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Lifestyle factors have been shown to increase the risk of developing Alzheimer’s disease
(AD) later in life. Specifically, an unfavorable cholesterol profile, and insulin resistance
are associated with increased risk of developing AD. One way to non-pharmacologically
affect the levels of plasma lipids is by exercise, which has been shown to be beneficial
in cognitively healthy individuals. In this randomized controlled trial y, we therefore
aimed to clarify the effect of physical exercise on the lipid profile, insulin and glucose in
patients with AD. In addition, we investigated the effect of apolipoproteinE genotype on
total cholesterol, high-density lipoprotein-cholesterol (HDL-C), low-density lipoprotein—
cholesterol (LDL-C), and triglycerides (TG) in plasma from patients with AD. Plasma
samples from 172 patients who underwent 16 weeks of moderate-to-high intensity
exercise (n = 90) or treatment as usual (n = 82) were analyzed change from baseline for
the levels of total cholesterol, LDL-C, HDL-C, TG, glucose, and insulin. In addition, we
analyzed those from the exercise group who adhered to the protocol with an attendance
of 2/3 or more of the exercise session and who followed the protocol of an intensity of
70% of the maximum heart rate. We found a significant increase in plasma HDL-C levels
between the “high exercise sub-group” compared to control group. After intervention
HDL-C was increased by 4.3% in the high-exercise group, and decreased by 0.7% in
the control group, after adjustment for statin use. In conclusion, short term physical
activity may be beneficial on the cholesterol profile in patients with AD.
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INTRODUCTION

Lifestyle risk factors in midlife are associated with risk of
developing Alzheimer’s disease (AD) later in life (Kivipelto et al.,
2001; Pope et al., 2003; Biessels et al.,, 2006). In particular, an
adverse lipid profile, and insulin resistance have been associated
with increased risk of developing AD. The exact role of lipids
and lipoproteins for development of AD or AD pathology
is, however, unknown (Anstey et al., 2017). Previous studies
are conflicting and show both increases and decreases risk
associated with high levels of total cholesterol. Studies show
that increased TC in mid-life increases risk of AD. However,
in late-life, TC was not associated with cognitive or dementia
outcomes in any analyses or in any of the large individual
studies that were not compatible for pooling (Anstey et al,
2017). Further, high-density lipoprotein-cholesterol (HDL-C)
levels in aging individuals have been associated with better
cognition. Taken together, modifications of the lipid profile
e.g., decreasing total cholesterol and low-density lipoprotein—
cholesterol (LDL-C) and increasing HDL-C concentrations
might benefit patients with AD.

The importance of lipids and lipoproteins in AD is further
underlined by the involvement of a key lipid-transport protein,
apolipoproteinE (apoE) in risk of late-onset AD (Di Paolo and
Kim, 2011; Liao et al., 2017). The APOE gene is polymorphic
and three common alleles (g2, €3, and e4) code for three
major protein isoforms (Mahley and Rall, 2000). Individuals
with €4/ e4 have an 8-10-fold higher risk of developing
AD as compared with €3/ €3 in general population samples
(Rasmussen et al., 2015), and the e4-allele may also be associated
with more aggressive subtypes of AD (Hogh et al., 2001).
A stepwise decrease in plasma levels of apoE is observed
from €2 to €3 to €4, and recently three prospective studies
reported that low plasma apoE levels were associated with
high AD risk, independent of the €2/e3/e4 polymorphism
(Rasmussen et al., 2015; Wolters et al., 2016). Further, apoE
is pivotal in peripheral lipid metabolism by serving as a
ligand for members of the LDL receptor family mediating
hepatic uptake of atherogenic triglyceride-rich lipoproteins
(Rasmussen et al., 2020). It is well-established that the APOE
polymorphism is associated with all major lipid and lipoprotein
classes with a more atherogenic lipid profile from €2 to
€3 to e4. The ability to modify plasma levels of lipids
and lipoproteins may therefore depend on the individual
APOE genotype.

Among other metabolic changes that may be implicated
in AD, several studies have found an association between
cognitive decline or dementia, and diabetes (Yaffe et al,
2006). Several mechanisms have been proposed to explain
the association between cognition and glucose control,
yet there is still no consensus regarding the biological
pathways involved (Yaffe et al., 2006; Ravona-Springer
et al., 2010). Even though the brain is not reliant on insulin
for glucose uptake (Gray et al, 2014), insulin appears
in the cerebrospinal fluid (CSF), and one hypothesis
is that insulin acts as a signaling peptide in the brain
(Gray et al,, 2014).

Due to adverse side effects of pharmacological treatments
for metabolic syndromes, a non-pharmacological approach is
worth exploring (Wang and Xu, 2017). Here, physical exercise
has been shown to have beneficial effects on HDL-C and total
cholesterol levels in plasma in cognitively healthy individuals
(Haskell, 1984; Casella-Filho et al., 2011). Furthermore, exercise
has been shown to increase insulin sensitivity and uptake of
glucose in muscle in both young and older adults (Peirce, 1999).
Yet, the effect of exercise on the metabolism in AD is largely
unknown (Jensen et al., 2015).

In this study, we aimed to explore the effect of physical
exercise on the lipid profile, levels of insulin and glucose, and
the effect of APOE genotype on cholesterol metabolism in plasma
from patients with AD. The patients included in this study
participated in a 16-week exercise program physical exercise. We
hypothesized that the physical exercise would have a beneficial
effect on the plasma lipid profile of the AD patients, by lowering
plasma levels of TGs and increasing HDL-C concentration. In an
exploratory manner, we also investigated the changes in plasma
insulin and glucose.

MATERIALS AND METHODS

Study Population

This study is part of the previously published ADEX trial
study (Hoffmann et al., 2016). The enrollment of participating
patients is illustrated in Figure 1. In short, the study population
were recruited from eight memory clinics around Denmark
and consisted of patients referred for examination of cognitive
problems. In total, 198 community-dwelling patients diagnosed
with mild AD according to NINCDS-ADRDA criteria (McKhann
et al., 1984), with a mini mental state examination (MMSE) >19
and who met the additional inclusion criteria as described in
Hoffmann et al. (2013) were included. Patients were randomized
to either a control group with treatment as usual or an
intervention group. The intervention consisted of a 16 weeks
program of three 60-min sessions per week. During the last
12 weeks the participants performed moderate-to-high intensity
aerobic physical exercise in groups of four to six persons,
supervised by a trained physical therapist. The target exercise
intensity was 70% of maximal heart rate (mHR) or higher (Sobol
et al., 2016). Patients who participated in more than 2/3 of
the exercise sessions and who had a mean intensity of 70% or
higher of mHR were named “high exercise group.” For detailed
description of the inclusion/exclusion criteria, the exercise
intervention used and samples size estimation see Hoffmann et al.
(2013). The study is approved by The Danish Regional ethics
Committee Capital Region of Denmark H32011128. Baseline
characteristics of the study population can be seen in Table 1.

Samples

Blood samples were collected before and after the intervention
period. Samples were collected according to standard guidelines
(Vanderstichele et al., 2011; del Campo et al., 2012; Teunissen
et al,, 2014), centrifuged at 2000 G immediately after collection,
aliquoted, and stored at —-80°C.
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Assessed for eligibility (n=608)

Excluded (n=408)

* Not meet inclusioncriteria(n=104)

!

* Declinedto participate (n=107)
* Other reasons (n=197)

Randomized to participate in study (n=200)

A4

Allocated to exercise group
(n=107)

Allocated to control group
(n=93)

l

l

Completed 16 weeks intervention
(n=102)
Lost to followup (n=5)
* 1familyillness
* 3 medicalillnesses
* 1 declinedto participate

Lost to follow up (n=5)

Completed 16 weeks intervention
(n=88)

1 dementia progression
2 medical illnesses
2 declined to participate

h 4

h 4

Had pairwise blood samples eligible for
analysis (n=90)

Had pairwise blood samples eligible for

analysis (n=82)

from 172 patients in total.

FIGURE 1 | Flowchart of screening and enrolment process. A graphical representation of the screening process of patients seen in the eight participating memory
clinics around Denmark. From the screened 608 patients 408 did not meet inclusion criteria o declined to participate. In total 200 patients were randomized to either
a control group or an intervention group. One-hundred nighty patients completed the 16 weeks of intervention. The 10 lost to follow up where either due to medical
illnesses or declining to participate in the follow up assessment. From the 190 completing patients, matched blood samples (baseline and follow up) where available

Assays

Collected plasma samples from 172 patients, subjected to
16 weeks of moderate-to-high intensity exercise (exercise group,
n = 90), or treatment as usual (control group, n = 82) were
analyzed at baseline and after 16 weeks of exercise. Plasma levels
of total cholesterol, LDL-C, HDL-C, triglycerides (TG), glucose,
and insulin were measured with standard hospital assays on
COBAS 8000 equipment (Roche, Basel, Switzerland).

Apolipoprotein E Genotyping

DNA was isolated from 250 pL of bufty coat from 6 mL EDTA
vials with Promega Maxwell DNA purification kits (Promega, W1,
United States), according to the manufacturer’s protocol. APOE
genotyping for the €2, €3, and ¢4 alleles was performed with a
TagMan qPCR assay as described by Koch et al. (2002).

Statistics

All statistics were performed in MATLAB (vR2016a) and
IBM SPSS Statistics (Version 24). To compare gender, APOE
status, and medications (anti-hypertensive, statins, and diabetes
medication), we performed chi-square tests between the control

and the exercise groups, and between the control and high
exercise groups. To test for differences in continuous variables
between the control and the exercise group, we performed
t-tests for the following values: age, years of education, MMSE
score, disease duration, and body mass index (BMI). We also
used t-tests to compare MMSE and BMI between baseline
and follow-up for the exercise and high exercise groups.
Only patients who had a baseline and a follow up plasma
sample available for analysis were included in the analysis in
Table 2.

Before performing any statistical tests, we calculated the
change from baseline by dividing the value at follow-up with
the value at baseline times a hundred. To compare the lipids
(total cholesterol, LDL-C, HDL-C, and TG), we performed an
ANCOVA between the control group and the exercise group,
and between the control group and high exercise group using
statins as a covariate. The same analyses were performed for
insulin and glucose but with current use of diabetes medication
as a covariate instead of statins. In the current study, we
also wanted to investigate the effects of exercise depending on
the APOE genotype. When looking at the effect of exercise
depending on the APOE genotype for lipids, we performed an
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TABLE 1 | Baseline characteristics of the study cohort.

Controls (n = 82) Exercise (n = 90) p-value® t-value High-exercise p-value$ t-value
sub-group (n = 58)

Age, years” 71.3(7.5) 69.8 (7.5) 0.207 1.266 69.9 (7.6) 0.316 1.007
Gender, n (%) 0.189 0.158

Males 51 (62) 47 (52) 29 (50)

Females 31(38) 50 (48) 29 (50)
Characteristics

Disease duration, 1.3(1.1) 1.0(1.0) 0.085 1.735 0.9 (0.8) 0.061 1.886
years from diagnosis*

MMSE?* 24.2 (3.8) 23.9 (3.5) 0.579 0.556 24.2 (3.3) 0.994 —0.008

Education, years” 11.7 (2.7) 11.9(2.9) 0.746 —-0.325 12.2 (2.8) 0.338 —0.962

BMI# 24.2 (3.6) 25.0 (3.7) 0.150 —1.446 24.6 (3.8) 0.495 —0.685
Medications, n yes (%)

Hypertension 34 (41) 40 (44) 0.695 20 (34) 0.407

Statins 29 (35) 33 (37) 0.694 19 (33) 0.483

Diabetes 6(7) 89 0.743 5(9) 0.064
APOEe4, n(%)

Carriers 62 (77) 56 (68) 0.059 39 (71) 0.280

Non-carriers 20 (23) 34 (32) 19 (29)

*#Given as mean (Standard deviation), £Controls versus exercise, $Controls versus high exercise. From the exercise group, participants who participated more than 2/3 of
the session and had a mean intensity of 70% or high, were further analyzed as a “high exercise sub- group.” MMSE: mini mental state examination, BMI: body mass index.

TABLE 2 | Changes in plasma biomarkers after 16 weeks of intervention.

Baseline 16 weeks follow up Mean relative change from baseline,
[(16 week follow up - Baseline)/Baseline]*100

Controls Exercise Controls Exercise Controls Exercise p-value  High exercise  p-value
(n=82) (n =90) (n =82 (n =90) (n=82) (n =90) (n =58)
Total cholesterol, mmol/I 5.6 (1.1) 5.4 (1.0 6(1.2) 5.5(1.1) 1.5(18.1) 1(14.5) 0.81 0.6 (12.0) 0.68
LDL-C, mmol/l 3.1 (0.9 3.0(0.9 1(1.0) 3.0(0.9 2.2(21.0) 2(28.2) 0.96 —1.2(20.9) 0.36
HDL-C, mmol/I 1.8(0.6) 1.7 (0.5) 8(0.5) 1.7 (0.5) —0.7 (13.8) 0(13.5) 0.09 3(13.0) 0.03*
Triglyceride, mmol/l 1.2 (0.6) 1.4 (0.6) 2(0.6) 1.4 (0.6) 1.9 (30.2) 5(35.8) 0.64 4(27.4) 0.92
Glucose, mmol/l 6.0 (2.6) 5.7 (2.1) 7(2.2) 5.6 (1.1) —1.5(20.1) 3(21.8) 0.25 7 (24.1) 0.56
Insulin, pmol/I 115.7 (100.1)  119.4(118.3) 138.3(152.6) 1155(138.9) 54.2(131.6) 22.4(98.0) 0.07 26.2 (111.0) 0.18

Baseline and follow-up values of cholesterol, HDL, LDL, insulin, and glucose in mean (standard deviation). In addition, analysis of between group difference in mean change
from baseline exercise versus controls and per-protocol high-exercise versus controls. HDL-C: high-density lipoprotein-cholesterol, LDL-C: Low-density lipoprotein-
cholesterol, *indicates significant difference (p-value < 0.05). A positive value means greater positive mean change from baseline in the exercise group.

TABLE 3 | Effects of the intervention in APOE ¢4 non-carriers and APOE &4 carriers.

Control group Exercise group
Mean relative change APOE«e3/e3 (n = 17) APOE ¢4 carriers (n = 57) APOE £3/¢3 (n = 32) APOE ¢4 carriers (n = 54) p-value
from baseline
Total cholesterol 3.79 (10.63) 0.99 (13.87) 1.76 (17.38) 3.41 (12.09) 0.59
LDL-C 6.99 (22.57) 1.08 (20.67) 3.50 (38.13) 3.34 (19.91) 0.30
HDL-C —0.72 (11.17) —1.27 (14.42) 4.24 (16.27) 3.40 (11.01) 0.83
Triglycerides 7.64 (30.00) 0.62 (31.11) 2.81(47.01) 5.64 (29.01) 0.46

Group differences in mean (standard deviation) change from baseline in exercise group versus control group depending of APOE ¢4 carrier status (O alleles versus
1 or 2 alleles).

ANOVA for each of the lipids. A statistical test was considered RESULTS

significant if the p-value was below 0.05. No corrections for

multiple comparisons were performed due to the exploratory Baseline characteristics of the control group, exercise group, and
nature of the study. high exercise sub-group were comparable, as shown in Table 1.
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The mean age of the patients in the two group was similar, and
the mean MMSE was comparable with 21.1 for the controls and
22.4 for the exercise group, which categorizes the cohort as mild-
to- moderate AD (Budd et al., 2011). There was no significantly
differences between the groups with regards any of the population
characteristics, including MMSE and BMI, and no significant
differences in MMSE and BMI between baseline and follow-up in
either the exercise or the high exercise group. In addition, there
were no significantly differences between the groups with regards
to use of dementia medication, statins or anti-diabetics. The
APOE genotype regarding the €4 allele is also listed in Table 1.
Seventy-two per cent of the subjects were carriers of either one or
two APOE ¢4 alleles of, which is higher than the expected 60% in
an AD population (Ward et al., 2012).

As published previously there was a good over all adherence to
the trial, with a drop out of only 5%. Adherence to the protocol in
the exercise group (termed “High exercise sub-group”) was 65%
(Hoffmann et al., 2016). Overall the trial was well tolerated with
few adverse events (Hoffmann et al., 2016).

No significant differences were found for the levels of total
cholesterol, LDL-C, HDL-C, TG, glucose, and insulin at baseline
between the groups, see Table 2. We found a significant increase
in plasma HDL-C levels between the “high exercise sub-group”
compared to control group. After intervention HDL-C was
increased by 4.3% (SD 13.0) in the high-exercise group and
decreased by 0.7% (SD 13.8) in the control group p = 0.03,
after adjustment for statin use. No difference was observed for
the other markers, as these remained stable over the 16 weeks
of intervention.

To elucidate the effect of the APOE g4 genotype on the effect of
exercise on the lipid profile in patients with AD, the results were
divided and analyzed in groups of non-carriers versus carriers
of the €4 allele. This analysis revealed no significant difference
between the control group and the exercise group in either APOE
¢4 carrier and non-carriers, see Table 3. Due to low sample size
(n =13) the €2 genotype (2/€2, €2/€3, and €2/e4) was excluded in
this analysis. Figure 2 is a graphical representation of the results
in Table 3. Here, the mean relative change from baseline is plotted
for each group and according to APOE genotypes for each of the
four lipid outcome measures.

DISCUSSION

In the current study, we investigated the effect of 16 weeks
of moderate-to-high intensity physical exercise on the plasma
levels of lipids, glucose, and insulin in patients with AD. In
addition, we investigated the potential effect of APOE genotype
on the response of exercise on lipids. We found that exercise
significantly increased the plasma levels of HDL-C in a sub-group
analysis of the subjects who adhered to the protocol and exercised
with the target intensity of 70% of mHR or more. Furthermore,
though not significant, carriers of APOE ¢4 allele showed less
modulation of the lipid profile after exercise as compared to €4
non-carriers. We found no differences in glucose and insulin
levels between the control and exercise groups.

Individuals with an unfavorable lipid-profile have been shown
to have a higher risk of developing AD (Panza et al., 2006), while
high HDL-C levels in aging individuals have been associated with
better cognition (Crichton et al., 2014; Bates et al., 2017). Among
non-pharmacological interventions, exercise has previously been
proven beneficial and shown to reduce LDL and increase HDL
across all ages in cognitively normal individuals (Kelley et al.,
2005). Yet, it is not known whether the effect of exercise has
any beneficial effects on AD pathogenesis. Here, we found that
exercise significantly increased HDL levels, but no significant
effects on the LDL, TG or total cholesterol levels were observed.
One reason for this result could be that HDL-C has been shown to
be more sensitive to exercise with an increase even present after
only a single exercise session (Kodama et al., 2007). Moreover, the
increase in HDL-C could be directly linked to how much the AD
patients improved in physical fitness, greatest increase in physical
fitness would lead to largest effect on HDL-C. The effect on fitness
was investigated in a previous study on the same patient cohort,
see Sobol et al. (2016). This is also supported by the current study
as the largest effect was seen in the high exercise group. The exact
role of HDL-C in regard to AD is not fully elucidated. It has been
suggested that HDL-C is implicated in amyloid p42 clearance
(Zlokovic et al., 2000), exhibits vasoprotective properties through
the apolipoproteinl, and modulates inflammation, all of which
may be implicated in the AD pathogenesis (Button et al., 2019).
This might indicate that an increase in HDL-C levels could be
beneficial for patients with AD. Plasma TG levels are also thought
to be affected by exercise, but longer intervention periods may be
needed for this effect. A study has shown that the beneficial effect
on triglyceride levels is proportional with the exercise intensity,
and that the intensity of the exercise employed should be high,
and lastly no effect was observed on the LDL levels (Wang and
Xu, 2017). If this also is the case in patients with AD, we should
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FIGURE 2 | Mean allelic effect of relative change in lipid concentration in
plasma. A graphical representation of the effect of exercise on the relative
change from baseline in triglycerides, Low-density lipoprotein, cholesterol, and
High-density lipoprotein, segregated by APOE ¢4 carriers and non-carriers
(e3/¢3). The APOE«e2 allele is here excluded. Figure legend: X:control groups
APOE €3/ €3, open circle: Exercise group APOE ¢4 carriers, +: exercise APOE
€3/ €3, and closed squares: control group APOE ¢4 carriers.* from baselin.
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have seen an effect on the biomarkers investigated in this study
when comparing controls versus the high-exercise sub-group.
Besides the intervention period possibly being too short to detect
changes in TG or LDL-C, the participants did not adhere to a
standardized diet, which may affect the plasma concentration
of multiple lipids. We did not find any significant differences
in BMI over the time course of the study and BMI did not
significantly affect our findings of increased HDL, but we did not
control for dietary changes, which may have affected our findings.
However, we showed that even a short intervention period is able
to modulate the HDL-C concentration in plasma, which may be
beneficial to patients with AD.

A small decrease in the levels of plasma HDL-C In the control
group of 0.7% was observed. Previous studies of longitudinal
changes in HDL-C concentrations in the elderly have found
conflicting results. Some find that the HDL-C levels are stable,
others find that levels either decrease or increase with age (Ferrara
et al, 1997). In this study, however, it seems that HDL-C levels
do decrease over time in a cohort of elderly patients. A decrease
in HDL-C levels might be due to for instance weight loss or a
decrease intake of a fatty diet. By analyzing BMI in the control
group at baseline and at follow up (data not shown), we did
not find a significant change in BMI, reflecting no sign of either
weight loss or weight gain. We did not control for dietary
intake, and subjects were told to act as normal, here under also
regarding food intake.

Studies have found that total cholesterol and LDL increase
with age until the age of 65 years for men and 75 years for
women, and thereafter the levels start to decline (Ferrara et al.,
1997). For HDL-C and TGs, the change is less profound during
the lifespan, but there is a tendency to higher levels of HDL-
C and TGs in elders, however, longitudinal data is inconsistent
(Ferrara et al, 1997). As previously mentioned, studies have
found that patients with AD have lower levels of HDL-C
compared to age matched cognitively healthy persons. When
comparing mean values for HDL-C in this study with results from
previous studies, our results are in line with mean findings from
populations studies where a mean level of HDL of 1.55 mmol/L
compared to our finding with a mean of 1.8 mmol/L in the
control group and 1.7 mmol/L in the exercise groups at baseline
(Ferrara et al., 1997).

The AD risk factor APOE €4 showed no significant effect
on the lipid outcome measurement. However, the graphic
representation (Figure 2) indicates that physical exercise for 4
non-carriers had a tendency toward a positive effect on the lipid
profile, with decreasing levels of TG, LDL, and cholesterol, while
increasing the HDL levels. On the contrary, carriers of APOE g4
showed less modulation of the lipid profile after exercise when
compared to €4 non-carriers. This is somewhat surprising as
the same cohort of APOE €4 carriers benefitted the most from
exercise regarding physical outcomes such as walking speed,
endurance, and overall fitness (Jensen et al., 2019). Still, it must
be stressed that none of these results are statistically significant,
and that the number of patients who were e4/¢4 carriers was low.
Since APOE is the major lipid-transporting molecule, it could be
speculated that the lack of APOE might have significant effect on
the lipid profile (Verghese et al., 2011). The lack of effect on the

lipid profile in the APOE €4 carriers could therefore be due to the
low plasma levels of APOE. However, larger studies are needed to
investigate the effects of exercise depending on APOE genotype.

The present study has some limitations. A total of 198 patients
were enrolled in the trial, but the number of samples available for
analysis was less (n = 172). Especially, the subgroup analysis was
affected by of the small number of patients in certain subgroups.
Furthermore, large variations were seen in the measured markers,
which most likely were due to biological variations. Moreover,
a large proportion of the subjects was taking statins (control
group = 34%, exercise group = 33%), which could influence the
obtained results. Therefore, to overcome this issue, we used statin
use as a covariate in the statistical analysis. The main issue with
the current study may be that exercising for 16 weeks might
not have been long enough to induces chances in any of the
other markers besides HDL-C, or perhaps the exercise intensity
should be higher in order to show changes in metabolism. Other
exercise trials with AD patients have been as long as 52 weeks (van
Uffelen et al., 2008) whereas increases in HDL-C levels have been
observed after only one session of exercise (Segal et al., 2012).

As published previously the trial was well tolerated with
few adverse events (Hoffmann et al, 2016). Moderate to
high intensity exercise employed in the trial was selected on
the basis of similar previous studies in patients with mild
cognitive impairment (Baker et al., 2010). In short, the exercise
intervention consisted of aerobic exercise on either treadmill,
stationary bikes, or cross trainers. Adherence to the exercise
protocol was ensured by monitoring and supervision of every
training session by experienced trainers, and every participant
wore pulse watches on every training session. We were not
able to control the activity of the control group or in the
exercise group outside the structured interventions. However,
both caregiver and patient were instructed to carry on as normal,
but no formal control was applied due to lack of resources. If
anything, increased physical activity in the control group would
have resulted in underestimation of the effect of exercise. Another
issue was the impact of social contact by exercising in groups
which was not controlled for.

As mentioned above dietary intake of fat can modulate the
levels of lipids in plasma. The patients participating in this study
did not adhere to a specific diet, and blood samples taken ad
baseline and follow up was not taken fasting (Mora, 2016).
Long term calorie restriction in normal weight adults has been
previously shown to reduce plasma levels of TC, and LDL-C,
and to increase levels of HDL-C (Garry et al, 1992). In this
study we did not analyze a restriction in diet intake, and analysis
of baseline versus follow up in BMI reflected that the patients
participating did not lose or gain significant weight in either
of the groups, indicating that the increases seen here in HDL-
C may solely be due to increased activity levels, here aerobic
physical exercise. In addition, have previous studies found that
weight loss due to suboptimal energy intake is common in AD
(Poehlman and Dvorak, 2000).

In conclusion, in the current study, we found that patients
with AD showed significantly increased levels of HDL after
only 16 weeks of physical exercise. Compared to other studies
with healthy individuals, we did not find any changes in
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TG or LDL-C levels, which could be due to a too short
intervention time. Furthermore, a possible difference in the lipid
response to exercise based on the APOE genotype was observed,
but due to the low sample size, no definite conclusions can
be made. Additionally, exercise showed no effect on glucose
and insulin levels in the AD patients. Future studies should
investigate the long-term effects of exercise on the lipid profile in
patients with AD to get a better understanding of the beneficial
effects of exercise.
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