pitch detection is
proposed and simulated. Periodicity pitch is computed across a range of the auditory
spectrum. Periodicity pitch is detected from subsets of activated auditory nerve fibers
(ANFs). These activate connected model octopus cells, which trigger model neurons
detecting onsets and offsets; thence model interval-tuned neurons are innervated at
the right interval times; and finally, a set of common interval-detecting neurons indicate
pitch. Octopus cells rhythmically spike with the pitch periodicity of the sound. Batteries
of interval-tuned neurons stopwatch-like measure the inter-spike intervals of the octopus
cells by coding interval durations as first spike latencies (FSLs). The FSL-triggered
spikes synchronously coincide through a monolayer spiking neural network at the
corresponding receiver pitch neurons.

Keywords: periodicity pitch, temporal receptive fields, inter-spike interval tuned microcircuits, first spike latency,
periodicity, auditory model

INTRODUCTION

Pitches span a scale from lowest to highest pitch. The frequencies of the pitches are determined by
adjusting them to an absolute reference pitch (e.g., the concert pitch A4 = 440 Hz) and the chosen
temperament. Very seldom the reciprocal interval duration time is annotated for a given frequency.
By doing this, it becomes clear that the 25 notes in the mostly played range from C4 to C6 populate
an interval time range of about 3 ms only. Periodicity pitch detectors need as prerequisite precise
stopwatch-like timers (Buonomano, 2017; Buzsáki and Llinás, 2017; derNederlanden et al., 2018).
Our self-developed ANF spike from audio generation program SAM is used as audio front end
(Harczos et al., 2013a). We recently extended SAM by model octopus cells innervated by ANFs
(Harczos and Klefenz, 2018). These models are shortly summarized for better comprehensibility
in see section “Materials and Methods.” Batteries of interval-tuned neurons (ITNs) stopwatch-
like measure the inter-spike intervals (ISIs) of assigned octopus cells. An ITN responds to a
range of interval durations of a rhythmically spiking octopus cell by coding interval durations as
first spike latencies (FSLs) (Aubie et al., 2009, 2012). We model interval-tuned microcircuits by
adapting Aubie’s model to be ready for use in the microsecond operating range (Aubie et al., 2012).
Aubie’s model is formulated in NEURON with excitatory NMDARs/AMPARs and GABAergic
inhibition (Kirst et al., 2017). The parameter search space of the modified model is pruned by
various simulation runs led by optimality criteria. ITNs are star-wise connected to short-term pitch
neurons in a monolayer spiking neural network (SNN), which processes synchronously arriving
spikes from the ITNs.
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MATERIALS AND METHODS

We like to show a bio-plausible way of F0 estimation as a possible
starting point for novel research. As a prerequisite, auditory
models of pitch perception have been created, implemented,
and discussed (Patterson et al., 2002; Laudanski et al., 2014;
Langner, 2015; Stolzenburg, 2015; Ahmad et al., 2016; Joris, 2016;
McLachlan, 2016; Barzelay et al., 2017; Friedrichs et al., 2017;
Saeedi et al., 2017; Tang et al., 2017; Todd et al., 2017; Harczos
and Klefenz, 2018; Oxenham, 2018; Peng et al., 2018).

Neuro-physiologically parameterized auditory models mimic
the dynamics of the basilar membrane, the mechano-electrical
coupling of inner hair cells to it, and the membrane voltage
regulated vesicle rate kinetics into the synaptic cleft between
them and the associated auditory nerve fibers (Baumgarte, 1997;
Sumner et al., 2002; Yu et al., 2009; Meaud and Grosh, 2012;
Harczos et al., 2013a; Zilany et al., 2014; Cerezuela-Escudero
et al., 2015; Lee et al., 2015; Ó’Maoiléidigh and Hudspeth, 2015;
Saremi et al., 2016; Rudnicki and Hemmert, 2017; Manis and
Campagnola, 2018; Saremi and Lyon, 2018; Xu et al., 2018;
Liu et al., 2019).

Stimulation based on auditory modeling (SAM) – developed
at Fraunhofer IDMT as a cochlear implant sound-processing
strategy – converts sounds to parallel spike trains along
the auditory nerve fibers (ANFs) (Harczos et al., 2013b;
Harczos, 2015). With SAM’s auditory model, cochleagrams
with characteristic repetitive latency-phase trajectories can be
generated as shown in Figure 1.

Stimulation based on auditory modeling has been extended
step by step by further modules of the auditory periphery.
Octopus cells are topologically arranged in frequency-ordered
laminae and locally wired to bundles of ANFs. The wiring
patterns’ scheme constitutes their temporal receptive fields
(TRFs) (Oertel et al., 2017; Spencer et al., 2018). Octopus
cells latency-phase rectify space–time trajectories in their TRFs
(Golding and Oertel, 2012; McGinley et al., 2012). Octopus cells
rhythmically spike with the pitch periodicity of the sound because
they decode repetitively occurring latency-phase trajectories
(Harczos and Klefenz, 2018).

The processing chain employed in this paper can be
summarized as shown in Figure 2. A random (uniformly
distributed) offset is selected for the specified input sound file.
Starting from there, a 250-ms-long snippet is cropped from the
file. Then, the sound snippet’s amplitude is normalized to yield
around 65 dB SPL in the subsequent auditory model. Next, a 50-
ms-long linear fade-in is applied to the snippet, which is then
fed to the auditory model introduced above. The output of the
auditory encoder, a spectro-temporal representation of sound, is
reduced to a pitch-relevant (Fmin = 75 Hz and Fmax = 1500 Hz
in the current implementation) 11 Bark frequency range, each
of which we address as one of 11 auditory image (AI) patches,
the RMS energy of which are stored to be used later as weights
for the final F0 estimate. The 11 AI patches are analyzed by an
ensemble of dedicated octopus cells. Each octopus cell is tuned
for a specific local hyperbolic shape section and is, therefore, part
of the distributed Hough-transform execution. This step results
in 11 Hough-space (HS) patches, which, based on the maximal

variance across the time axes, get reduced to narrower sub-
patches. Corresponding to Aubie’s model (as mentioned above
and explained in more detail in see section “Interval-Tuned
Microcircuits”), we introduce a stochastic processing in the form
of Poisson-type jitter added to the timing of the sub-patches.
Subsequently, we look for periods using autocorrelation-based
interval estimation to yield 11 interval duration estimates, one
for each sub-patch. In the present study, the above process is
repeated 100 times using 100 different processing offsets within
the same input sound file. The aggregated 100 × 11 interval
duration estimates along with the 100× 11 weights (based on the
AI patches) are used in the final step to calculate the F0 estimate
for the sound file.

For the bio-physical modeling part of the extended SAM
front-end, we kindly refer to our previous open access
paper (Harczos and Klefenz, 2018), the mathematical notation
and symbols of which we continue using throughout the
rest of this paper.

Test Corpora
For testing the presented system, we used three kinds of sounds:
pure tones, sung vowels (a: and i: sung by a female as well as
a male singer), and solo instruments (violin, flute, and piano).
The latter were taken from the McGill University master samples
(MUMS) CDs (Opolko and Wapnick, 1987) and correspond to
CD1 Track 6 (violin, bowed), CD2 Track 5 (alto flute), and
CD3 Track 3 (9′ Steinway grand piano, plucked). The sung
vowel database was created at the Fraunhofer Institute for Digital
Media Technology (IDMT) and can be obtained free of charge by
contacting the authors.

Interval-Tuned Microcircuits
Periodicity pitch is derived from joint analysis of octopus inter-
spike intervals (ISIs), where the reciprocal of the dominant
interval is considered to be the pitch. Octopus ISIs are measured
by interval duration metering units, which operate in the range
between a shortest interval duration tmin and a largest interval
duration tmax (Paton and Buonomano, 2018). Interval-tuned
neurons (ITNs) have been identified in various species (Hedwig,
2016; Rose, 2018; Yamada et al., 2018). The interval duration
metering unit is a stopwatch started by interval onset and stopped
by interval offset. The stopwatch is triggered by a first spike of an
octopus cell and stopped by the consecutive one, thus metering
the time interval between them. The interval measuring unit is
effectuated by an IC neuron. We name the IC neuron from here
on as the intermittently interval-tuned neuron (ITN).

The stopwatch requires three start/stop control signals to
the ITN: onset-evoked excitation, offset-evoked excitation, and
onset-evoked inhibition, which is sustained for equally long or
longer than the interval duration. The axons of octopus cells
trifurcate to excitatory MSO_ON neurons, excitatory MSO_OFF
neurons, and inhibitory DNNL_ON neurons, whose outputs, in
turn, project to the associated ITNs as common terminals.

The interval duration registering timer unit has an internal
sandglass-like mechanism substituting metaphorically
sand particles by neurotransmitter vesicles (Figure 3).
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FIGURE 1 | Cochleagrams with quasi-stationary repetitive patterns for a short snippet of the vowel a: sung by a male singer at the note of G2. Top: Sound signal
waveform. Middle: Probability (ascending from blue over green to yellow) of neurotransmitter substance release into the synaptic cleft (SC) as a function of time and
place within the cochlea. Bottom: Action potentials of the spiral ganglion neurons (SGN). Note that the ordinate shows the characteristic frequency of the basilar
membrane model at the corresponding cochlear position (Reprint from Harczos and Klefenz, 2018).

FIGURE 2 | Overview of the processing steps from a single sound file to the pitch estimate (Adapted from Harczos and Klefenz, 2018).
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FIGURE 3 | Synaptic cleft neurotransmitter releases (light yellow: glutamate,
light blue: GABA) sourced from 100 MSO_ON, 100 MSO_OFF, and 200
DNLLs synapses; each neurotransmitter release from an exocytosed vesicle is
indicated by a black surrounding circle; any spillover vesicle tilts the
excitatory/inhibitory balance and triggers a spike at the IC soma with high
temporal fidelity.

Any spillover vesicle tilts the excitatory/inhibitory balance
(Gandolfi et al., 2020).

The complex temporal interplay of ON/OFF excitation and
ON inhibition makes the timer unit selective for interval
durations (Wehr and Zador, 2003; Edwards et al., 2008; Simen
et al., 2011; Takizawa et al., 2012; Naud et al., 2015; Majoral et al.,
2018; Rajaram et al., 2019). At the start, the IC soma is charged
by mini EPSCs by MSO neurons and discharged by IPSCs by
DNLL neurons. If the critical total equilibrium of balanced net
EPSC and IPSC inputs passes threshold, a highly timely precise
IC soma-initiated spike is triggered.

In principle, an onset-evoked excitation temporally coincides
with an offset-evoked excitation and produces spikes in an ITN
when the onset-evoked excitation has a compensatory latency
equal to the interval duration (Simmons and Simmons, 2011).
In the presence of inhibition, neither the onset- nor offset-
evoked excitations are supra-threshold on their own and cannot
evoke spiking in the ITN; however, when the onset- and offset-
evoked excitations temporally coincide, the summed excitation
can overcome inhibition and evokes spiking in the ITN (Aubie
et al., 2009, 2012; George et al., 2011; Buhusi et al., 2016; Akimov
et al., 2017; Kopp-Scheinpflug et al., 2018; Baker et al., 2019;
Felmy, 2019).

For a computational stopwatch implementation, we take over
and adapt Aubie’s timer model (Aubie et al., 2012). The ITN is
composed as a single-compartment IC soma with a diameter of
13 µm equipped with glutamate-activated excitatory depolarizing
AMPA, NMDA, and inhibitory hyperpolarizing GABAA ion
channels. Receptor kinetics is based on the simplified versions of
postsynaptic currents from the study by Destexhe et al. (1998).
Briefly, presynaptic spikes trigger a 1-ms release of a 1-mM
neurotransmitter that activates postsynaptic receptor currents
with kinetics specified in Aubie et al. (2012). A spike is triggered

at the time step in which the membrane potential of the ITN
neuron crosses 0 mV. The rates of neurotransmitter binding α

and unbinding β determine the rise and decay kinetics of each
postsynaptic receptor conductance gAMPA, gNMDA, and gGABAA
(Rowat and Greenwood, 2014). Fitted parameter values for α and
β were previously determined from whole-cell current recordings
(Destexhe et al., 1998). NMDA receptors exhibited a voltage-
dependent Mg2+ block characterized by the function B(V) as
defined by Jahr and Stevens (1990). The membrane also contains
passive channels that conduct leak current Ileak and channels for
fast Hodgkin–Huxley-type sodium INa and potassium IK currents
based on the kinetics described by Traub and Miles (1991) and
implemented by Destexhe et al. (1996). Voltage dynamics of the
model IC cell membrane potential dV/dt were determined by the
following equation:

Cm ×

(
dV
dt

)
= Ileak − INa − IK − IAMPA − INMDA − IGABAA

(1)

where Cm is the membrane capacitance; Ileak the passive
membrane leak current; INa the sodium channel current; IK the
potassium channel current; and IAMPA, INMDA, and IGABAA the
corresponding receptor-mediated currents.

Presynaptic spikes that activate glutamatergic AMPA and
NMDA receptors on the ITN are generated by two single-
compartment excitatory neurons: one providing excitation timed
relative to a first octopus spike (onset-evoked stimulus,
MSO_ON) and the consecutive offset-evoked stimulus
(MSO_OFF) (Oertel et al., 2019). Presynaptic neurons were
modeled with fast-spiking kinetics such that a 1-ms, 0.1-
nA injected current pulse produces exactly one spike in the
neuron. IPSPs are modeled with GABAA receptor kinetics.
Inhibitory presynaptic inputs to the ITN are generated by
a population of single-compartment presynaptic inhibitory
neurons with fast-spiking kinetics that activate GABAA
receptors on the model ITN. A current of discrete 1-nA
square pulse in a simulation time step of 0.05 ms is injected
into each inhibitory presynaptic neuron. In Aubie’s model,
the inhibitory DNNL neurons randomly fire with a Poisson
distribution. This is simulated by injection times following
a Poisson distribution with a mean probability of 0.05
events per time step (i.e., on average, each presynaptic
neuron received 1 nA of current for 0.05 ms per 20
simulation time steps).

Pitch Estimation Monolayer SNN
Several octopus cells observe local segments of a common global
trajectory in their TRFs. Each global trajectory is, therefore,
represented by its unique set of spiking octopus cells. In the
narrower mathematical sense, the TRFs are time-shifted relative
to an imaginary vertical zero line according to their lateral spatial
positions. For a given set, all relative time shifts are set to zero in
order to achieve a common synchronization.

For quasi-stationary tones, global trajectories are repeated
almost identically, and almost always the same octopus cells
spike. The intra-synchronization for each set assures common
arrival times at the ITNs, and in turn, the synchronized FSLs
allow a spiking coincidence processing at the pitch neurons
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FIGURE 4 | Topology of the neural network. Starting from left, octopus cells receive input from ANFs in their temporal receptive fields (three out of 11 are shown);
each dendritic end branch connects to an ANF (not shown). Octopus cells trifurcate to MSO_ON neurons (bottom blocks: five out of 100 shown), MSO_OFF
neurons (middle blocks: five out of 100 shown), DNLL neurons (top blocks: five out of 200 shown); MSO_ON, MSO_OFF, and DNLL neurons connect to the bottom,
middle, and top dendritic branches of the inferior colliculus (IC) neurons, respectively; IC neurons connect star-like to pitch neurons (three out of 25 are shown) (Cells
redrawn from Siveke et al., 2006; Bal and Baydas, 2009; Wallace et al., 2012).

(Bagheri et al., 2017). The template matching of global trajectories
is transposed to local distributed processing in spiking neural
network architectures. A simple monolayer spiking neural
network (SNN) with interval-tuned neurons in the input layer,
star-wise connected to pitch neurons in the output layer, is
constructed (Figure 4; Calixto et al., 2012; Bidelman, 2013;
Baumann et al., 2015; Ranjan et al., 2019). Due to the star
connectivity, ITNs can contribute to all pitch decisions, and
the pitch neurons can collect votes from all ITNs. Each ITN
contributes at a specific interval duration FSL time t with a spike,
which is weighted by its actual synaptic connection strengths
to pitch neurons. Each pitch neuron synchronously receives
spikes at the same FSL time t for a set of ITNs of the same
interval duration. The sum of the activated synaptic weights at
isochronous FSL time t determines if a pitch neuron reaches
threshold and, in turn, spikes (poly-pitch mode).

If only the dominant pitch is to be determined, a softmax
operation is applied. The standard SNN is replicated n times,
and each SNN is trained individually for template matching for
each global trajectory. Mono and poly pitches can be learned by
adjusting the synaptic weights, but learning is outside the scope
of this article and is deferred for a subsequent article.

Implementation Details
The auditory encoder as well as the simulation of the bio-
physical model of the pitch estimation has been implemented on
a PC platform in an interplay of parts implemented in C, C++,
MATLAB, NEURON, and Python languages. For evaluation and
data visualization, we used MATLAB R2019a from MathWorks
and Microsoft Excel 2010. The network models used in the
present study were obtained from ModelDB “Duration-tuned
neurons from the inferior colliculus of vertebrates,” accession
number 144511 (Aubie et al., 2012). We used NEURON version
7.7 (McDougal et al., 2017) and Python Anaconda 3 (both
64-bit versions) on a Dell Optiplex 7010 under Microsoft
Windows 10. NEURON simulations were run with a time step
resolution of 0.05 ms.

RESULTS

Optimality Criterion
Aubie’s model has a lot of adjustable parameters. To adapt
the model to interval duration estimation, the first criterion is
to define the operation range by choosing adequate parameter
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settings that show FSL behavior in response to applied interval
durations. The second criterion is to change the original
parameter space as little as necessary. The third criterion
is optimality by minimization of the mean of FSL standard
deviations of a simulation run with pre-given parameter set. To
reliably distinguish semitones at the 95% confidence level (±2σ),
the condition {2σtone+1 + 2σtone < |FSLtone+1–FSLtone|} must
hold for the two adjacent halves of neighboring distributions.

Parameter Search Space
Aubie’s model is species-specific, and models for bat, rat, mouse,
and anuran are given. As bats rely on hearing, our initial guess
was to adopt bat mode, and it turned out to be the best one
for the task. Bat mode is defined in module C_BAT_JUN2.
Various coincidence mechanisms are proposed and evaluated
in Aubie’s model, for instance, anti-coincidence and excitatory
onset/offset with inhibitory onset. We found that the coincidence
mechanism as defined in network.DTN_Coincidence works
best by minimizing overall mean FSLs in conjunction with
C_BAT_JUN2.

Starting initially with the mouse model, we ran many
simulations with many different parameter settings, and we
realized in frustration that we never met the optimality criterion
as standard deviations were always too high for the original
model. Switching to bat mode helped a little, but still, standard
deviations were too high. We decided to systematically search
the parameter space by continuously varying a single parameter
and clamping it if we found a local minimum. With this
fixed parameter, we iterated the simulation and fixed the next
parameter and so on.

The operation range in which FSL is a linear function of
interval duration could be easily found, and the optimum
values are given by gmaxAMPA = 0.006, gmaxNMDA = 0.035,
gmaxGABAA = 0.001 (see Aubie et al., 2012 for discussion).

The variations of soma time constants t of ITNs and
presynaptic neurons had little effect on the standard deviation
criterion. Local minima have been reached by setting excitatory
MSO_ON neuron soma t to 1 ms, DNLL neuron soma t to 1 ms,
and ITN soma t to 5 ms.

We tried to identify those parameters that have a big impact
on the results. We realized that the limiting factor of precision is
the stochastic process with the Poisson distributed jitter term of
varied injection times. To dampen the jitter noise, we changed
the model by setting the number of inhibitory neurons to
numDNLL = 200, excitatory ON neurons to numMSO_ON = 100,
and excitatory OFF neurons to numMSO_OFF = 100. The
random jitter of IC soma spiking is attenuated by the high
number of 200 DNNLs. The DNLLs fill the vesicle pool
(Figure 3). As soon as the vesicle pool reaches subthreshold, the
next spillover vesicle excites a spike initiating from the IC soma.
The IC soma spike time is very precise as it doesn’t matter which
individual DNNL neuron released the spillover vesicle.

Estimation of Interval Durations
Interval duration times are annotated for semitones and
frequencies over two octaves from C4 to C6, in which most
melodies are notated (Table 1).

TABLE 1 | Annotated time interval durations referring to a 12-tone equal
temperament relative to A4 (440 Hz).

Tone Frequency (Hz) Interval (ms)

C6 1046.5 0.96

B5 987.77 1.01

Bb5 932.33 1.07

A5 880 1.14

Ab5 830.61 1.2

G5 783.99 1.28

Gb5 739.99 1.35

F5 698.46 1.43

E5 659.26 1.52

Eb5 622.25 1.61

D5 587.33 1.7

Db5 554.37 1.8

C5 523.25 1.91

B4 493.88 2.02

Bb4 466.16 2.15

A4 440 2.27

Ab4 415.33 2.41

G4 392 2.55

Gb4 369.99 2.7

F4 349.23 2.86

E4 329.63 3.03

Eb4 311.13 3.21

D4 293.66 3.41

Db4 277.18 3.61

C4 261.63 3.82

The time difference from tone C4 (261.63 Hz) to tone C6
(1046.5 Hz) is 2.86 ms. Twenty-five semitone intervals are
allocated within this time span. Due to the reciprocal ratio
between interval time and interval frequency, the tone intervals
aggregate more densely at short tone intervals and distribute
more loosely at longer tone intervals.

These 25 tones are applied to Aubie’s model as the
ultimate test of its robustness and reliability to distinguish
tone interval durations. In order to mimic the stochastic
behavior of neurons, each interval duration trial is repeated 20
times with a randomly varying current injection time (Fisch
et al., 2012). The random injection time follows a Poisson
distribution effectuated by NEURON pseudo-random generator
Mcell4. For each interval duration, mean FSL time and standard
deviation over 20 trials are computed. This amounts, with
25 note interval times and 20 repetition trials each, to 500
simulations per run.

Only minor task-specific changes have to be made
to the original model. Most parameters of the model,
explicitly the AMPA, NMDA, and GABAA receptor
kinetics and the sodium, potassium, and passive leakage
channel kinetics as well as the channel kinetics of the
presynaptic excitatory and inhibitory model neurons,
remain unchanged. All necessary parameter changes are
explicitly indicated so that results are externally reproducible
by third parties.
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FIGURE 5 | Time intervals versus first spike latencies (FSLs). Crosses: Tone intervals and corresponding FSLs; t = 5 ms; linear regression line fitted:
y = 1.0126x + 42.327, R2 = 0.9997; error bars ±2σ; 95% confidence interval.

First Spike Latency (FSL)
The interplay of onset-/offset-evoked excitations and onset
inhibitions triggers response stimulus onset times in ITNs
relative to onset-evoked excitation trigger time. The difference of
response stimulus onset time and onset-evoked excitation time is
defined as first spike latency (FSL). FSLs systematically increase
for ascending tone-interval durations. FSL starts with FSLmindur
for the best matching interval and ends with FSLmaxdur for the
largest deviant interval duration. FSL depends on the species and
the chosen coincidence mechanism.

Other influential parameters on response stimulus onset time
and, hence, FSL are the membrane time constant t of the soma
of the ITN, which is the product of membrane resistance rm and
membrane capacitance cm; others are receptor conductances g of
AMPA, NMDA, and GABAA receptors (see Aubie et al., 2012
for discussion). For the best parameter setting, we determined
C6 produces the minimal mean first spike latency FSLmindur of
43.3 ms and C4 the maximal mean first spike latency FSLmaxdur of
46.22 ms. The FSLs over two octaves C4 to C6 with 25 semitone
intervals fall between FSLmindur and FSLmaxdur . The data points
are plotted with ±2 σ error bars in a common diagram and a
regression line is fitted (Figure 5).

First spike latencies are a linear function of the tone interval
with the regression line given as y = 1.0126x + 42.327;
R2 = 0.9997. Interval durations and FSLs are nearly identical

because of the slope 1.0126 of the regression line. This setting has
a drastic impact and minimizes the mean standard deviation over
C4 to C6 to 18.11 µs, which is an indicator for the high precision
of the timers. From C4 until F5, except a single slight overlap
{Db5, D5}, there is no overlap of the±2 σ error bars so that tones
are distinguishable with high fidelity at the 95% confidence level.

Stochastic Term Modeling
The adapted Aubie’s model responds with a mean FSL SD
derived from all intervals of 18.11 µs. To circumvent the CPU’s
time-consuming interval duration computation in NEURON, for
every ISI we replace Aubie’s model by formulating an equivalent
stochastic computation input/output function with a Poisson
distribution of ±20 µs and apply it to the test corpora. We take
audio snippets with a length of 100 consecutive octopus spike
intervals for a selected patch. For each interval, we compute a
mean F0 for each patch. The computation of the weight of a patch
is the same as in our previous article (Harczos and Klefenz, 2018).

Individual Sound Categories
To understand the inner workings as well as the strengths and
weaknesses of our compound model, we tracked and visualized
both the weights and the F0 estimates for each patch in every
one of the 100 iterations for all the test files. Without claiming
completeness, below in Figures 6–11, we present a few examples
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FIGURE 6 | F0 estimates (first and third rows) and weights (second and fourth rows) for all patches over all 100 iterations for the vowels a: (top two rows) and i:
(bottom two rows) sung by a female singer.

for each tested category along with an overview of the weights
for all test sounds (median over all iterations). In these figures,
the central marks of the boxes (colored in red) indicate the
medians. The 25th and 75th percentiles are represented by the
bottom and the top edges of the boxes, respectively. The whiskers
extend to the extreme data points, which are not yet considered
outliers. Outliers are at least 1.5 interquartile ranges away from
either end of the box.

In Figure 6, positions of the maximum weights seem to follow
F0 nicely, whereas the profiles of the weights also correlate well
with the formants of the given vowels. When looking at the
single-patch F0 estimates, on one hand, we find a few instances
deviating from the correct F0 estimate, which, on the other hand,
is represented by the majority of the receptive fields. When we
attach the weights to the F0 estimates, i.e., when we calculate the
Edgeworth type weighted median as the aggregate fundamental
frequency estimate for the given sound snippet (not shown here),
we get the correct F0 estimate in all the above cases.

During our tests, weights proved to be very stable (i.e., have
low spread around their median) over the iterations, so we
decided to also visualize the median weights alone for all tested
pitches for all sound categories. In Figures 7, 11, pitch increases
from bottom to top. The heat-map colors ranging from white
over yellow and red to black correspond to increasing weights.
Because the weight units are arbitrary, plots are normalized
separately and do not necessarily cover the same range of weights.

As apparent from Figure 7, the weights can provide
a beneficial extension to the single-patch F0 estimates by
prioritizing those belonging to high-energy auditory image
patches. This applies particularly to the vowels sung by the female
singer (see left two plots in Figure 7), and the resolution of
formants was far less efficient for the much lower pitched male
singer (see right two plots in Figure 7). For details, please also
evaluate Figure 8.

With the instruments piano and violin, we observed similar
performance of the system: although the F0 of low-pitched
sounds are estimated accurately in all receptive fields, with
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FIGURE 7 | Median of the weights (over all 100 iterations) for the complete tested pitch range for the sung vowel recordings. From left to right: a: and i: by female
singer, then a: and i: by male singer.

FIGURE 8 | F0 estimates (first and third rows) and weights (second and fourth rows) for all patches over all 100 iterations for the vowels a: (top two rows) and i:
(bottom two rows) sung by a male singer.
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FIGURE 9 | F0 estimates (first and third rows) and weights (second and fourth rows) for all patches over all 100 iterations for the grand piano (top two rows) and
violin (bottom two rows) recordings.

higher-pitched notes, the extent of ambiguity and the number
of mispredictions increase as shown in Figure 9, below.
Nevertheless, when we attach the weights (see also the first two
plots in Figure 11) to the single-patch F0 estimates (Edgeworth
type weighted median as discussed above), the combined F0
estimates are correct in all cases.

The sound of the alto flute instrument is characterized by
its rich, mellow tone, at least in the lower portion of its range,
which is also represented by the weights shown in the second
row of Figure 10 and the third plot in Figure 11. Although,
with increasing pitch, the single-patch F0 estimates diverge
more, the weight profiles get peakier and increasingly localized
at the same time. Thus, the combined F0 estimates tend to
remain accurate.

The situation is similar but more striking with pure tones for
which the data is shown in the bottom half of Figure 10 and in
the last plot of Figure 11. With a pure tone (sine wave), there is
no harmonic structure in the spectrum, just a well-defined peak,
which leaves many weights (deduced from the activity specific to
individual frequency bands within the tonotopically organized

auditory system) near a value of zero. In the corresponding
receptive fields, the single-patch F0 estimates are often not even
in the right ballpark; however, they also do not have much impact
on the combined F0 estimates due to their low associated weights.

As a summary, in Figure 12, we present a comparison of
true fundamental frequencies versus combined F0 estimates
(weighted median over 100 iterations) for each tested note within
each sound category. It is apparent in the overview that F0
estimates follow true fundamental frequencies remarkably well
for all but four test files (female sung vowel a: at C5, C#5,
and D#5, and violin at D6). In all other cases, the errors are
moderate enough for a subsequent quantizer to predict the played
musical note correctly.

DISCUSSION

We see our main contribution in adapting Aubie’s model to
tone interval-duration estimation. Spatiotemporal trajectories of
ANF spike trains are latency-phase rectified by dendritic trees of
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FIGURE 10 | F0 estimates (first and third rows) and weights (second and fourth rows) for all patches over all 100 iterations for the alto flute recordings (top two rows)
and pure tones (bottom two rows).

FIGURE 11 | Median of the weights (over all 100 iterations) for the complete tested pitch range for the grand piano (leftmost plot), the violin (second plot), and the
alto flute recordings (third plot), and for pure tones (rightmost plot).

Frontiers in Neuroscience | www.frontiersin.org 11 June 2020 | Volume 14 | Article 486

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-00486 August 3, 2020 Time: 15:47 # 12

Klefenz and Harczos Periodicity Pitch Perception

FIGURE 12 | Comparison of true fundamental frequencies versus combined F0 estimates (weighted median over 100 iterations) for each tested note within each
sound category.

octopus cells via modeling the execution of mathematical Hough-
transforms as, for instance, discussed too for visual processing in
the LGN and V1 (Barlow, 1986; Blasdel, 1992; Akima et al., 2017;
Alam et al., 2017a). Batteries of interval-tuned neurons estimate
tone interval durations of successively spiking octopus cells and
a monolayer SNN recombines all ITN votes of different layers
for short-term pitch estimation (McGinley et al., 2012; Spencer
et al., 2012; Wang and Liu, 2013). The model leaves ample space
for discussion. Is the stochastic term reasonable or has the model
to be refined and reformulated as it works unambiguously only
up to the limit tone F5? Are there neurophysiological correlates,
which justify the number of excitatory and inhibitory neurons
used to fulfill the optimality criteria constraints? Can unprecise
mean FSL short-term votes lead to a resolution of tones beyond
F5 by accumulating the votes of many ITNs and integrating the
short-term votes over the whole tone duration period? We aim to
seek answers to these questions in follow-up studies.

The system can be extended to estimate poly-pitches. In this
case, the general softmax operation has to be substituted by a
poly-pitch analysis method as in Elvander et al. (2016). A higher
auditory authority needs to reconcile the votes from all interval
neurons by sorting out false pitch votes and accepting the right
ones (Tabas et al., 2019). In such a system, decisions about wrong
and right votes are based on empirical knowledge the system
would need to have gathered previously, which implies the need
for some kind of learning components (Alam et al., 2017b).

Aubie’s model is formulated in NEURON; hence, a targeted
neuromorphic hardware needs to support the portability of
NEURON code by an application programming interface.
Benchmarking of neuromorphic hardware systems helps to
define standardized criteria of code mapping, execution,
and measuring performance (Ostrau et al., 2020). A few
neuromorphic hardware resources are available (Thakur et al.,
2018). A hardware emulation is feasible if the hardware
specifications support the model and reproduce the results in
the optimal case one by one. High-fidelity reproduction of ionic
channel rate kinetics with optimal solid state neurons is recently
reported (Abu-Hassan et al., 2019). Many neuromorphic systems
lack either the AMPA and/or the GABA channels; thus, the
model can be implemented only partly (Benjamin et al., 2014;
Furber et al., 2014; Merolla et al., 2014; Yang et al., 2015,
2018, 2020). A promising candidate is Spikey with its PyNN

application programming interface, which allows execution of
NEST and NEURON code (Pfeil et al., 2013). NeuroSoc seems
to be the ideal candidate because NMDA, AMPA, and GABA
channel kinetics are supported (Mayr et al., 2015; Keren et al.,
2019). An accelerated analog neuromorphic hardware system
emulating NMDA- and calcium-based non-linear dendrites is
a promising candidate too (Schemmel et al., 2017). To realize
the large number of MSO, DNLL, IC neurons in hardware
is misleading as the realized timers can be easily substituted
in hardware with precise clockwork mechanisms. An elegant
way to implement the model seems to be a hardware-friendly
unsupervised memristive neural network with a weight-sharing
mechanism (Tang et al., 2019). Start and stop switches control
the settings of time intervals that are collectively memorized in a
common stack of memristor cells.

CONCLUSION

Stimulation based on auditory modeling’s auditory model
extended by octopus ensembles and batteries of interval-tuned
microcircuits reliably extracts periodicity pitch until the limit
tone F5. Multi-vesicular releases triggered by many MSO_ON,
MSO_OFF, and DNLL_ON neurons allow a time-accurate
collective filling of the vesicle pool at the soma of an ITN. Despite
the Poisson-distributed stochastic firing times of the pre-neurons,
the vesicular spillover fine-dosed by the threshold setting leads to
an ultra-precise stopwatch behavior. In the given working range,
the system effectively levers out the pitch dichotomy of place
and periodicity.
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