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To recognize abnormal electroencephalogram (EEG) signals for epileptics, in this study,

we proposed an online selective transfer TSK fuzzy classifier underlying joint distribution

adaption and manifold regularization. Compared with most of the existing transfer

classifiers, our classifier has its own characteristics: (1) the labeled EEG epochs from

the source domain cannot accurately represent the primary EEG epochs in the target

domain. Our classifier can make use of very few calibration data in the target domain to

induce the target predictive function. (2) A joint distribution adaption is used to minimize

the marginal distribution distance and the conditional distribution distance between the

source domain and the target domain. (3) Clustering techniques are used to select source

domains so that the computational complexity of our classifier is reduced. We construct

six transfer scenarios based on the original EEG signals provided by the Bonn University

to verify the performance of our classifier and introduce four baselines and a transfer

support vector machine (SVM) for benchmarking studies. Experimental results indicate

that our classifier wins the best performance and is not very sensitive to its parameters.

Keywords: seizure classification, brain-computer interface, transfer learning, joint distribution adaption, manifold

regularization, TSK fuzzy classifier

INTRODUCTION

Thematurity of the brain–computer interface (BCI) technology has provided an important channel
for the human to use artificial intelligence (AI) to explore the cognitive activities of the brain. For
example, many AI methods have been proposed for an intelligent diagnosis of epilepsy instead of
neurological physicians through electroencephalogram (EEG) signals (Ghosh-Dastidar et al., 2008;
Van Hese et al., 2009; Wang et al., 2016). In this study, we also focus on the intelligent diagnosis
of epilepsy through EEG signals. The classic diagnostic procedure for epilepsy by using intelligent
models is illustrated in Figure 1. We observe that, for an emerging task, a large number of labeled
EEG epochs are required to train an intelligent model. Therefore, it needs to consume a lot of
effort to manually label EEG epochs. Because the responses to EEG signals of different patients in
the same cognitive activity show a certain degree of similarity, we expect to leverage abundant
labeled EEG epochs, which are available in a related source domain for training an accurate
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FIGURE 1 | The classic diagnostic procedure for epilepsy.

intelligent model to be reused in the target domain. To
this end, transfer learning is often used, which has been
proven to be promising for epilepsy EEG signal recognition.
For example, Yang et al. (2014) proposed a transfer model
LMPROJ for epilepsy EEG signal recognition underlying the
support vector machine (SVM) framework. In LMPROJ, the
marginal probability distribution distance measured by the
maximal mean discrepancy (MMD) between the source domain
and the target domain is used to minimize the distribution
difference. Jiang et al. (2017c) improved LMPROJ and generated
a model A-TL-SSL-TSK for epilepsy EEG signal recognition
underlying the TSK fuzzy system framework. Comparing with
LMPROJ, A-TL-SSL-TSK not only used the marginal probability
distribution consensus as a transfer principle but also introduced
semisupervised learning (cluster assumption) for regularization.
Additionally, in our previous work (Jiang et al., 2020), we
proposed an online multiview and transfer model O-MV-T-TSK-
FS for EEG-based drivers’ drowsiness estimation. It minimized
not only the marginal distribution differences but also the
conditional distribution differences between the source domain
and the target domain. But it did not derive any information
from unlabeled data. More references about transfer learning for
epilepsy EEG signal recognition can be found in Jiang et al. (2019)
and Parvez and Paul (2016).

Although existing intelligent models, for example, LMPROJ
and A-TL-SSL-TSK, underlying the transfer learning framework
are effective for epilepsy EEG signal recognition, there still exist
some issues that should be further addressed.

• To tolerate the distribution difference between the source
domain and the target domain, it is not enough to only
minimize the marginal distribution difference between the
two domains.

• Most of the existing models use only one source domain for
knowledge transfer. That is to say, all available labeled data in
the source domain are leveraged for model training. However,
some labeled data may cause negative transfer.

TABLE 1 | Epilepsy EEG data archive and collection condition.

Volunteers Groups #Group Collection conditions

Health A 100 Volunteers with eyes open

B 100 Volunteers with eyes closed

Epileptic C 100 From hippocampal

formation during seizure free

intervals

D 100 From within epileptogenic

zone during seizure free

intervals

E 100 During seizure activity

Sampling rate: 173.6Hz; duration: 23.6 s.

Therefore, in this study, by overall considering the above two
issues, we propose a new intelligent TSK fuzzy classifier (online
selective transfer TSK fuzzy classifier with joint distribution
adaption and manifold regularization, OS-JDA-MR-T-TSK-FC)
for epilepsy EEG signal recognition. First, it further explores the
marginal probability distribution adaption between the source
domain and the target domain from two aspects. One is that
it additionally introduces conditional probability distribution
adaption to further minimize the distribution difference. The
second is that it preserves manifold consistency underlying
the marginal probability distribution. Second, it can selectively
leverage knowledge from multiple source domains.

The following sections are organized as follows: in Data and
Methods, we give the EEG data and our proposed method. In
Results, we report the experimental results. Discussions about
experimental results are presented in Discussions, and the whole
conclusions are summarized in the last section.

DATA AND METHODS

Data
In this study, we download very commonly used epilepsy EEG1

data to verify our proposed intelligence model. The data from
the University of Bonn is open to the public for scientific
research. Table 1 gives the data archive and collection conditions.
Additionally, Figure 2 illustrates the amplitudes during the
collection procedure of one volunteer in each group. The original
EEG data cannot be directly used for model training (Jiang et al.,
2017b; Tian et al., 2019). We should employ feature extraction
methods to extract robust features before model training.

Feature Extraction
Three feature extraction algorithms, that is, wavelet packet
decomposition (WPD) (Li, 2011), short-time Fourier transform
(STFT) (Pei et al., 1999), and kernel principal component analysis
(KPCA) (Li et al., 2005), are employed to extract three kinds of
features from the original epilepsy EEG signals.

• Wavelet Packet Decomposition

Wavelet packet decomposition is used to extract time-frequency
features from epilepsy EEG signals. More specifically, the

1http://www.meb.unibonn.de/epileptologie/science/physik/eegdata.html.
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FIGURE 2 | The amplitude of one volunteer in each group during the collection procedure. From top to bottom corresponds to (A–E), respectively.

FIGURE 3 | Features extracted by wavelet packet decomposition.

epilepsy EEG signals are disassembled into six different frequency
bands with the Daubechies 4 wavelet coefficients. Each band is
considered as one feature. Figure 3 illustrates the six features of
group A.

• Short-Time Fourier Transform

Short-time Fourier transform is used to extract frequency-
domain features from epilepsy EEG signals. More specifically,
the epilepsy EEG signals are disassembled into different local
stationary signal segments, and then the Fourier transform
is used to extract a group of spectra of the local segments,
which are with evident time-varying characteristics at
different times. Finally, six frequency bands are extracted
from each group of spectra. Figure 4 illustrates the six features
of group A.

FIGURE 4 | Features extracted by short time Fourier transform.

• Kernel Principal Component Analysis

Kernel principal component analysis is used to extract time-
domain features from epilepsy EEG signals. More specifically, the
Gaussian function is chosen as the kernel to map the original
features nonlinearly. Then six kinds of features are selected from
the top six PC eigenvectors. Figure 5 illustrates the six features of
group A.

Online Transfer Scenario Construction
We construct six online transfer scenarios from the EEG data
after feature extraction (Table 2). Each scenario consists of five
source domains as multiple source domains and one target
domain. Specifically, two healthy groups (A, B) and three
epileptic groups (C, D, E) are combined to generate six different
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FIGURE 5 | Features extracted by kernel principal component analysis.

TABLE 2 | Six online transfer scenarios.

Scenarios Source domains Target domain No. of

subject-specific

objects

SC-1 BD, BC, AE, AD, AC BE 20

SC-2 BE, BC, AE, AD, AC BD 20

SC-3 BE, BD, AE, AD, AC BC 20

SC-4 BE, BD, BC, AD, AC AE 20

SC-5 BE, BD, BC, AE, AC AD 20

SC-6 BE, BD, BC, AE, AD AC 20

pairs of combinations, that is, AC, AD, AE, BC, BD, and BE.
Five pairs are alternatively selected from the six combinations
as source domains, and the rest one is taken as the target
domain such that each pair has the opportunity to become the
target domain.

In general, calibration in BCIs can be divided into two types,
that is, offline calibration and online calibration (Jiang et al.,
2020). Offline calibration means that we have obtained a pool
of unlabeled EEG epochs. Some of unlabeled EEG epochs were
labeled by experts to train a classifier. The unseen epochs then
were classified by the trained classifier. Online calibration means
that the training EEG epochs were obtained on-the-fly. That is to
say, the classifier was trained online. Both calibration methods
have their own advantages and disadvantages. For example,
in offline calibration, unlabeled EEG epochs can be used to
assist labeled ones to achieve classifier training, for example,
semisupervised learning (Mallapragada et al., 2009; Zhang
et al., 2013; Dornaika and El Traboulsi, 2016). Additionally, if
necessary, we can easily obtain the label of any EEG epochs at
any time. In online calibration, we not only have no unlabeled
EEG epochs to be used for classifier training but also have little
control on which epochs to see next. However, online calibration
is more attractive because it is more in line with the needs of
practical application scenarios. Therefore, in this study, we only
consider online calibration for seizure classification. To simulate
online calibration in the aforementioned six transfer scenarios,
we first generate M = 20 subject-specific objects from the target
domain. The online calibration flowchart is shown in Figure 6.

We repeat all rounds 10 times to obtain statistically meaningful
results, where each time has a random starting positionm0.

Methods
In this section, we will elaborate the method we proposed
for seizure classification. We first mathematically state the
transfer problem, and then we give the online transfer
learning framework and hence the online transfer TSK fuzzy
classifier (OS-JDA-MR-T-TSK-FC). Lastly, we give the detailed
algorithm steps of OS-JDA-MR-T-TSK-FC including how to
select source domains.

Problem Statement
A domain 9 =

{

X, P(x)
}

in the transfer learning or domain

adaption scenario consists of a d-dimensional feature space ∈ Rd

and a marginal distribution P(x), and a task Ŵ = {Y , P
(

y|x
)

} in
the similar scenario consists of a one-dimensional label space Y
and a conditional distribution P

(

y|x
)

, where y ∈ Y . Suppose
that 9s and 9t are two domains derived from 9 , they are
deemed to be different when Xs 6= Xt and/or Ps(x) 6= Pt(x).
Homoplastically, two tasksŴs andŴt derived fromŴ are different
when Ys 6= Yt and/or Ps

(

y|x
)

6= Pt
(

y|x
)

.
Based on the above definitions, the target of OS-JDA-MR-T-

TSK-FC is to train a predictive function on a source domain 9s

having N-labeled EEG epochs
{

(xi, yi)
}N

i=1
and a target domain

9t having M-labeled EEG subject-specific epochs
{

(xi, yi)
}M

i=1
to

predict the class label of a unseen epoch in the target domain with
a low expected error under the hypotheses that9s = 9t ,Ys = Yt ,
Ps(x) 6= Pt(x), and Ps

(

y|x
)

6= Pt
(

y|x
)

.

OS-JDA-MR-T-TSK-FC
• Online Transfer Learning Framework

Because the classic one-order TSK fuzzy classifier (1-TSK-FC)
(Deng et al., 2015; Jiang Y. et al., 2017a; Zhang J. et al., 2018;
Zhang et al., 2019) is considered as the basic component of our
online transfer learning framework, we first give some details
about 1-TSK-FC before introducing our framework.

The kth fuzzy rule involved in 1-TSK-FC is formulated as the
following if–then form:

If xi1 is A
k
1 ∧ xi2 is A

k
2 ∧ . . . ∧ xid is A

k
d,

then f k (xi) = pk0 + pk1xi1 + . . . + pkdxid, (1)

where k = 1, 2, . . . ,K, K represents the total number of fuzzy
rules 1-TSK-FC uses. xi = [xi1, xi2, . . . , xid]

T represents the
ith object contains d features. Ak

j in (1) represents a fuzzy set

subscribed by xij for the kth fuzzy rule, and ∧ represents a fuzzy
conjunction operator. Each fuzzy rule is premised on the feature
space and maps the fuzzy sets in the feature space into a varying
singleton represented by f k (xi). After the steps of inference
and defuzzification, the predictive function yo (•) for an unseen
object x is formulated as the following form:

yo(x) =

K
∑

k=1

(

µk(x)/

K
∑

k′=1

µk′ (x)

)

f k(x) =

K
∑

k=1

(

µ̃(x)
)

f k(x), (2)
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FIGURE 6 | Online calibration flowchart.

in which the µk(x) is expressed as

µk(x) =
∏d

j=1
µAk

j

(

xj
)

, (3)

where µAk
j
(xj) can be expressed as the following form when the

Gaussian kernel function is employed:

µAk
j

(

xj
)

= exp

(

−
(

xj − ckj

)2
/2
(

δkj

)2
)

, (4)

where ckj and δkj are two parameters representing the kernel

center and kernel width, respectively. Therefore, training of 1-
TSK-FC means to find optimal ckj , δkj in the if parts, and pk =

[pk0, p
k
1, . . . , p

k
d
]
T

in the then parts. Referring to the literature
(Zhang et al., 2019), we know that parameters in the if parts can
be trained by clustering techniques. For instance, ckj and δkj can

be trained by fuzzy c-means (FCM) (Gu et al., 2017) as

ckj =

N
∑

i=1

µikxij/

N
∑

i=1

µik (5)

δkj = h

N
∑

i=1

µik(xij − ckj )
2

N
∑

i=1

µik, (6)

where µik is the fuzzy membership degree of xi belonging to the
kth cluster. h is a regularized parameter that can be always set to
0.5 according to the suggestions in Jiang Y. et al. (2017a). When
ckj and δkj in the if parts are determined by FCM or other similar

techniques, for an object xi in the training set, let

xe = (1, (xi)
T)

T
, (7.a)

x̃ki = µ̃k(xi)xe, (7.b)

xgi = (
(

x̃1i
)T

,
(

x̃2i
)T

, . . . ,
(

x̃Ki
)T
)
T
, (7.c)

pk = (pk0, p
k
1, . . . ,p

k
d)

T
, (7.d)

pg = ((p1)
T
, (p2)

T
, . . . ,(pK)

T
)
T
, (7.e)

then we can rewrite the predictive function yo(·) in (2) as the
following form:

yo(xi) =pTg xgi (8)

Referring to Zhou et al. (2017) and Zhang Y. et al. (2018), we
formulate an objective function as follows to solve pg :

J1−order−TSK−Fc(pg) =
1

2
(pg,c)

Tpg,c +
η

2

N
∑

i=1

∥

∥

∥
(pg)

Txgi − yi

∥

∥

∥

2
,

(9)

where the first 1
2 (pg)

Tpg is a generalization term, the second is
a square error term, and η > 0 is balance parameter used to
control the tolerance of errors and the complexity of 1-TSK-FC.
By setting the partial derivative of the objective function w.r.t pg
to zero, that is, ∂J1−order−TSK−FS(pg)/∂pg = 0, we can compute
pg analytically as

pg =

(

Ik(d+1)×k(d+1) +

N
∑

i=1

xgi(xgi)
T

)−1

×

(

η

N
∑

i=1

xgiyi

)

. (10)

In this study, 1-TSK-FC is taken as the basic learning component
to support the transfer learning framework. Many previous
works (Yang et al., 2014; Jiang et al., 2017c) explored the
marginal distribution adaption between the source domain and
the target domain for transfer learning. In our framework, we
introduce conditional distribution adaption to further minimize
the distribution difference. Additionally, we impose manifold
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consistency on the marginal distribution. Therefore, the transfer
learning framework can be formulated as

f = argmin
f

[

N
∑

i=1

ℓ(f (xi), yi)+ ωt

N+M
∑

i=N+1

ℓ(f (xi), yi)]

+ λ1[D(Js, Jt)]+ λ2[M(Ps, Pt)], (11)

where ωt in the first term is the overall weights of the specific-
subject objects. Generally,ωt should be larger than 1 so that more
emphasis is given to objects in9s than9t . Therefore, we set ωt to
ωt = max(2, σ · N/M). λ1 and λ2 are regularization parameters.
The first term contains two parts: the first is to measure the loss
on 9s, and the second is to measure the loss in 9t . The second
one is the joint distribution adaption term, and the third one is
the manifold regularization term. Below, we will explain how to
embody them formally.

• Objective function of OS-JDA-MR-T-TSK-FC

Under the framework shown in (11), we specify each term to
get the objective function of our online transfer TSK fuzzy
classifier OS-JDA-MR-T-TSK-FC.

Loss Function
The squared loss is taken as the loss function to measure the sum
of squared training errors on both9s and9t ; hence, the first term
in (11) can be formulated as

N
∑

i=1

(f (xi)− yi)
2 + ωt

N+M
∑

i=N+1

(f (xi)− yi)
2

=

N
∑

i=1

(pTg xgi − yi)
2
+ ωt

N+M
∑

i=N+1

(pTg xgi − yi)
2
, (12)

where f (x) = pTg xgi is the predictive function of 1-TSK-FC.
Suppose we have a diagonal matrix 2 in which each element is
defined as

2(i, i) =

{

1 1 ≤ i ≤ N
ωt N + 1 ≤ i ≤ N +M

. (13)

By submitting (13) to (12), then (12) can be rewritten as

N
∑

i=1

(pTg xgi − yi)
2
+ ωt

N+M
∑

i=N+1

(pTg xgi − yi)
2

=

N+M
∑

i=1

2(i, i)(pTg xgi − yi)
2

(14)

= (yT − pTg X
T
g )2(y− Xgpg),

where Xg = [xg1, ..., xgN , ..., xg(N+M)
]T in which each element xgi

is derived from xi by using (7.c).

Joint distribution adaptation
As all we know that even EEG epoch features in 9s and 9t

are extracted in the same way, the joint distributions (marginal

and conditional distributions) between 9s and 9t are generally
different. In order to meet practical requirements, we assume
that Ps(x) 6= Pt(x) and Ps

(

y|x
)

6= Pt
(

y|x
)

. Therefore, a
joint distribution adaptation should be designed to minimize the
distribution similarity (distance) D(Js, Jt) between 9s and 9t .

First, the projected MMD (Gangeh et al., 2016; Jia et al.,
2018; Lin et al., 2018) is employed to the marginal distribution
similarity D(Ps, Pt) between 9s and 9t . As a result, D(Ps, Pt) can
be expressed as

D(Pt , Ps) =

[

1

N

N
∑

i=1

f (xi)−
1

M

N+M
∑

i=N+1

f (xi)

]2

= pTg Xg8Xgpg ,

(15)

where 8 is the MMDmatrix, which can be defined as

8(i, j) =







1/N2, 1 ≤ i ≤ N, 1 ≤ j ≤ N

1/M2, N + 1 ≤ i, j ≤ N +M
−1/NM otherwise.

(16)

Second, we suppose that 9s,c belongs to 9s and its objects are
selected by

{

xi|xi∈9s ∧ yi = c
}

, and 9t,c belongs to 9t and its
objects are selected by

{

xi|xi∈9t ∧ yi = c
}

, where c means the
cth class in one domain. Also, for the source domain, Nc is used
to denote the number of objects in the cth class, and for the
specific-subject objects in the target domain,Mc is used to denote
the number of objects in the cth class. Hence, D (Qs,Qt) can be
expressed as

D(Qt ,Qs) =
2
∑

c=1
[ 1
Nc

∑

xi∈�s,c

f (xi)−
1
Mc

∑

xj∈�t,c

f (xj)]
2

=
2
∑

c=1
[ 1
Nc

∑

xi∈�s,c

pTg xgi −
1
Mc

∑

xj∈�t,c

pTg xgj]
2
,

=
2
∑

c=1
pTg Xg1cXgpg ,

= pTg Xg1Xgpg ,

(17)

where 1 =
2
∑

c=1
1c and 1c is an MMDmatrix defined as follows:

1c(i, j) =























1/N2
c xi, xj ∈ �s,c

1/M2
c xi, xj ∈ �t,c

−1/NcMc xi ∈ �s,c, xj ∈ �t,c

or xi ∈ �t,c, xj ∈ �s,c

0 otherwise

(18)

According to the probability theory, the joint adaption
D (Js, Jt) = D (Ps, Pt) + D (Qs,Qt) so that the joint distribution
adaptation can be formulated as

D(Js, Jt) = D(Pt , Ps)+ D(Qt ,Qs)

= pTg Xg8Xgpg + pTg Xg1Xgpg ,

= pTg Xg(8 + 1)Xgpg .

(19)
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Manifold regularization
In the manifold assumption (Lin and Zha, 2008; Chen and
Wang, 2011; Geng et al., 2012), it is assumed that if two
objects xi and xj are very close in the intrinsic geometry in
terms of P(xi) and P(xj), then the corresponding Q(yi|xi) and
Q(yj|xj) are considered as being similar. That is to say, for the

objects in 9s and the calibration objects in 9t , if they are in a
manifold, it is expected that their output (conditional probability
distribution) differences should be as small as possible. Therefore,
the manifold regularization can be formulated as follows under
geodesic smoothness,

M(Ps, Pt) =
N+M
∑

i=1

N+M
∑

j=1
(f (xi)− f (xj))

2wij

=
N+M
∑

i=1

N+M
∑

j=1
f (xi)lijf (xj)

=
N+M
∑

i=1

N+M
∑

j=1
pTg xgilijp

T
g xgj

= pTg XgLXgpg ,

(20)

Where, W = [wij](N+M)×(N+M)
is the graph affinity matrix in

which each element is defined as

wij =

{

cos(xi, xj) if xi ∈ ξν(xj) or xj ∈ ξν(xi)
0 otherwise

, (21)

Where, ξν(xi) represents a set of v-nearest neighbors of object xi.
L = [lij](N+M)×(N+M)

is the corresponding normalized graph

Laplacian matrix of W, which can be computed by L = I −

D−1/2WD−1/2, where D is the degree matrix in which each
diagonal element dii is computed by

∑N+M
j=1 wij.

By embedding the manifold regularization into the transfer
learning framework, the marginal probability distributions of
objects in the target domain and the source domain are fully
utilized to guarantee the consistency between the predictive
structure of the decision function f and the intrinsic manifold
data structure.

By substituting (14), (19), and (20) into our transfer learning
framework shown in (12), we can obtain a transfer learning
model, that is, OS-JDA-MR-T-TSK-FC as

f = argmin
f

[(yT − pTg X
T
g )2(y− Xgpg)

+pTg Xgλ1(8 + 1)Xgpg + pTg Xgλ2LXgpg], (22)

= argmin
f

[(yT − pTg X
T
g )2(y− Xgpg)

+pTg Xg(λ1(8 + 1)+ λ2L)Xgpg].

We can deduce a closed-form solution of pg for the objective
function in (26) by setting its derivative w.r.t pg to zero as

pg = [XT
g (2 + λ18 + λ11 + λ2L)Xg]

−1
XT
g 2y. (23)

Algorithm of OS-JDA-MR-T-TSK-FC
Different from most of the existing transfer models, OS-JDA-
MR-T-TSK-FC can leverage knowledge from multiple source

domains. However, as we know, too many source domains
will improve computational complexity. Additionally, some
source domains having significant differences with the target
domain may bring some negative transfer knowledge. Therefore,
according to Wu et al. (2017), we adopt a distance-based schema
to select relative source domains.

We use vz,c to denote the mean vector of each class in the
zth source domain, where z = 1,2,. . . , Z. Similarly, vt,c is used
to denote the mean vector of each class in the target domain. The
Euclidean distance between the zth source domain and the target
domain can be computed as

d(z, t) =
∑

c

∥

∥vz,c − vt,c
∥

∥

2
. (24)

With (24), we can get a distance set {d(1, t), d(2, t), ..., d(Z, t)} that
contains Z domain distances. The distance set then is partitioned
by k-means to k groups (in this study, k is set to 2), and the source
domains are selected from the cluster who has the smallest center.

As a whole, the training of OS-JDA-MR-T-TSK-FC contains
three parts: the first one is source domain selection, the second
one is model training on a source domain combining with the
target domain, and the last is classifier combination. Algorithm 1
shows the detailed training steps of OS-JDA-MR-T-TSK-FC.

OS-JDA-MR-T-TSK-FC can also be used for
multiclassification tasks. According to Zhou et al. (2017),
we can convert y from the space R to the space RC by that yij = 1
if y(xi) = j, and yij = 0 otherwise, where i = 1, 2, ...,N + M,
j = 1, 2, ...,C, and C represents the number of classes. Thus, the
label space becomes Y = [y1, ..., yN , ..., yN+M]T ∈ RC, and pg is

also converted from Rd+1 to R(d+1)×C.

Algorithm 1: OS-JDA-MR-T-TSK-FC

Input:

1. [(x1, y1),
(

x2, y2
)

, . . . ,
(

xN , yN
)

, . . . , (xN+M , yN+M)]
T

2. ωt , λ1, λ2 and the number of fuzzy rules K;
Output:
1. Training accuracy αz of each classifier;
2. Final decision function f ;
Procedure:

For z = 1 to Z
Calculate the Euclidean distance d(z, t) between the zth

source domain and the target domain by (24).
End

Partition the distance set {d(1, t), d(2, t), ..., d(Z, t)} into two
groups.
Select Z/2 (as Z′) source domains from Z source domains.
For z = 1 to Z′

Map X to Xg by (7.c);
Calculate 2, 8, 1, and L by (13), (16), and (18),

respectively.
Calculate pg and record it as (pg)z by (23);
Use (pg)z to predict Nz + M objects the record the

training accuracy as αz ;
End

Return f (x) = α1(p
T
g )1

xg + α2(p
T
g )2

xg + ...+ αZ′ (p
T
g )Z′

xg ;
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TABLE 3 | Average classification performance of the six scenarios in three feature spaces.

M 0 4 8 12 16 20

KPCA BL1 0.7962 0.7962 0.7962 0.7962 0.7962 0.7962

BL2 — 0.6837 0.7460 0.7899 0.8270 0.8536

BL3 0.7881 0.7761 0.8016 0.8086 0.8048 0.8174

TSVM 0.8723 0.8765 0.8810 0.8864 0.8811 0.8927

ARRLS 0.8684 0.8217 0.8742 0.8684 0.8821 0.8823

OS-JDA-MR-T-TSK-FC 0.8701 0.8943 0.9164 0.9191 0.9214 0.9251

PWD BL1 0.8618 0.8618 0.8618 0.8618 0.8618 0.8618

BL2 — 0.7151 0.8597 0.8867 0.9057 0.9176

BL3 0.8505 0.8503 0.8661 0.8685 0.8751 0.8795

TSVM 0.9232 0.9271 0.9269 0.9312 0.9292 0.9344

ARRLS 0.9157 0.9204 0.9224 0.9287 0.9312 0.9336

OS-JDA-MR-T-TSK-FC 0.8864 0.9073 0.9278 0.9314 0.9332 0.9376

STFT BL1 0.9129 0.9129 0.9129 0.9129 0.9129 0.9129

BL2 — 0.7619 0.8531 0.8674 0.8873 0.8962

BL3 0.9011 0.8923 0.8924 0.8951 0.8989 0.9107

TSVM 0.9365 0.9459 0.9467 0.9502 0.9581 0.9524

ARRLS 0.9425 0.9410 0.9356 0.9478 0.9452 0.9550

OS-JDA-MR-T-TSK-FC 0.9031 0.9214 0.9500 0.9517 0.9585 0.9619

The best performance is marked in bold.

RESULTS

Experiment setups and comparison results will be reported in
this section.

Setups
For fair, we introduce three baselines and one transfer learning
algorithm for comparison study. The three baselines all use
1-TSK-FC for training. But their training sets are different.

(1) Baseline 1 (BL1). Its training set consists of the five source
domains directly connected, and its testing set is the target
domain. Therefore, BL1 is considered as a calibration-
independent classifier, which does not use the subject-specific
data in the target domain for training.

(2) Baseline 2 (BL2). It uses only subject-specific calibration EEG
data in the target domain for training. Its testing set is
the unlabeled data in the target domain. Therefore, BL2 is
considered as a source domain-independent classifier, which
does not consider the EEG data in the source domains at all.

(3) Baseline 3 (BL3). BL3 is trained on five training sets,
receptively. Each set consisted of a source domain and the
subject-specific data in the target domain. The five trained
models are finally combined by a weight schema that is also
used in Algorithm 1. Its testing set is the unlabeled data in the
target domain

(4) Transfer support vector machine (TSVM) (Chapelle et al.,
2008). It trains five TSVM classifiers by combining unlabeled
EEG data in the target domain for semisupervised learning.
The five trained models are finally combined by a weight
schema that is also used in Algorithm 1.

(5) ARRLS (Long et al., 2014). It trains five ARRLS classifiers
by combining unlabeled EEG data in the target domain
for supervised learning. The five trained models are finally
combined by a weight schema that is also used in Algorithm 1.

Experimental Results
In this section, we report the experimental results from several
aspects, that is, classification performance, interpretability,
and robustness.

• Classification Performance

Table 3 shows the average classification performance of the
six scenarios in the KPCA feature space, PWD feature space,
and STFT feature space, respectively. Table 4 shows the
classification performance on KPCA features. Table 5 shows the
classification performance on PWD features, and Table 6 shows
the classification performance on STFT features. The best results
are marked in bold.

• Interpretability

Unlike TSVM that works in a black-box manner, the proposed
OS-JDA-MR-T-TSK-FC has high interpretability because 1-TSK-
FC is taken as the basic component.Table 7 shows the five trained
fuzzy rules (antecedent and consequent parameters) on SC-1 in
the KPCA feature space.

• Robustness

From the objective function of OS-JDA-MR-T-TSK-FC, we see
that there are three parameters, that is, ωt (σ ), λ1, and λ2 that
should be fixed before a classification task. So, we should consider
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TABLE 4 | Classification performance on six scenarios in the KPCA feature space.

M 0 4 8 12 16 20

SC-1 BL1 0.7254 0.7254 0.7253 0.7253 0.7253 0.7253

BL2 — 0.6507 0.6949 0.7285 0.7438 0.8124

BL3 0.7845 0.7899 0.8283 0.8535 0.8332 0.8404

TSVM 0.8527 0.8564 0.8661 0.8675 0.8684 0.8690

ARRLS 0.8455 0.8631 0.8874 0.8584 0.8632 0.8741

OS-JDA-MR-T-TSK-FC 0.8835 0.9124 0.9187 0.9123 0.9201 0.9206

SC-2 BL1 0.8050 0.8050 0.8050 0.8050 0.8050 0.8050

BL2 — 0.6031 0.7458 0.8727 0.9242 0.9447

BL3 0.7811 0.7912 0.8821 0.8642 0.8097 0.8358

TSVM 0.9231 0.9305 0.9289 0.9359 0.9399 0.9378

OS-JDA-MR-T-TSK-FC 0.9187 0.9364 0.9397 0.9415 0.9434 0.9439

SC-3 BL1 0.9045 0.9045 0.9045 0.9045 0.9045 0.9045

BL2 — 0.8079 0.8689 0.8667 0.8418 0.9191

BL3 0.8008 0.7838 0.8037 0.8165 0.7804 0.8239

TSVM 0.9235 0.9214 0.9298 0.9311 0.9287 0.9324

ARRLS 0.9154 0.9200 0.9147 0.9228 0.9142 0.9364

OS-JDA-MR-T-TSK-FC 0.9111 0.9125 0.9341 0.9399 0.9421 0.9433

SC-4 BL1 0.6657 0.6657 0.6657 0.6657 0.6657 0.6657

BL2 — 0.7132 0.7819 0.7745 0.8431 0.8397

BL3 0.7944 0.7564 0.7506 0.7587 0.7988 0.7993

TSVM 0.8789 0.8897 0.8942 0.8864 0.8911 0.9001

ARRLS 0.8654 0.8412 0.8553 0.8631 0.8745 0.8924

OS-JDA-MR-T-TSK-FC 0.8542 0.8596 0.9241 0.9321 0.9365 0.9387

SC-5 BL1 0.8498 0.8498 0.8498 0.8498 0.8498 0.8498

BL2 — 0.6349 0.7119 0.7333 0.7425 0.7773

BL3 0.7751 0.7607 0.7758 0.7677 0.8121 0.8364

TSVM 0.9024 0.9354 0.9142 0.9321 0.9368 0.9410

ARRLS 0.8963 0.9224 0.9021 0.9361 0.9556 0.9254

OS-JDA-MR-T-TSK-FC 0.8654 0.8684 0.9023 0.9234 0.9257 0.9341

SC-6 BL1 0.8267 0.8267 0.8267 0.8267 0.8267 0.8267

BL2 — 0.6921 0.6723 0.7636 0.8667 0.8283

BL3 0.7926 0.7743 0.7689 0.7908 0.7946 0.7683

TSVM 0.8756 0.8632 0.8786 0.8801 0.8698 0.8841

ARRLS 0.8654 0.8604 0.8552 0.8742 0.8536 0.8774

OS-JDA-MR-T-TSK-FC 0.8120 0.8763 0.8796 0.8652 0.8605 0.8697

the robustness OS-JDA-MR-T-TSK-FC to them. The sensitivity
analysis results are shown in Figure 7.

DISCUSSIONS

We observe from Table 3 that the proposed OS-JDA-MR-T-TSK-
FC wins the best average performance across the six transfer
scenarios in all feature spaces when the number of specific-
subject objects is more than 4. Especially compared with the three
baselines, the advantages are more obvious.

Moreover, the classification results in Tables 4–6 also exhibit
the following four characteristics:

• BL1 does not use the specific-subject objects, so its accuracy
is independent onM, whereas the other four classifiers depend
onM, and it is intuitive that they gradually perform better than
BL1 with the increasing ofM.

• BL2 is only trained by the subject-specific objects. Therefore,
BL2 becomes unusable when M is set to 0. But BL1, BL3,
TSVM, and OS-JDA-MR-T-TSK-FC can work because, except
subject-specific objects, they also leverage training objects
from the source domains. Compared with other algorithms,

Frontiers in Neuroscience | www.frontiersin.org 9 June 2020 | Volume 14 | Article 496

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Zhang et al. Online Transfer TSK Fuzzy Classifier

TABLE 5 | Classification performance on six scenarios in the WPD feature space.

M 0 4 8 12 16 20

SC-1 BL1 0.9711 0.9711 0.9711 0.9711 0.9711 0.9711

BL2 — 0.6718 0.9166 0.9142 0.9243 0.9513

BL3 0.8632 0.7986 0.8542 0.8611 0.8511 0.8442

TSVM 0.9735 0.9653 0.9842 0.9811 0.9765 0.9647

ARRLS 0.9632 0.9553 0.8745 0.9567 0.9651 0.9663

OS-JDA-MR-T-TSK-FC 0.9271 0.9365 0.9654 0.9689 0.9714 0.9736

SC-2 BL1 0.8626 0.8626 0.8626 0.8626 0.8626 0.8626

BL2 — 0.5873 0.8135 0.8363 0.8627 0.8751

BL3 0.7895 0.8463 0.8468 0.8532 0.8324 0.8574

TSVM 0.9021 0.9234 0.9145 0.9310 0.9256 0.9345

ARRLS 0.8954 0.9321 0.9236 0.9524 0.9125 0.9263

OS-JDA-MR-T-TSK-FC 0.8852 0.9024 0.9210 0.9253 0.9356 0.9363

SC-3 BL1 0.8388 0.8388 0.8388 0.8388 0.8388 0.8388

BL2 — 0.8095 0.8067 0.8327 0.8287 0.8865

BL3 0.7986 0.8023 0.8235 0.8310 0.8352 0.8298

TSVM 0.8836 0.8896 0.8658 0.8874 0.8697 0.8920

ARRLS 0.8759 0.8963 0.8741 0.8523 0.8478 0.8623

OS-JDA-MR-T-TSK-FC 0.7968 0.8541 0.8553 0.8687 0.8723 0.8852

SC-4 BL1 0.9024 0.9024 0.9024 0.9024 0.9024 0.9024

BL2 — 0.7778 0.9830 0.9818 0.9882 0.9957

BL3 0.9123 0.9089 0.9189 0.9214 0.9241 0.9298

TSVM 0.9436 0.9426 0.9463 0.9500 0.9431 0.9498

ARRLS 0.9355 0.9664 0.9354 0.9632 0.9311 0.9522

OS-JDA-MR-T-TSK-FC 0.8936 0.9214 0.9386 0.9399 0.9289 0.9400

SC-5 BL1 0.7930 0.7930 0.7930 0.7930 0.7930 0.7930

BL2 — 0.9047 0.8757 0.8460 0.9454 0.9091

BL3 0.8826 0.8854 0.8898 0.8754 0.9356 0.9367

TSVM 0.9241 0.9265 0.9321 0.9222 0.9412 0.9398

ARRLS 0.9021 0.9214 0.8954 0.8857 0.9145 0.9236

OS-JDA-MR-T-TSK-FC 0.9311 0.9354 0.9512 0.9568 0.9612 0.9544

SC-6 BL1 0.8029 0.8029 0.8029 0.8029 0.8029 0.8029

BL2 — 0.5397 0.7627 0.9090 0.8849 0.8879

BL3 0.8569 0.8601 0.8635 0.8686 0.8720 0.8789

TSVM 0.9124 0.9154 0.9187 0.9156 0.9189 0.9257

ARRLS 0.9214 0.9220 0.9201 0.9258 0.9361 0.9123

OS-JDA-MR-T-TSK-FC 0.8845 0.8942 0.9354 0.9289 0.9298 0.9364

whenM is too small, BL2 performs so badly because it cannot
get enough training patterns from subject-specific objects.

• When M is set to 0, TSVM always achieves the best
performance. With the subject-specific objects gradually
added into the training set, OS-JDA-MR-T-TSK-FC soon
performs better than TSVM, which indicates that significant
differences exist among the domains. Hence, a domain-
dependent classifier, for example, TSVM is not very expected
in our online transfer scenarios.

• When one batch (four subject-specific objects are taken
as a batch in our experiments) or at most two batches
of subject-specific objects are added into the training set,
the classification performance of OS-JDA-MR-T-TSK-FC
becomes stable. That is to say, the number of
subject-specific objects OS-JDA-MR-T-TSK-FC needs is
very small. So, OS-JDA-MR-T-TSK-FC meets the practical
requirements because subject-specific objects are very few in
real-world applications.
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TABLE 6 | Classification performance on six scenarios in the STFT feature space.

M 0 4 8 12 16 20

SC-1 BL1 0.8915 0.8915 0.8915 0.8915 0.8915 0.8915

BL2 — 0.6825 0.7627 0.8400 0.8248 0.8680

BL3 0.8469 0.8500 0.8598 0.8541 0.8745 0.9021

TSVM 0.9235 0.9265 0.9211 0.9365 0.9410 0.9389

ARRLS 0.9123 0.9025 0.9145 0.9452 0.9321 0.9225

OS-JDA-MR-T-TSK-FC 0.9231 0.9212 0.9536 0.9456 0.9589 0.9610

SC-2 BL1 0.9572 0.9572 0.9572 0.9572 0.9572 0.9572

BL2 — 0.8412 0.9152 0.8363 0.9215 0.9148

BL3 0.9356 0.9398 0.9410 0.9369 0.9459 0.9502

TSVM 0.9578 0.9689 0.9712 0.9754 0.9741 0.9710

ARRLS 0.9421 0.9532 0.9456 0.9623 0.9456 0.9361

OS-JDA-MR-T-TSK-FC 0.9241 0.9254 0.9698 0.9789 0.9874 0.9863

SC-3 BL1 0.9452 0.9452 0.9452 0.9452 0.9452 0.9452

BL2 — 0.8730 0.8983 0.9600 0.9346 0.9148

BL3 0.9563 0.9541 0.9568 0.9642 0.9687 0.9610

TSVM 0.9478 0.9620 0.9536 0.9587 0.9641 0.9638

ARRLS 0.9361 0.9521 0.9357 0.9430 0.9347 0.9637

OS-JDA-MR-T-TSK-FC 0.9147 0.9689 0.9700 0.9453 0.9432 0.9564

SC-4 BL1 0.9004 0.9004 0.9004 0.9004 0.9004 0.9004

BL2 — 0.7619 0.8813 0.8363 0.8823 0.9078

BL3 0.9214 0.9154 0.9354 0.9410 0.9258 0.9320

TSVM 0.9425 0.9489 0.9631 0.9562 0.9511 0.9468

ARRLS 0.9364 0.9258 0.9567 0.9412 0.9368 0.9387

OS-JDA-MR-T-TSK-FC 0.9023 0.9128 0.9587 0.9599 0.9610 0.9632

SC-5 BL1 0.9064 0.9064 0.9064 0.9064 0.9064 0.9064

BL2 — 0.7778 0.9322 0.8727 0.9424 0.9177

BL3 0.8921 0.8525 0.8651 0.8621 0.8547 0.8854

TSVM 0.9257 0.9365 0.9278 0.9421 0.9532 0.9544

ARRLS 0.9025 0.9236 0.9123 0.9367 0.9458 0.9422

OS-JDA-MR-T-TSK-FC 0.8789 0.9024 0.9268 0.9541 0.9587 0.9635

SC-6 BL1 0.8766 0.8766 0.8766 0.8766 0.8766 0.8766

BL2 — 0.6349 0.7288 0.8593 0.8183 0.8539

BL3 0.8541 0.8423 0.7963 0.8125 0.8236 0.8333

TSVM 0.9214 0.9325 0.9432 0.9323 0.9654 0.9398

ARRLS 0.9123 0.9236 0.9347 0.9415 0.9523 0.9225

OS-JDA-MR-T-TSK-FC 0.8756 0.8974 0.9214 0.9265 0.9421 0.9412

In addition to classification performance, interpretability is also
a main characteristic of the proposed OS-JDA-MR-T-TSK-FC.
From Table 7, we see that it generates five interpretable fuzzy
rules on SC-1 in the KPCA feature space. Each feature in a fuzzy
rule can be interpreted as the energy of an EEG signal band,
and each fuzzy membership function is endowed with a linguistic
description. For example, “x1 is A

k
1” in the antecedent of a fuzzy

rule can be interpreted as “the energy of an EEG band is a litter
high,” where the term “a little high” can be replaced by others such
as “a litter low,” “medium,” or “high.” In this way, suppose I am

an expert from the field of EEG signal analysis, I assign five kinds
of linguistic descriptions to each fuzzy membership function,
that is, “low,” “a little low,” “medium,” “a little high,” and “high.”
Therefore, for the first fuzzy rule in Table 7, it can be interpreted
as follows:

If the energy of an EEG signal band (band 1) is “high,” and the
energy of an EEG signal band (band 2) is “a little low,” and the
energy of an EEG signal band (band 3) is “low,” and the energy
of an EEG signal band (band 4) is “low,” and the energy of an EEG
signal band (band 5) is “low,” and the energy of an EEG signal band
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TABLE 7 | Fuzzy rules trained on SC-1 in the KPCA feature space.

OS-JDA-MR-T-TSK-FC

Fuzzy rules: If x1 is Ak
1∧ x2 is Ak

2 ∧ . . . ∧ xd is Ak
d
, then fk(x) = pk0 + pk1x1 + ... + pk

d
xd , k = 1, 2, ...,K

SC-1 Rule No. Antecedent parameters

ck = [ck1, c
k
2, ..., c

k
d ]
T
, δk = [δk1, δ

k
2, ..., δ

k
d ]
T

Consequent parameters

pk = [pk0,p
k
1, ...,p

k
d ]
T

1 c1 = [0.0081,-0.0014,-0.0027,-0.0032,-0.0043,-0.0031],

δ 1 = [0.0023,0.0055,0.0036,0.0041,0.0021,0.0028]

p1 = [0.2531, 0.4321,−0.5123, 025623, 0.2415,−0.0423, 0.0012;

0.3135, 0.5287, 0.4452,−0.5342, 0.2342,−0.9734,−0.3244]T

2 c2 = [0.0055,0.0031, -0.0023,0.0022,-0.0098,-0.0021],

δ2 = [0.0050,0.0036,0.0043,0.0044,0.0041,0.0033 ]

p2 = [0.1213,−0.5354, 0.5653,−0.1243, 0.3452, 0.0642, 0.0043;

0.0633,−0.6342, 0.1453, 0.3345,−0.0234, 0.0078,−0.0015]T

3 c3 = [0.0498,0.0411,0.0014,0.0056,0.0016,-0.0028],

δ 3 = [0.0046,0.0034,0.0057,0.0057,0.0046,0.0037]

p3 = [0.2342,−0.8456,−0.6345,−0.0134,−0.0267, 0.0111,−0.0042;

−0.0534, 0.0324, 0.0434, 0.0116, 0.0362,−0.0632, 0.0027]T

4 c4 = [0.0673,0.0432,0.0014,0.0057,0.0014,-0.0033],

δ 4 = [0.0041,0.0032,0.0032,0.0011,0.0034,0.0015]

p4 = [0.0454,−0.4345,−0.2563,−0.0412, 0.0345, 0.0163, 0.0423;

0.0123,−0.0532, 0.1634, 0.2134,−0.0745, 0.0122, 0.0011]T

5 c5 = [0.0042,0.0098,0.0015,0.0034,0.0047,-0.0011],

δ 5 = [0.0047,0.0032,0.0044,0.0076,0.0034,0.0043]

p5 = [0.0177, 0.0134, 0.0214, 0.0034,−0.0045, 0.0023,−0.0013;

0.0034, 0.0053,−0.0123, 0.0054, 0.0053, 0.0016, 0.0014]T

FIGURE 7 | Average accuracy of OS-JDA-MR-T-TSK-FC in the KPCA feature space with different parameters. (A) Robustness w.r.t delta; (B) robustness w.r.t lmada

1; (C) robustness w.r.t lmada 2.

(band 6) is “low,” then the consequent of the first fuzzy rule can be
expressed as:

f 1(x) = 0.2531+0.4321x1−0.5123x2+0.2562x3+0.2415x4−
0.0423x5+0.0012x6+0.3153−0.5278x1+0.4452x2−0.5342x3+
0.2342x4 − 0.9734x5 − 0.3244x6.
From Figure 6, we observe that O-T-TSK-FC is robust to σ in the
range of [0.1, 0.4], to λ1 in the range of (Geng et al., 2012; Jiang
et al., 2017c), and to λ2 in the range of (Ghosh-Dastidar et al.,
2008; Mallapragada et al., 2009), respectively.

CONCLUSIONS

In this study, we propose a seizure classification model OS-
JDA-MR-T-TSK-FC using an online selective transfer TSK
fuzzy classifier with a joint distribution adaption and manifold
regularization. We use epilepsy EEG signals provided by the
University of Bonn as the original data and construct six transfer
scenarios in three kinds of feature spaces to demonstrate the
promising performance of OS-JDA-MR-T-TSK-FC. We also

generate four baselines and introduce a transfer SVM model
for fair comparison. The experimental results show that OS-
JDA-MR-T-TSK-FC performs better than baselines and the
introduced two transfer models. However, in this study, we
only consider how to select the source domains. Recent studies
show that dynamically selecting useful samples from the source
domain can effectively induce the learning on the target domain.
Therefore, in our future work, we will try to develop a
mechanism, for example, classification error consensus to select
most useful samples from the source domain.
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