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The links between emotions, bio-regulatory processes, and economic decision-making

are well-established in the context of age-related changes in fluid, real-time, decision

competency. The objective of the research reported here is to assess the relative

contributions, interactions, and impacts of affective and cognitive intelligence in

economic, value-based decision-making amongst older adults. Additionally, we explored

this decision-making competency in the context of the neurobiology of aging by

examining the neuroanatomical correlates of intelligence and decision-making in an

aging cohort. Thirty-nine, healthy, community dwelling older adults were administered

the Iowa Gambling Task (IGT), an ecologically valid laboratory measure of complex,

economic decision-making; along with standardized, performance-based measures of

cognitive and emotional intelligence (EI). A smaller subset of this group underwent

structural brain scans from which thicknesses of the frontal, parietal, temporal, occipital,

cingulate cortices and their sub-sections, were computed. Fluid (online processing)

aspects of Perceptual Reasoning cognitive intelligence predicted superior choices on

the IGT. However, older adults with higher overall emotional intelligence (EI) and higher

Experiential EI area/sub-scores learned faster to make better choices on the IGT,

even after controlling for cognitive intelligence and its area scores. Thickness of the

left rostral anterior cingulate (associated with fluid affective, processing) mediated the

relationship between age and Experiential EI. Thickness of the right transverse temporal

gyrus moderated the rate of learning on the IGT. In conclusion, our data suggest

that fluid processing, which involves “online,” bottom-up, cognitive processing, predicts

value-based decision-making amongst older adults, while crystallized intelligence, which

relies on “offline” previously acquired knowledge, does not. However, only emotional

intelligence, especially its fluid “online” aspects of affective processing predicts the

rate of learning in situations of complex choice, especially when there is a paucity

of cues/information available to guide decision-making. Age-related effects on these

cognitive, affective and decision mechanisms may have neuroanatomical correlates,

especially in regions that form a subset of the human mirror-neuron and mentalizing
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systems. While superior decision-making may be stereotypically associated

with “smarter people” (i.e., higher cognitive intelligence), our data indicate that

emotional intelligence has a significant role to play in the economic decisions of

older adults.

Keywords: neuroeconomic decision-making, structural imaging biomarkers, emotional intelligence, aging

decision competency, fluid intelligence, cognitive reserve

INTRODUCTION

Scientific consensus refers to intelligence as a general mental
ability (GMA) that enables complex problem solving, reasoning,
experiential learning, the comprehension and generation
of original ideas, and the anticipation and adaptation to
environmental contingencies (Neisser et al., 1996; Gottfredson,
1997). Amongst these higher order mental abilities, most
importantly, intelligence refers to the ability to make sense of
the world, and navigate its unknowns, ambiguities and risks
constructively. Intelligence is also the ability to anticipate and
predict challenges as well as opportunities, and to engage
in behaviors that overcome obstacles and create growth
(Gottfredson, 2003; Hunt, 2010; Sternberg and Kaufman, 2011;
Haier, 2016).

While any construct is only as good as the measures that
estimate it, standardized intelligence tests have validated the “g
factor” (Spearman, 1904) that unifies various tests of mental
abilities pertaining to intelligence, as an emergent property at
the top of a pyramid (Carroll, 1993, 2003). “g” has demonstrated
wide predictive ability in domains of educational attainment
(Brodnick and Ree, 1995), work performance (Schmidt and
Hunter, 1998; Gottfredson, 2003) domains of every-day life such
as financial decision-making (Agarwal and Mazumder, 2013),
and in overall economic and productivity outcomes (Jones,
2011).

With the rapid advancement in neuroscience, we now know
that intelligence relies on neural processing of sensory and
somatic information (Damasio and Damasio, 1991; Jung and
Haier, 2007), thus encompassing and integrating both cognitive
and affective domains to address the complexities of life.
However, current measures of “g” largely tap putative cognitive
domains. Tests that aim to measure more affective, sensory
and somatic aspects of intelligence have been developed more
recently. Specifically, the construct of emotional intelligence
(Salovey and Mayer, 1990), with its accompanying estimates
(Baron, 1997; Mayer, 2002), is a relatively recent development.
Emotional Intelligence refers to an intelligence construct that
involves the ability to read and access emotions to regulate
oneself and others, and to utilize emotional information in
successfully dealing with life, especially situations that involve
social complexities (Salovey and Mayer, 1990; Bar-On, 2006).

Similar to the estimates of the more cognitive aspects of
intelligence, estimates of emotional intelligence have found
predictive validity in academic (Gil-Olarte Marquez et al.,
2006) and workplace (Lopes et al., 2006) achievement, even
after controlling for personality and IQ (cognitive intelligence).
Emotional intelligence also predicts financial decision-making

(Bar-On et al., 2003; Seo and Barrett, 2007), investor behavior
(Ameriks et al., 2009) and greater economic self-efficacy
(Engelberg and Sjöberg, 2006).

Cognitive intelligence may be classified into two categories:
crystallized “gc” and fluid “gf” (Cattell, 1943). “Gf” represents
a form of online cognitive processing, associated with inductive
reasoning and novel problem-solving (Cattell, 1971) that
is relatively independent of prior experience. “Gf” involves
the “manipulation of abstractions, rules, generalizations and
logical relationships” (Carroll, 1993) in the present moment,
while “gc” refers to more offline processing of declarative
information accrued by learning, experience and acculturation
(Carroll, 1993).

The Mayer Salovey Caruso Emotional intelligence Test
(MSCEIT) (Mayer, 2002), an ability and performance measure
(as opposed to self-report), posits two higher -order competency
factors namely strategic (REA) and experiential (EXP) emotional
intelligence that may represent the offline/crystallized and
online/fluid aspects of emotional intelligence, respectively. The
factor structure of REA is based on the ability to understand
emotions based on previous emotional knowledge; to understand
emotional complexity based on how emotions may blend or
change over time, and the relationships between emotions. It also
involves the ability to strategize and manage emotions based on
prior emotional experience and knowledge. EXP on the other
hand may putatively represent online, fluid emotional processing
that involves the ability to accurately perceive emotions in
oneself, others and the environment “in the moment.” It
also involves the ability to evoke emotions/visceral sensation
(vs. emotional recollection) to facilitate and augment thinking
(Mayer, 2002; Mayer et al., 2008). Thus, REA and EXP may be
taken to putatively represent affective counter-parts to “gc” and
“gf”, respectively.

There are age-related declines in “gf” (Horn and Cattell,
1967; Wang and Kaufman, 1993; Ryan et al., 2000) which
may leave older adults less adaptive in choosing appropriate
strategies (Lemaire et al., 2004), and vulnerable to making
inconsistent choices (Tymula et al., 2013) while relying on
simpler, less cognitively demanding strategies (Mata et al.,
2007; Pachur et al., 2009) in personal financial management
(Lachs and Han, 2015). Older adults tend to perform less
well than their younger counterparts in cognitively demanding
unstructured financial decision environments (Mata et al.,
2010, 2012) that tax working memory in the face of multiple
concurrent strategic attributes/cues (Fechner et al., 2019). Older
adults may also have a positivity bias (Mather and Carstensen,
2003) and overestimate their ability to correctly recall their
previous choices (Groß and Pachur, 2019), thus perhaps resulting
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in cognitive neglect of prior losses in current or future
decision-choices.

Additionally, older adults tend to be aversive to ambiguity,
especially in the domains of gains rather than losses (Tymula
et al., 2013). This discomfort with uncertainty, can lead to
heuristic biases, making them less adaptive in decision strategies.
There is evidence that “gf” moderates the ability to pick adaptive
heuristics in economic decision-making (Michalkiewicz et al.,
2018). Hence, discomfort with ambiguity and age-related decline
in “gf,” may be some other factors that mitigate adaptive decision-
making competence amongst the elderly.

Compromised decision-making (Tymula et al., 2013) thus, is
a hallmark of cognitive aging even in healthy older adults making
them particularly vulnerable in economic and financial domains.
Age-related, brain structural, and functional decline has been
implicated in poor trading decisions (Ramchandran et al., 2011).
A dispositional effect of hanging onto losing stocks longer than
middle aged adults (Feng and Seasholes, 2005) could also affect
financial outcomes amongst the elderly. This could be due to
the fact that investors, including the elderly tend to be more
emotionally affected by loss rather than gain (Kahneman and
Tversky, 1979), and their dislike of incurring loss may render
them more likely to gamble in the domain of loss (Shefrin and
Statman, 1985), hanging onto losing stocks longer than they
should (Odean, 1998).

However, skillful individual investors can beat the market
(Coval et al., 2005) and both investor sophistication and trading
experience can partially attenuate these emotional biases (Feng
and Seasholes, 2005). Thus we predict that although older
investors may have greater trading experience and financial
sophistication than younger investors, they are likely to be biased
toward reward-based (Bauer et al., 2013; Eppinger et al., 2013),
affective (Worthy et al., 2016) cues in economic decision-making,
while neglecting purely rational numerical values. While reward-
based cues and numerical values may not be mutually exclusive,
an affective bias toward/against loss/gain (Weller et al., 2011)may
prevent aging investors from weighing numerical financial values
from a cognitively rational/neutral perspective.

Hence, the factors surrounding ambiguity aversion, heuristic,
affective, positivity and reward-based biases, coupled with
declining “gf” could result in skewed decision choices and
compromised economic decision competency amongst older
adults. Thus, emotional intelligence, especially its fluid (online
processing) aspects, may counter age-related mitigating factors
by bolstering cognitive reserve in complex decision-making in
older adults, especially in financial and economic domains.

We measured a community dwelling cohort of healthy
older adults on a laboratory measure of value-based
(reward/punishment) economic decision-making, the Iowa
Gambling Task (IGT), known to tap bio-regulatory, neuro-
economic processes (Bechara and Damasio, 2005). This
task requires (a) cognitively demanding, strategic, monetary
selections; (b) convolved with ambiguous, risky cues; (c) that
would require tracking information of monetary loss and gain
over time; and (d) in a relatively unstructured environment.
The version of the task administered in this study involved
making choice options that are either low gain/low loss or high

gain/high loss. The IGT also requires continuous cognitive
flexibility (fluid, online processing) and exploration in sequential
decision-making (Ligneul, 2019) over the course of 100 trials,
characterizing a “long search” where older adults perform worse
than younger adults (Rydzewska et al., 2018).

There is some shared neural architecture (Barbey et al., 2014)
between cognitive (Jung and Haier, 2007; Glascher et al., 2009;
Gläscher et al., 2010; Haier, 2016) and emotional intelligence
(Bar-On et al., 2003; Krueger et al., 2009; Barbey et al., 2014;
Operskalski et al., 2015; Smith et al., 2018). A subset of this
aging cohort underwent structural imaging allowing us to explore
plausible neural underpinnings of the role of cognitive vs.
emotional intelligence in economic decision-making decline in
healthy aging.

The objective of this research was to (1) examine the
relative roles of intellectual vs. emotional intelligence, and
(2) their fluid “online” vs. crystallized “offline” components,
in economic decision-making in healthy, older adults. We
hypothesized that emotional intelligence may bolster cognitive
reserve amongst the elderly, and stem decision-making decline.
We also hypothesized that fluid aspects of emotional and
cognitive intelligence would play a critical role in dynamic,
online processing of economic choices. We predicted that
fluid processing would significantly impact both (a) the rate
of learning in situations of complex choice (as in the IGT)
where there is a paucity of information or cues in the
initial stages, and (b) in advantageous economic outcomes.
Additionally, we also explored plausible neural substrates
of the influence of these variables on economic decision-
making (IGT).

MATERIALS AND METHODS

Participants
We studied a healthy, community dwelling population of older
adults (N = 39) with an age range of 55 to 89 years (Mean =

72.69, SD = 7.42). Of the 39 participants, 46% were women/54%
men. These participants had an education ranging from 11 to 21
years (Mean = 15.60, SD = 2.98). For this research, participants
were administered the Iowa Gambling Task (Bechara, 2007), the
Wechsler Abbreviated Scale of Intelligence (WASI; Wechsler,
1999) and the Mayer Salovey Caruso Emotional Intelligence Test
(MSCEIT; Mayer, 2002).

To assess economic, value-based decision-making, we used
the Iowa Gambling Task (IGT), which takes about 20min to
administer. This is a laboratory measure of complex decision-
making that is sensitive to the integration of affective and
cognitive processing and to decision-making deficits (Bechara
et al., 2000). Normative data for the IGT exist as well (Bechara,
2007). The IGT measures decision-making under conditions
of uncertainty (ambiguity and risk) and has a strong learning
component. The task entailed having the participants sit in front
of a computer screen, on which were shown four decks of cards
labeled A, B, C, and D. The participants could select (click on) a
card from any deck. On each choice, the face of the card appeared
on top of the deck (the color is either red or black), and a message
was displayed on the screen indicating the amount of money the
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participants had won or lost. At the top of the screen was a green
bar that changed according to the amount of money won or lost
after each selection. Once the money was added or subtracted,
the face of the card disappeared, and the participants could select
another card, after a brief delay. The total number of trials was set
at 100 card selections. Participants were not told ahead of time
how much money they would win or lose as they selected from
each deck. Participants were instructed that they were completely
free to switch from one deck to another at any time, and as often
as they wished. The goal in the game was to win as much money
as possible. All money was facsimile, and as participants started
sampling the decks, the feedback they received on reward and
punishment should have provided cues on identifying good vs.
bad decks. Thus, ideally they learned over time that some of
those decks were riskier choices (with large rewards yet crippling
punishments), but that other decks accumulated financial gain in
the long run (smaller rewards with smaller punishments). In this
task, the participant always wins some money in every trial, but
with some card choices this win is followed sequentially by a loss
(within the same trial). Thus, the task encouraged participants
to modify their choices and improve decision-making over
time. Task uncertainty simulated real life by providing no
clues to participants as to when the game might end, and it
did so abruptly.

Net raw score (picks from good decks minus bad decks) was
the output score on the IGT, and the raw scores were used in the
statistical analysis. Additionally, to capture their learning curve
from the 1st to the 100th trial, we also computed their raw scores
(picks from good minus bad decks) over the progression of the
task, in sets of 20 trials. Each set was known as a block and thus,
we generated raw scores for 5 blocks from the beginning to the
end of the task.

The MSCEIT V.5 (Mayer, 2002) is a standardized ability
and performance measure of emotional intelligence addressing
various aspects of online and offline affective processing with
sub scores for each sub-area of affective processing. The test
contains eight different sections of multiple-choice questions that
assess various aspects of emotional intelligence. Each section has
its own instructions and the participants were encouraged to
answer every question, and if unsure to make the best guess.
The measure also yielded an overall index score of emotional
intelligence (EI), along with two higher-order area sub-scores of
Experiential (EXP) and Strategic Emotional Intelligence (REA).
Although the MSCEIT yields branch and individual task sub-
scores at two levels beneath EXP and REA, we only included
the overall EI score and the two area level scores (EXP and
REA) for analytic purposes in this research since we were
primarily interested in the putative online (fluid-EXP) and
offline (crystallized-REA) aspects of emotional intelligence and
their respective counterparts for cognitive intelligence. This test
was administered to the participants on the Internet and was
scored through the vendor’s automated system. A consensus
scoring system was utilized based on the responses of a
normative sample of 5000 individuals across North America.
The test has a full-scale internal reliability of 0.91 (Mayer,
2002). It took participants between 30 and 45min to complete
the MSCEIT.

The Wechsler Abbreviated Scale of Intelligence (WASI)
(Wechsler, 1999) is a shortened standardized aptitude test
of cognitive intelligence (IQ) which provides an estimated
composite score of Full-Scale IQ (FSIQ) governed by measures
of Verbal Comprehension and Perceptual Reasoning. We
administered the version of the WASI containing two subtests
namely, Perceptual Reasoning Intelligence (PIQ) and Verbal
Comprehension Intelligence (VIQ), taking 30–45min to
accomplish. To measure these domains of cognitive intelligence,
the WASI composites scores of Verbal Comprehension and
Perceptual Reasoning into a higher-order factor score of FSIQ
(Wechsler, 1999). This two-factor model of VIQ and PIQ, had
the best goodness-of- fit indices (two factor/ vs. one factor
model: Root Mean Square Residual = 0.517/6.104, Tucker Lewis
Index = 4.8/124.6), with the normative data (N = 2,245), with
a correlation of r=0.63 between the two factors (Weschler,
1999). Psychometric research has historically assayed “gc” (based
on prior experience and verbal acculturation) with tests of
verbal reasoning and “gf” (online problem-solving based on
schema, generalizations, and logical relationships) with tests of
perceptual reasoning (Cattell, 1943, 1971; Carroll, 1993, 2003;
Kaufman et al., 1994). Following this lead, we use VIQ and PIQ
as measures of “gc” and “gf”, respectively in this study. The test
was administered in-person and scored using algorithms which
reflect a normal curve with a mean score of 100. The WASI was
standardized using a normative sample of 2,245 individuals,
ages 6–90 years, broken into 23 age groups, each of which are
scored independently (Maccow, 2011). TheWASI has a full-scale
internal reliability of 0.94.

Both the MSCEIT and WASI test scores are standardized
with Mean = 100, Standard deviation = 15. Each of these
tests were administered by trained research assistants in private
testing rooms on separate days and thus fatigue in a single
sitting was minimized. The MSCEIT data was collected in a
separate session from the WASI and IGT, over a two-year
period for all 39 subjects. All subjects were comfortable using
the computer. Thus, the three main tasks and the MRI data
were all conducted in a period that is broadly contemporaneous,
within a two-year window. Of the 39 participants in this study, 27
participants (cortical thickness analysis) overlapped with those
who underwent structural imaging for a different study. Hence
those sMRI data were available for use in our research, and we did
not perform new sMRI data collection for the current study (the
other 12 subjects were not available for further data collection).
All subjects were comfortable using the computer.

Three-dimensional (3D) T1 weighted MRI scans were
obtained for 27 of these older participants on a 1.5 Tesla General
Electric SIGNA System (GE Medical Systems, Milwaukee, WI),
using a spoiled gradient recall sequence with the following
parameters: 1.5mm coronal slices, 40-degree flip angle, 24ms
TR, 5ms TE, 2 NEX, 26 cm FOV and a 256X192 matrix.
Freesurfer (Fischl, 2012) software was used for cortical thickness
estimations of all brain lobes and their sub-regions. Since the
key neural substrate of the IGT is implicated to be the ventro-
medial prefrontal cortex (VMPFC) (Lin et al., 2008; Lezak
et al., 2012), cortical thickness estimations of the right, left and
bilateral VMPFC were derived using Q-dec, a subcomponent of
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Freesurfer software. All ROIs were normalized for total cerebral
thickness during analysis.

Group Statistical Analysis
A correlation matrix with multiple comparisons correction was
created (Table 1) with all the key variables of economic decision-
making (IGT), emotional and cognitive intelligence index and
area/sub-scores, age and sex. Table 1 also contains t-test values
on the top and bottom quartiles of each behavioral variable to
examine if they differ significantly. These are reported on the
diagonal of the correlation matrix in Table 1.

A set of regressions models (Table 2) were created to
examine if economic decision-making was predicted by (Model1)
emotional vs. cognitive intelligence index scores; and (Model 2)
the fluid (EXP, PIQ) and crystalline (REA, VIQ) area scores of
emotional and cognitive intelligence.

Another set of hierarchical multi-level regression models
(Raudenbush and Bryk, 2002) reported in Table 3, were created
to examine if (Model 1) the constructs of emotional vs. cognitive
intelligence, and (Model 2) the fluid (EXP, PIQ) and crystalline
(REA, VIQ) area scores of emotional and cognitive intelligence,
predicted the rate of learning during the course of card selection
of 100 trials in the IGT. The outcome variable was the IGT
score across 100 trials divided into 5 blocks from start to finish
(Figure 1). The emotional and cognitive intelligence index and
area scores were median split into (High/low) and used as
independent variables in linear mixed effect modeling. A random
intercept was assigned to each subject.

Both the above regression analyses (Tables 2, 3) were split
into two models each, in order to avoid collinearity between the
hierarchically organized index scores and their respective area
score variables in models 1 and 2. Combining Models 1 and 2
resulted in variance inflation factors (VIF) that were higher than
10, reflective of high collinearity between variables. Each of the
Models 1 and 2, in Tables 2, 3 had acceptable VIFs <6, reflecting
an absence of collinearity.

All the 70 ROIs (neural substrates) generated by Freesurfer
software were utilized for analyses in conjunction with the
intelligence and decision-making variables. This was performed
using LASSO (Least Absolute Shrinkage and Selection Operator)
regression (Tibshirani, 1996), a penalized regression method
that simultaneously performs estimation and variable selection.
This is achieved by applying a non-negative penalty term to
the magnitude of the beta estimates such that all estimates
are shrunk toward zero with some being shrunk all the way
toward zero. A larger penalty term performs more shrinkage
and thus would indicate a more conservative approach in
estimating the association between the independent variables and
the dependent variable. An appealing feature of the LASSO is
that it can handle high-dimensional settings (i.e., more predictors
than observations), such as those arising in this research where
Freesurfer has generated 70 cortical thickness regions in a
relatively small sample of 27 older adults. Using 3-fold cross-
validation to select the penalty term, the LASSO was used as
a screening tool to select ROIs amongst the candidate set of
70 regions generated by Freesurfer. Thus, a separate LASSO

regression was executed for each of the behavioral outcome
variables (EI: REA, EXP; FSIQ: PIQ, VIQ; IGT). For every
dependent variable, the most conservative beta estimates of each
predictor of the 70 ROIs (that survived the penalization) was
selected. These results are presented in Table 4. If more than one
ROI survived the penalization for a dependent variable, then the
one with the largest beta estimate was chosen as best representing
the neural substrate for that construct.

A mediation model (Baron and Kenny, 1986) was constructed
to examine the causal mediating role of the thickness of the
left rostral anterior cingulate fasciculus gyrus in predicting the
relationship between experiential emotional intelligence and age.

Another HLM model was used to examine the moderation
effects of the thickness of the right transverse tegmental gyrus
(RTTG), on rate of learning on the IGT. The thickness of
the RTTG was median split (Thicker/Thinner) and used as an
independent variable in linear mixed effect modeling. A random
intercept was assigned to each subject. Sex was used as a control
variable in the regressions reported in Tables 2, 3 and Figure 5.

RStudio (RStudio Team, 2015) software was utilized for
generation of the Pearson’s correlation matrix (Table 1), multiple
regression analyses (Table 2), LASSO regression (Table 4) and
HLM (Raudenbush and Bryk, 2002) for the moderation analyses.
RStudio was also used to execute the mediation model (Baron
and Kenny, 1986). Please review the Supplementary Material

section containing detailed descriptions of these regressions in
Wilkinson-Rogers notation.

RESULTS

The means and standard deviations of the WASI and MSCEIT
scores and sub-scores are reported in the first and second
columns of Table 1. This group of older adult participants
displays above average intellectual and emotional intelligence
scores, as indicated by the normative data of these two
instruments (M = 100, SD = 15). The correlations between
the index scores of the WASI/MSCEIT and their respective
sub-scores retain statistical significance, even after multiple
comparisons correction (Table 1), reflecting the robust construct
validity and reliability of these two instruments. Of note is that
the WASI and MSCEIT index and sub-scores do not cross-
correlate with each other or their counterpart fluid and crystalline
sub-scores, suggesting that the test construction of these two
instruments address disparate aspects of intelligence, perhaps
with no overlap.

The core analytic focus of this research was to examine the
role of emotional vs. cognitive intelligence in complex economic
decision-making processes in older adults, with a secondary
exploration of the underlying neuroanatomical substrates.

Table 1 indicates that age is significantly, positively correlated
with full scale cognitive intelligence. Age is also significantly
positively correlated with its verbal comprehension sub-score
(VIQ), which is putatively represented by crystallized intelligence
(Kaufman et al., 1994). While fluid intelligence (PIQ) is
hypothesized in the literature to decline with age, the two are not
significantly correlated in our dataset (Table 1).
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TABLE 1 | Means, standard deviations, and correlations among study variables.

Variable Mean SD 1 2 3 4 5 6 7 8 9

1. Age 72.69 7.42

2. Sex 1.44 0.506 −0.135

3. Full scale cognitive intelligence 117.62 12.47 0.509** −0.172 4.03***

4. Perceptual reasoning cognitive intelligence 115.13 14.19 0.313 −0.054 0.804*** 1.49

5.Verbal Comprehension cognitive intelligence 117.38 12.16 0.575*** −0.225 0.785*** 0.382 6.03***

6. Emotional intelligence 92.04 14.58 −0.300 −0.268 0.094 0.015 0.254 −1.73

7. Experiential emotional intelligence 96.14 16.30 −0.465* −0.177 0.039 −0.019 0.126 0.888*** −3.19**

8. Strategic emotional intelligence 91.51 12.16 0.019 −0.410* 0.109 0.021 0.345 0.815*** 0.476** 0.721

9. Decision-making performance 11.79 40.98 −0.127 −0.203 0.278 0.347 0.150 0.274 0.295 0.179 −0.43

*p < 0.0.5; **p < 0.01; ***p < 0.001 (2-tailed). Multiple Comparisons were accounted for by False Discovery Rate Correction. Uppermost (emboldened) values on the diagonal are

t-values of behavioral variables, after patients were divided into top and bottom quartiles based on age. SD, Standard Deviation.

TABLE 2 | Results of multiple regression analyses predicting decision-making

performance in older adults.

Predictors Adjusted R2 β

1. Model 1 0.092

Cognitive Intelligence 0.836

Emotional Intelligence 0.704

2. Model 2 0.121

Perceptual reasoning cognitive intelligence 1.017*

Experiential emotional intelligence 0.763

Verbal comprehension cognitive intelligence −0.109

Strategic emotional intelligence −0.078

N = 39 *p < 0.05.

Dependent Variable: Economic Decision-Making. Control Variable: Sex.

However, the fluid counterpart of emotional intelligence
(EXP), significantly declines with age. The IGT does not
significantly correlate (after multiple comparisons correction)
with any of the measures in Table 1.

We were interested in separating the role of EI vs. IQ in
economic decision-making and performed additional analyses
to that effect. To explore how each of these two modes of
intelligence predict performance on a laboratory measure of
economic decision-making (IGT), while controlling for the other,
we executed two separate multiple regressions (Models 1,2:
Table 2) with IGT net score as the outcome measures. The
predictors inModel 1 were FSIQ and EI index scores. InModel 2,
the fluid intelligence sub-scores of PIQ, EXP, and the crystallized
intelligence sub-scores of VIQ and REA were the predictor
variables. Sex was a control variable in both Models 1 and 2.
Please see Supplementary Material section of Wilkinson-Rogers
notation for model details.

The results (Table 2), indicate that PIQ (β = 1.017, p < 0.05),
the measure of “gf” significantly predicts IGT performance.

The IGT’s ecological validity lies largely in its incorporation
of ambiguity and risk/reward in financial choice options which
the decision-maker must learn to navigate as the task progresses.
One goal was to explore how the cognitive and affective aspects
of intelligence might influence the rate of learning in discerning

patterns of risk from prior wins and losses in making current
advantageous monetary choices. To examine the rate of learning,
monetary selections in the IGT (number of picks from good
decks minus bad decks) across the 100 trials were sorted into 5
blocks (20 trials in each block), representing the progression of
the task from start to finish (Blocks 1–5).

Table 3 indicates the significant results of the two hierarchical
level models (HLMs) with IGT performance (by deck) as the
outcome measure. The median splits (High/low) of (Model
1) EI and FSIQ, (Model 2) EXP, REA, PIQ, and VIQ are
predictor variables. Each model controlled for its respective
counterparts in cognitive intelligence and sex. The interactions
of advantageous decision-making by block X emotional aspects
of intelligence significantly predict rate of learning on the
IGT in each of the two HLMS, the highest being that for
EXP (β = 1.87, p<0.05). A visual display of these HLMs
in Figure 1 indicates that in a median split, those low in
the fluid aspect of emotional intelligence (EXP) display the
most impaired rate of learning across decks, from start to
finish on the IGT. This is followed by low overall index
score of EI.

It is in the first few blocks that the greatest ambiguity is
presented to participants, when, through trial and error, they
are required to learn to distinguish between the good and bad
(risky) decks.

It is in these early blocks of the IGT that higher emotional
intelligence scores predict a superior rate of learning, whose
steady small gains are gradually accrued in putatively greater
financial capital by the end of the task, as is visually apparent
in Figure 1. This analysis suggests that the affective (rather than
cognitive) aspects of intelligence, and especially its fluid aspect,
significantly predict the rate of learning on this financial decision-
making task under conditions of risk and ambiguity.

In a quest to map some of the neuro-anatomical
underpinnings of these behavioral results, the structural
imaging correlates of these behavioral variables on a smaller
subset (N = 27) of this sample were collated using a LASSO
regression (see Methods section for details). The results of the
LASSO regression presented in Table 4, displays the regression
weights of the significant cortical thicknesses of ROIs that
that survived the penalty system of the LASSO method, and

Frontiers in Neuroscience | www.frontiersin.org 6 May 2020 | Volume 14 | Article 497

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Ramchandran et al. EIaging

TABLE 3 | Significant results of hierarchical level models of intelligence and Iowa gambling task block performance.

Predictors β Standard

Error

Median

value

High median

demographics

Low median

demographics

Model 1: Interaction effects of emotional intelligence*IGT block 1.663* 0.810 89.741 n = 20, M = 7, F = 13,

age 55–85 years

n = 19, M = 11, F = 8,

age 66–89 years

Interaction effects of cognitive intelligence*IGT block 1.372 0.813 118 n = 20, M = 10, F = 10,

age 60–89 years

n = 19, M = 8, F = 11,

age 55–80 years

Model 2: Interaction effects of experiential emotional intelligence

*IGT block

1.870* 0.931 95.020 n = 20, M = 10, F = 10,

age 55–85 years

n = 19, M = 8, F = 11,

age 66–89 years

Interaction effects of strategic

emotional intelligence*IGT block

0.464 1.000 90.577 n = 20, M = 5, F = 15,

age 55–85 years

n = 19, 1 M = 13, F = 6,

age 61–89 years

Interaction effects of verbal comprehension cognitive intelligence

*IGT block

0.987 0.969 115 n = 20, M = 7, F = 13,

age 60–89 years

n = 19, M = 11, F = 8,

age 55–76 years

Interaction Effects of perceptual reasoning

cognitive intelligence*IGT block

0.174 0.896 117 n = 20, M = 9, F = 11,

age 66–89 years

n = 19, M = 9, F = 10,

age 55–84 years

N = 39, *p < 0.05. Dependent Variable: Economic Decision-Making (IGT net score by block). M, male, F, female.

Control Variable: Sex.

that were associated with each behavioral variable. Thus, the
overall EI index score, was predicted by the cortical thickness
of only one ROI, namely, the right lower occipital fasciculus
gyrus (RLOFG). On the other hand, three different ROIs
survived the penalty system of the LASSO regression for
the IGT. In this case, the ROI with the highest regression
weight, namely the cortical thickness of the right transverse
temporal fasciculus gyrus (RTTFG), is taken to be predictive of
IGT performance.

Seen in Figure 2 is a visual representation of the average
cortical thicknesses of the significant ROIs of this population
on the Freesurfer software template. The index score for
cognitive intelligence and its fluid sub-score of PIQ are both
predicted by the thickness of the same ROI, namely the right
superior temporal fasciculus gyrus (RSTFG-Table 4, Figure 2).
Similarly, both the index score for emotional intelligence (EI)
and its crystallized emotional intelligence sub-score of REA
are best predicted by the thickness of the RLOFG (Table 4,
Figure 2).

Note that no ROI survived the penalty system of the LASSO
regression for VIQ (crystallized intelligence counterpart of
cognitive intelligence).

Also included in Figure 2 is the right inferior parietal
fasciculus gyrus (RIPFG), which has the second highest
regression weight associated with REA (Table 4).

The ROIs of the right superior temporal gyrus (FSIQ, PIQ)
and the right inferior parietal fasciculus gyrus -Brodmann’s areas
(BA) 39, 19 (REA) and right lower occipital fasciculus gyrus-BA
17, 18, 19 (EI, REA), confluence around a section of the brain
(parietal temporal junction-TPJ) associated with theory-of mind
(Schurz et al., 2014); as is the medial prefrontal cortex -BA 24, 32
(LRACFG). These set of regions (BA 24, 32, 39, 37, 18, 19, and
17) are also part of the P-FIT network associated with cognitive
intelligence (Jung and Haier, 2007). They represent visuo-
parietal association cortices (BA 39, 37, 18, 19) involved with
the organization of multi-modal perceptual/sensory information
and the frontal limbic areas (BA 24, 32) (Schurz et al.,
2014).

Since EXP best predicts the rate of learning on the IGT
(Table 3, Figure 1), we explored aging effects of EXP on its neural
substrate Left Rostral Anterior Cingulate Gyrus (LRACFG)
(Table 4, Figure 2) in a mediation analysis. The thickness of the
LRACFG, partially mediates (33%) the relationship between age
and experiential EI (EXP) (Figures 3, 4).

The right transverse temporal fasciculus gyrus (RTTFG)
emerges as a partial neural substrate for decision-making
performance (Table 4). While the thickness of both the left
medial orbital frontal gyrus (LMOFG) and the left postcentral
fasciculus gyrus (LPostCFG), survive the penalty system of the
LASSO regression in predicting IGT score, the regression weight
of the TTFG is several-fold higher than the other two regions
(Table 4).

The thickness of the RTTFG also moderates the rate of
learning on the IGT as the trials progress from start to finish
(Figure 5). The interaction of thickness of RTTFG ∗IGT block
(β = −2.778, SE = 0.9906, p < 0.001), after controlling
for sex, significantly predicts IGT performance. The median
ratio of the RTTFG to total cerebral thickness is 0.191. The
demographic distribution of those with thinner cortices is N
= 14, Age range 61–81 years, 10males, 3 females; while those
with thicker cortices is N = 14, age range = 60–89, 5 males
and 9 females. While all participants start the IGT with loss-
making choices, those with thinner cortices (median split) of
the RTTFG learn to make advantageous choices over time, while
those with thicker cortices of the RTTFG do not. Note that the
oldest subjects tend to have thicker cortices (median split). The
results are not significantly altered with or without controlling
for sex.

DISCUSSION

To summarize, while the construct of intelligence is considered
to be stable over a lifespan, our results indicate that even
within a cohort of independent, healthy, community-
dwelling older adults, (1) there may be significant individual
differences in cognitive and emotional aspects of intelligence
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FIGURE 1 | Role of emotional intelligence in rate of learning on the Iowa Gambling Task: The y axes represent advantageous decision-making on the Iowa Gambling

Task (IGT), calculated as the number of picks from the bad decks subtracted from the number of picks from the good decks. The x axes represent the progression of

the task across trials in 5 blocks (of 20 trials each) from the start to the end of the task. A median split separates high (red) and low (blue) scores on index score of

emotional intelligence (EI), and its area sub-score Experiential Emotional Intelligence (EXP).

that impact their economic decision-making competence;
(2) this may be modulated by declines in fluid rather
than crystallized aspects of cognitive and emotional
intelligence; and (3) these individual differences may be
mediated and moderated by structural changes in the
brain across the lifespan. We discuss the implications
of these results in the context of the neurobiology of
aging and the anatomical substrates of cognitive and
emotional intelligence.

Theory of mind, referring to insight into the mental states of
oneself or others, could putatively be associated with emotional
and social intelligence. Cortical thickness data in a subset of
this group, reveal an overlapping patchwork of brain regions
associated with theory of mind (involving right parietal and right
occipital cortex), and the left anterior cingulate (Schurz et al.,
2014) as a potential neural substrate for emotional intelligence.

The right superior temporal cortex emerges as a potential
neural substrate for cognitive intelligence and its fluid facet
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TABLE 4 | LASSO regression results.

Behavioral

variables/correlation of

brain regions with age

RLOFG

−0.126

LRACFG

0.408*

LLFG

−0.282

RIPFG

−0.069

LPTFG

0.091

RSTFG

−0.097

LMOFG

−0.082

RTTFG

0.164

LPostCFG

0.106

EI β = 1.02

EI-EXP β = 6.35 β = 0.06

EI-REA β = 1.22 β = 0.66 β = −0.13

FSIQ β = −1.27

PIQ β = −1.58

IGT β = 3.50 β = −162.79 β = −7.69

The top row contains the brain regions that survived the LASSO regression. Beneath each region is its pure, uncorrected correlation with age, *p < 0.05. RLOFG, Right Lower Occipital

Fasciculus Gyrus; LRACFG, Left Rostral Anterior Cingulate Fasciculus Gyrus; LLFG, Left Lingual Fasciculus Gyrus; RIPFG, Right Inferior Parietal Fasciculus Gyrus; LPTFG, Left Posterior

Temporal Fasciculus Gyrus; RSTFG, Right Superior Temporal Fasciculus Gyrus; LMOFG, Left Middle Orbitofrontal Fasciculus Gyrus; RTTFG, Right Transverse Temporal Fasciculus

Gyrus; LPCFG, Left PostCentral Fasciculus Gyrus.

FIGURE 2 | Visual representation (on the Freesurfer software template) of the average cortical thicknesses of the significant Regions of Interest (ROIs). These are

predictive of emotional intelligence index score (EI), its area sub-scores Experiential Emotional Intelligence (EXP), Strategic Emotional Intelligence (REA); Full scale

cognitive intelligence index score (FSIQ), its sub-score Performance Intelligence Quotient (PIQ), and the IOWA Gambling Task score. N = 27.

(perceptual IQ), while the right transverse temporal gyrus
emerges as a potential neural substrate for this economic
decision-making task. In this group with structural imaging
data, a thinner cortex appears to be predictive of superior
performance. The thickness of the left rostral anterior cingulate
cortex mediates the relationship between age and experiential
emotional intelligence, such that older adults with thinner
cortices of LRACFG tend to have higher experiential intelligence.
In the case of decision-making performance, those aging adults
with thinner right transverse temporal gyri tend to learn with
experience in making better economic choices over the course of
the task, while those with thicker cortices do not.

Research on intelligence includes proponents of multiple
intelligences, while others have proposed that the field is
best served by a unitary construct of intelligence requiring
the development of superior measures that assay its various
components. While Spearman’s concept of “positive manifold”

(Spearman, 1904) proposed that all estimates of mental abilities
positively correlate with each other, this is true in our dataset
only for the relationships within the index scores and their
respective sub-scores of IQ or EI; but not between the scores/sub-
scores of EI and IQ, given that questions on the MSCEIT
almost exclusively tap emotional and social domains, which the
WASI does not. Hence the absence of “positive manifold” in our
research, cannot be interpreted as measuring two different kinds
of intelligences.

The literature has been mixed in the relative contribution of
EI and IQ to performance on the IGT. Recent studies utilizing
the MSCEIT has suggested that individuals low in EI tend to
misappraise physiological signals in risk-taking (Yip et al., 2019),
and perform poorly on the IGT, a “hot” task with physiological
arousal of somatic markers in comparison to a decision-making
task that was relatively cognitively “cool” and that did not
tap affect (Checa and Fernández-Berrocal, 2019). Cognitive
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FIGURE 3 | Visual representation of causal mediation of the Rostral anterior

cingulate fasciculus gyrus (LRACFG). The Y axis represents the Average

causal mediated effect (ACME); the Average direct effect (ADE- residual effect

after mediation) of age on experiential emotional intelligence (EXP); and the

total effect of the ACME and ADE. The X-axis represents the regression

weights (effect estimates).

FIGURE 4 | Path diagram of the causal mediation of the Rostral anterior

cingulate fasciculus gyrus (LRACFG). Given the significant negative correlation

between age and EXP (Table 1), and the negative direction of the regression

estimates (Figures 3, 4) between LRACFG and EXP, it appears that those

amongst the older aging adults with thinner LRACFG, tend to have better

preserved EXP.

intelligence in these studies, did not significantly predict outcome
on the IGT. Training on EI has also indicated gains in
performance on the IGT (Alkozei et al., 2019), while cognitive
intelligence is considered to be a less malleable construct.

IQ and not EI predicted IGT performance in research utilizing
a self-report measure of EI and a measure of verbal IQ in young
adults (<25years) (Demaree et al., 2010). More similar to our
research, a study utilizing theWASI and three different measures
of EI (including the MSCEIT) that were analyzed simultaneously
while controlling for IQ, found that cognitive and not emotional

intelligence (controlled for EI) predicted IGT performance in a
younger cohort (age:18–45) (Webb et al., 2014). In our study
in older adults, using some of the same measures, it is the fluid
aspects of cognitive intelligence namely perceptual reasoning that
predicts IGT performance.

It is possible that relatively preserved emotional intelligence
augments aging decline of “gf,” and thus EI and especially its fluid
component (EI-EXP) may prove to be more critical in learning
across the stages of financial decision-making (after controlling
for IQ) within an aging context, as our study suggests. This is
supported by a neural substrate, our finding that the thickness
of the LRACG mediates the relationship between age and EI.
The anterior cingulate, a paralimbic region associated with the
midbrain dopamine neuron system’s risk/reward processing,
is also linked to compromised financial decision-making in
older adults due to aging decline in executive control, reward
processing and default mode functional connectivity networks
(McCormick et al., 2019). Aging structural/functional decline of
this region could impact EI’s influence on decision-making on
the IGT by biasing older adults toward immediate monetary
reward (McClure et al., 2004). This region is subsumed within
the VMPFC, classically implicated in the affective aspects of IGT
performance (Bechara et al., 2000), and implicated in decision-
making decline in older adults (Halfmann et al., 2014) on the
IGT. The VMPFC, that classically integrates both affective and
cognitive inputs, is shown to be insensitive to risky choices in
the domains of both gain and loss (Weller et al., 2007), and
hence, aging decline of the anterior cingulate could compromise
the contributions of both emotional and cognitive intelligence to
IGT performance.

The distribution of brain regions (cortical thickness) in
relation to the intelligence variables in Figure 2 builds an
interesting picture in the light of prior findings. The RSTFG
(containing a section of the arcuate fascicule) has been previously
implicated with perceptual organization and working memory
index of WAIS-III (Glascher et al., 2009), supporting our results
of both PIQ and FSIQ mapping on to the same region in
this aging population. No region survived the robust penalty
system of the LASSO regression in relation to VIQ, though the
STFG associated with FSIQ (Basten et al., 2015) would subsume
the Wernicke’s area, associated with tonal/speech processing
and comprehension.

Prior lesion research has implicated the PFC, especially the
VMPFC in self-reported EI (Bar-On et al., 2003); and it’s sub-
regions, the DLPFC and the VMPFC with EI-EXP and EI-REA
of the MSCEIT, respectively (Krueger et al., 2009). However, in
our healthy aging cohort, those brain regions associated with EI
-Figure 2 (and its sub-scores of REA and EXP) map on to the
posterior-anterior progression (Sitartchouk and Evans, 2017) of
intellectual neural processing postulated by the P-FIT (Jung and
Haier, 2007), although this distributed network of brain regions
was developed in the context of “g” and cognitive intelligence.
Thus, both EI and its REA sub-score are associated with posterior
regions of the right hemisphere in this dataset, representing
the association/multi-modal sensory cortices, the fusiform and
extra-striate cortex (imagery, visual recognition and elaboration)
and BA22 (extending syntax of auditory information). All of
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FIGURE 5 | Neural substrate that moderates decision-making performance in aging adults. The X axis represents Iowa Gambling Task (IGT) task performance in 5

blocks (1–5) of 20 trials each, from start to finish. Y axis represents IGT score. The cortical thickness of the neural substrate, right transverse tegmental gyrus (RTTFG),

is median split into thick (blue) and thin (red). Control Variable: Sex.

these represent Stage 1 of processing of intellectual information
proposed by P-FIT (Colom et al., 2010). Stage 2 processing
proceeds to the inferior parietal lobule (EI, REA) and the planum
temporale (LPTFG-Table 4) containing a section of the arcuate
fascicule, involving the abstraction and integration of multi-
modal sensory information from Stage 1, including speech,
auditory and visual comprehension. This section of the superior
temporal gyrus around the planum temporale also forms a key
“imitation” node of the frontal-parietal human mirror neuron
system providing both visual input and serving as a hub of
interpreting “intention of action” in theory of mind (Iacoboni
and Dapretto, 2006; Schurz et al., 2014). Thus Stage 1 and 2
may represent the process of crystallization of affective/sensory
information as per the latent construct of strategic emotional
intelligence and the regions associated with these stages have
also been previously associated with emotional intelligence
(Barbey et al., 2014). Thus, the white matter tract of the
arcuate fascicule (contained in both STFG, angular gyrus, planum
temporale) may play a significant role in connecting the posterior
and anterior (frontal) sections of the brain in the 3rd stage
of intellectual processing for evaluation and problem-solving.
The fluid component of EI-EXP is associated in our dataset
with the left anterior cingulate (Figure 2, Table 4—LRACFG),
representing a more fluid component of emotional intelligence
(i.e.) emotional regulation-attentional flexibility, error detection

and inhibition of pre-potent response. The anterior cingulate (BA
32) also represents Stage 4 of intellectual processing as per the P-
FIT for generating alternatives and response selection from Stage
3 solutions (Jung andHaier, 2007; Colom et al., 2010). Thus, these
stages of intellectual processing that are postulated to involve
bi-directional, hierarchical, parallel processing (Haier, 2016), are
applicable to the domain of emotional intelligence as well, in our
population of older adults. A recently developed neuro-cognitive
model for emotional intelligence postulates a distributed network
of regions (Smith et al., 2018) with shared architecture attributed
to the P-FIT and the somatic marker hypothesis (Bechara and
Damasio, 2005). This points to a unitary construct for intelligence
combining sensory, somatic, affective and cognitive components.
Hence, it also calls for the development of intelligence estimates
that combines all these elements into a single set of measures.

The orbito-frontal (OFC)/ventro-medial prefrontal regions
have been classically implicated in IGT (Lezak et al., 2012)
performance and especially in the aging context (Denburg
et al., 2005; Halfmann et al., 2014). Although the OFC/VMPFC
along with the postcentral fasciculus gyrus (association sensory
cortex) are implicated as somatic markers of neuroeconomic
behavior (Bechara and Damasio, 2005; Damasio, 2009), in our
aging cohort, the RTTFG’s prediction of IGT performance is
significantly higher than the former two regions (Table 4). The
primary auditory cortex (RTTFG) associated with the IGT in
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this dataset and being subsumed within the RSTFG is significant
in that auditory perception is a second -order factor of “g” as
proposed by J. B. Carroll’s three stratum theory of intelligence
(Carroll, 1993, 2003). The TTFG folding inward toward the
medial temporal lobe and insula has strong connections with
these regions including the amygdala, hippocampus and Para
hippocampal gyrus. Hence this region receives substantial
somatic, sensory, affective and memory-related information, and
not just in the auditory context and has been linked to emotional
intelligence (Smith et al., 2018) as well, specifically in the context
of affective prosody (Belyk and Brown, 2013).

The RTTFG can discriminate between rapid, fine-grained
frequency changes of spectral, timbre and temporal sound
processing (Samson and Zatorre, 1994; Zatorre and Belin, 2001).
This fine-tuned, nimble flexibility may extend to non-auditory,
multi-modal, higher-order processing as well, given the wealth
and variety of information this gyrus has access to. Thus, the
RTTFG may possess the dynamic capabilities to process the IGT
which requires quick, fine-grained probabilistic discriminatory
choices, sequential (trial by trial) search memory of loss
versus gain information and continuous learning over extended
(100) trials. The IGT provides auditory feedback (simulating a
gambling casino) with different sounds for financial loss and gain,
which in older adults may preferentially activate the RTTFG’s
discriminatory processing. This may be a more parsimonious
explanation of this region’s implication in IGT performance.

Given that the thickness of the RTTFG moderates quality
of decision-making on the IGT across trials; and that a
thinner RTTFG predicts better performance, it may be that
large inputs of somatic/sensory/affective information may
overwhelm financial decision-making in the older adult. Perhaps
a thinner auditory cortex’s role in superior performance in
the IGT may be a function of early developmental pruning,
thus optimizing information flow from somatic cues with
decision quality. The central acoustic system in the brain is
subject to neuroconstructivist (Westermann et al., 2007) cellular
and synaptic plasticity associated with sensory exposure and
experience (Sanes and Bao, 2009; Yin et al., 2018). Functional
activation in the developmental auditory cortex has also been
linked to higher language related cognitive scores (Deshpande
et al., 2016). In the developmental context, cortical functional
activation in acoustic tasks is negatively correlated with cortical
thickness, suggesting that cortical thickness and function are
likely linked to early pruning of exuberant connectivity (Anurova
et al., 2014). All of these suggest that developmental pruning of
the RTTFG may be linked with higher rate of learning on the
IGT. It is also of note that in our sample, those with thinner
RTTFG cortex (higher rate of learning on the IGT) tend to be
younger (60–80 years of age), while those with thicker RTTFG
cortex (lower rate of learning on the IGT), tend to be older (61–
89 years of age) by almost ten years. This may be an artifact of our
small sample and we interpret these findings prudently. While
our results may be counter-intuitive to the finding that cognitive
impairment is linked with cortical thinning (Pacheco et al., 2015),
our research is based on a cross-sectional sample where subjects
are not followed longitudinally. Importantly, this result pertains
to the rate of learning on the IGT, and not to IGT outcome score

itself. Hence, our result cannot be treated as clinical evidence of
either cognitive impairment or reserve.

One of the major limitations of this research is that our
evidence is purely correlational and given a relatively small
sample size, these exploratory results provide cues to further
investigation of the factors that drive economic decision-making
amongst the elderly. Another limitation is that we did not
have a younger comparison group with similar measures, that
would have allowed us to more thoroughly investigate the role
of fluid and crystalline affective vs. cognitive intelligence on
economic decision-making.

Although our neuro-anatomical results are interpreted
prudently given the small sample, we are intrigued by the
potential role of the TTFG and the superior temporal lobe in
neuro-economic behavior, as having emerged in this study, as
potential regions of interest to be researched in the future. While
the IGT has been featured in over 800 studies as an ecologically
valid measure of complex economic decision-making (Lezak
et al., 2012), its predictive validity is restricted in this study due
to the lack of real-world financial measures (Lichtenberg et al.,
2018) of these participants that we could have cross-compared
our data with.

One strength of these data, although possessing a modest
sample size, lies in its inclusion of community dwelling,
independent, active, healthy aging adults as old as 89 years.
An additional strength has been the combination of both
psychological and neuroimaging data that have yielded
promising results. The use of the LASSO regression method
facilitated the simultaneous exploration and robust examination
of large numbers of brain regions relative to a small sample, in
association with each behavioral variable.

Our results substantiate the role of fluid (“online processing”)
aspects of cognitive and emotional intelligence in bio-regulatory
processes that influence economic decision-making through
rapid somatic cues that signal impending loss or gain in real-
time (Bechara and Damasio, 2005). Additionally, the mediating
and moderating effects of neural substrates on fluid aspects
of emotional intelligence, age and decision-making in our
study, have implications for (1) affective/heuristic biases in risky
economic decision-making (Worthy and Maddox, 2012), and
(2) overweighting low probabilities of gain or risk-seeking in
loss domains (Kahneman and Tversky, 2013) (i.e., bias toward
selecting from bad decks affects the rate of learning on the
IGT). These neural substrates provide incremental evidence that
decline in economic decision-making amongst older adults may
have an organic basis.
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