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Purpose: Precise quantification of cerebral arteries can help with differentiation
and prognostication of cerebrovascular disease. Existing image processing and
segmentation algorithms for magnetic resonance angiography (MRA) are limited to the
analysis of either 2D maximum intensity projection images or the entire 3D volume. The
goal of this study was to develop a fully automated, hybrid 2D-3D method for robust
segmentation of arteries and accurate quantification of vessel radii using MRA at varying
projection thicknesses.

Methods: A novel algorithm that employs an adaptive Frangi filter for segmentation of
vessels followed by estimation of vessel radii is presented. The method was evaluated
on MRA datasets and corresponding manual segmentations from three healthy subjects
for various projection thicknesses. In addition, the vessel metrics were computed in
four additional subjects. Three synthetically generated angiographic datasets resembling
brain vasculature were also evaluated under different noise levels. Dice similarity
coefficient, Jaccard Index, F-score, and concordance correlation coefficient were used
to measure the segmentation accuracy of manual versus automatic segmentation.

Results: Our new adaptive filter rendered accurate representations of vessels,
maintained accurate vessel radii, and corresponded better to manual segmentation at
different projection thicknesses than prior methods. Validation with synthetic datasets
under low contrast and noisy conditions revealed accurate quantification of vessels
without distortions.

Conclusion: We have demonstrated a method for automatic segmentation of vascular
trees and the subsequent generation of a vessel radii map. This novel technique can be
applied to analyze arterial structures in healthy and diseased populations and improve
the characterization of vascular integrity.
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INTRODUCTION

Analysis of human intracranial arterial system is important for
characterizing disease entities with primary or secondary
involvement of cerebral vascular circulation such as
arteriovenous malformations, central nervous system vasculitis,
and post-radiation vascular changes (Fischer et al., 2005; Jellinger
and Attems, 2006; Minagar et al., 2006). Accurate quantification
of vascular features serves to enhance understanding of
the role of cerebral vasculature in these pathophysiological
conditions. Delineation of the vascular architecture can
furthermore aid planning of minimally invasive neurosurgical
procedures through the identification of narrow pathways
that are free of passing arteries. Time-of-flight magnetic
resonance angiography (TOF-MRA) and MR venography using
susceptibility weighted imaging (SWI) are two techniques that
are commonly used to probe the 3D spatial architecture of
arteries and veins, respectively. In order to quantify pathological
deviations from normal, cerebral arteries and veins must first
be separated from background brain parenchyma using a vessel
segmentation algorithm.

Segmentation of the brain’s vessels is challenged by complex
geometry, small vessel size, and limited contrast of TOF-MRA
images. Specifically, the sensitivity to detect small arterioles
proximal to the capillary bed is limited in most algorithms.
These arteries are typically not clearly delineated in raw MRA
images due to weak signal from slow blood flow. Our group and
others have recently developed sequences for the simultaneous
acquisition of TOF-MRA and SWI (Du and Jin, 2008; Deistung
et al., 2009; Bae et al., 2010; Bian et al., 2015). Although the
benefits of these sequences include shortened scan times and
the ability to jointly display arterial and venous vessels without
the need for coregistration, they often come with the tradeoff of
less background suppression. Hence, there is a need for a robust
method to identify both small and large arteries and accurately
quantify the subtle changes in arterial diameters.

Maximum intensity projection (MIP) images (Arlart et al.,
1995; Johnson et al., 1998) taken through the 3D image volumes
acquired using a TOF-MRA sequence provide a more informative
visual display for analysis of vessels and are typically used for
segmentation. MIP is a volume rendering technique for 3D data
that selects the maximum voxel value along a line from the
viewpoint to the plane of projection. When performed at different
thicknesses, this technique can provide volumetric images of
the vasculature in the form of sequential cross-sectional images.
Although MIP images can clearly depict the overall shapes
and paths of the blood vessels and are computationally fast,
the 2D projections do not provide a good sense of depth, i.e.,
the spatial relationship of overlapping vessels. In addition, the
presence of overlapping non-vascular structures greatly affects
the visualization of small vessels with low contrast, especially
at larger projection thicknesses. To overcome these issues,
vessel enhancement algorithms can be first applied in order
to suppress non-vascular structures and improve delineation of
small blood vessels.

Vessel enhancement may be intensity based, edge based (with
strong gradients), or shape based. Sato et al. (1998) implemented

a line filter that enhances tubular structures in images. Frangi
et al. (1998) introduced the term “vesselness” as a measurement
of tubular structures by observing the ratio of eigenvalues of
the Hessian matrix. Another algorithm reported by Lorigo et al.
(2001) is based on a co-dimension two level set method. Aylward
and Bullitt (2001) implemented an algorithm that extracts the
centerline of a tubular structure by tracking vessels from a
seed point. A meta-analysis of the various vessel segmentation
techniques was presented by Suri et al. (2002) who reported that
the multiscale vesselness using Frangi generated the best contrast
between vessels and background (Chapman and Parker, 2001).
The Hessian-based filter employed by this method accentuates
the contrast between tubular objects and the background, thus
enhancing elongated blood vessels while suppressing other
anatomical features and noise. The addition of multiscale
smoothing, performed using multiple runs of Gaussian filtering
with different sigma values, generates a multiscale filter response
at each scale that can be used to determine the likelihood that
a voxel belongs to a vessel of each particular diameter. While
vessel visualization is enhanced using this approach, accurate
quantification of vessel radii from resulting vessel score maps
remains a challenge due to underestimation and overestimation
of vessel scores at the boundaries manifesting as an artificial
narrowing of thick vessels and broadening of thin vessels,
respectively. In order to achieve accurate quantification of vessel
radii, an alternate approach is needed.

While existing methods are limited to applying vessel
enhancement filters to either the original non-projected 3D
images or a single MIP through the entire imaged volume
(Gao et al., 2011; Hsu et al., 2017; Phellan and Forkert, 2017),
there has been little investigation of the influence of projection
thickness on the effectiveness of vessel segmentation. Of the
few studies reported, one showed similarity between vessel
radii measurements extracted from parameter-dependent MIP
MRA and digital subtraction angiography derived from high
contrast x-ray images (Persson et al., 2004). Another group
showed that MIP images using a slab thickness of 8 mm are
superior in the detection of pulmonary nodules (Kawel et al.,
2009). Since radiologists routinely adjust the projection thickness
within an MIP section to aid their assessment of vessel size
and location, efforts to address the influence of this parameter
on segmentation and subsequent vessel radii measurements
will, in addition to supporting discovery research, support the
integration of automated algorithms into clinical practice. These
techniques will compliment traditional subjective assessment of
cerebral arteries and 2D in-plane measurements with a caliper
(U-King-Im et al., 2007).

To overcome the above-mentioned limitations, we introduce
a novel hybrid approach which we call an adaptive Frangi
technique that incorporates a Euclidean distance transform
(EDT) with the Frangi filter in order to preserve accurate vessel
radii information. Using this approach, we describe a robust,
automatic processing pipeline for (1) accurate segmentation of
arteries from MRA images for different projection thicknesses
and (2) quantification of vessel radii. We apply our technique to
the MRA images of three healthy volunteers and synthetic images
in order to compare the automatic segmentation with manual
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and other commonly used segmentation methods for different
projection thicknesses. Vessel metrics were then evaluated in four
patients whose images were acquired with varying scan protocols.

MATERIALS AND METHODS

Subjects and Data Acquisition
Magnetic resonance angiography images were acquired from
three healthy volunteers (mean age 25 ± 2.2 years) with no
known cerebrovascular disease and four patients with juvenile
pilocytic astrocytomas (mean age 15 ± 1.2 years). All subjects
provided informed consent as required by our institutional
review board and were imaged on a 7T MRI scanner (GE
Healthcare, WI, United States) with a 32-channel phased-
array coil (NOVA Medical, MA, United States) using a four-
echo, gradient echo sequence (Bian et al., 2015) that was
previously developed to simultaneously image arteries, veins, and
cerebral microbleeds (CMBs), obviating the need for image co-
registration and reducing the scan time. Scan parameters were
as follows: voxel size = 0.46 × 0.46 × 1 mm using an in-
plane 512 × 512 matrix, FOV = 24 cm, slice thickness = 1 mm,
TR = 40 ms, flip angle = 25◦, and TE = 2.7, 10.5, 13.2, and 20.9 ms.
Flow compensation was performed in the readout direction, and
echoes were partially acquired with 65% partial Fourier sampling.
A multiple overlapping thin-slab acquisition was employed with
three 36 mm slabs partitioned into 1 mm thick slices with 12
slices of overlap. The 3D acquisition was accelerated in the
phase direction with autocalibrating reconstruction for Cartesian
imaging (ARC) using an acceleration factor of 3, resulting in a
total scan time of 10.6 min. The first echo was used to create TOF-
MRA images and the remaining three echoes were combined to
create a composite SWI image.

Because one of the potential applications of generating vessel
radii maps is to look for variations between serial scans in
longitudinal studies, we scanned two volunteers twice in order
to evaluate whether the vessel radii map would change between
successive scans due to head orientation and slab prescription.
The two scans, separated by an interval of three weeks, were
used to establish the amount of variability associated with our
method by comparing the resulting vessel radii distribution
between the two scans.

Clinical TOF-MRA scans at lower field strengths were
also obtained for two of the juvenile pilocytic astrocytoma
patients in order to demonstrate the practical application
of the algorithm. The imaging parameters for these two
clinical scans were as follows: field strength = 1.5/3T, voxel
size = 0.43 × 0.43 × 0.5 mm/0.39 × 0.39 × 0.6 mm,
in-plane matrix = 512 × 512, FOV = 20/22 cm, slice
thickness = 1.2/1.0 mm, TR = 23/35 ms, flip angle = 18◦/20◦, and
TE = 3.4/3.1 ms.

Image Pre-processing and Manual
Segmentation
In order to isolate the brain, skull stripping was first performed
on the MRA images using a Brain Extraction Tool (BET) that
is part of the FMRIB Software Library (FSL) (Smith, 2002),

The TOF-MRA images were resampled to 0.23 mm3 resolution
using bicubic interpolation in order to have better differentiation
for the vessel radii map, which was followed by intensity
normalization by dividing the gray scale intensity values by the
maximum gray scale value. The 2D MIP was obtained by taking
the projection of the entire imaged volume along the superior–
inferior direction. Vessel segmentation was performed on the 2D
MIP, 3D raw volume, and six other projection thicknesses (4, 8,
16, 24, 32, and 48 mm) using MATLAB. The cerebrovascular
structures were manually segmented from both the entire
volume of the three volunteer datasets and the central slice for
each of six different projection thicknesses by a board-certified
neuroradiologist (SP). Manual segmentation was performed by
overlaying a thresholded image on the original scan using
MRIcron software, with 50% transparency on background. This
threshold of 0.5 times the maximum gray scale value was selected
empirically by the neuroradiologist during manual segmentation.
The segmentations were then converted to contours of each vessel
for each axial slice before confirming them on coronal and sagittal
planes and making any additional corrections where necessary.
These manual segmentations were treated as the ground truth to
determine segmentation accuracy.

Three synthetic vessel datasets were downloaded from the
publicly available Vascular Synthesizer (VascuSynth) software
(Hamarneh and Jassi, 2010). These datasets contain randomly
generated vessel-like structures of varying widths, bifurcations,
and orientations. The generated vascular volumes were rendered
with MIPs. The synthetic image was resized and eroded in
order to simulate the resolution and vessel sizes encountered
in TOF-MRA. Since these datasets and corresponding binary
ground truth segmentations were virtually generated, no manual
segmentation was required.

FIGURE 1 | Processing pipeline for obtaining vessel radii distribution from
TOF-MRA maximum intensity projection images.
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MIP Vessel Segmentation
The mathematics behind the Frangi “vesselness” filter for the
purpose of vessel segmentation has been reported previously
(Krissian et al., 2000). Briefly, the line intensity profile of the
vessels is represented as a Gaussian function with a uniform
intensity along the vessel. The Hessian matrix that is obtained by
taking the second partial derivative describes the local curvature
along the vessel, and its cross-section and its eigenvalues indicate
the degree of curvature. The Frangi filter uses the eigenvalues
to estimate the likelihood of tube-like structures. To address the
need for multiscale smoothing, multiple iterations of Gaussian
filtering with different sigma values were performed. Although
the Frangi vessel enhancement method is an excellent technique
for visualization, the accuracy of radii of vessels is not preserved.
Our approach takes advantage of the vessel enhancement features
provided by this method while maintaining accurate vessel shape.

A flowchart of our adaptive Frangi algorithm is shown in
Figure 1. This algorithm is unique because it automatically
determines the appropriate set of filter scales for each vessel by
first calculating the radii of large vessels using intensity-based
thresholding followed by discrete distance transforms. These
values are then used to determine the standard deviation values
for the Frangi filter (Shikata et al., 2004). The minimum sigma
value (0.8) and the increment in sigma (0.2) were chosen based
on prior literature (Phellan and Forkert, 2017). The maximum
sigma values were then selected based on the relation sigma
max =

√
radii max (Krissian et al., 2000). Figure 2 shows the

sigma selection for each radii range. This adaptive scale selection
ensures that large sigma values are included only for the detection
of thick segments, and small sigma values are included only for
the thin segments. From the output of the adaptive Frangi filter,
fast marching (Sethian, 1996) with an intensity threshold of 0.001
was performed to obtain the binary image. A 2D EDT map, which
labels each pixel of the image with the distance to the nearest
boundary pixel, can then be obtained (Nystroem and Smedby,
2000). Voxel-wise measures of vessel radii were rapidly generated
by employing a thinning procedure to obtain the vessel skeleton
of the binary image followed by multiplication of the 2D-EDT

with this skeleton to obtain the final vessel radii map. Histograms
of the vessel radii map were then generated to depict vessel radii
distribution in the MIP.

Evaluation of Segmentation Performance
For the purpose of understanding the effects of projection on
quantification of vessel radii, we applied our algorithm on the
continuous MIPs of varying thicknesses. Our adaptive Frangi
method was able to automatically determine the optimal set of
sigma values for the Frangi filter for each projection. For one of
the three volunteer scans, the results of automatic segmentation
method were compared to the mid-slice manual segmentation
done by the neuroradiologist. Dice similarity coefficients (DSC),
Jaccard Index (JI), and the F-score were used as validation metrics
to evaluate the segmentation agreement between the manual and
automatic segmentation for each projection thickness. The DSC
is a standard measure to report the segmentation performance
(Dice, 1945) and measures the spatial overlap between the
manual and automatic segmentation masks. The DSC is defined
as twice the size of the intersection between the two masks
normalized by the sum of their volumes. The DSC varies between
0 (no overlap) and 1 (complete overlap). The JI is defined as
the intersection of the two binary masks divided by the union
of the two masks (Jaccard, 1901). The JI is numerically more
sensitive to mismatch when there is reasonably strong overlap.
The F-score measures how close the predicted boundary of
an object matches the ground truth boundary (Csurka et al.,
2013). Both the precision and the recall of the test are used
to compute the F-score: Precision is the number of correct
positive results divided by the number of all positive results
returned by the classifier, and recall is the number of correct
positive results divided by the number of all samples that
should have been identified as positive. The F-score is the
harmonic average of the precision and recall, where an F-score
reaches its best value at 1 (perfect precision and recall) and
worst value at 0. The above-mentioned metrics are sensitive
to misplacement of the segmentation label but are relatively
insensitive to volumetric under- and overestimations. Hence, in

FIGURE 2 | (A) Set of sigma values for each radii range. (B) Selection of maximum sigma value for the maximum vessel radii.
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addition, we determined the concordance correlation coefficient
(CCC) (Lin, 1989)—a reproducibility index that evaluates the
volume agreement between the manual and automatic segmented
masks by measuring their combined variation from the line y = x
(i.e., the degree through which pairs of observations fall on
the 45◦ line through the origin). In order to compare an
estimate of the segmentation error between the original and
our adaptive Frangi method, we also calculated the number of
segmented voxels that overlapped with the manual segmentation
and divided that by the number of voxels that did not overlap
for each volunteer. A paired t-test was then performed to test
for statistically significant difference between the two methods.
Repeatability of vessel radii distributions between serial scans was
also evaluated for two subjects using Bland–Altman plots.

The three synthetic datasets were also used to compare
the segmentation results between the original Frangi and

our adaptive Frangi methods. The segmentation metrics were
calculated both between the ground truth and Frangi and also
the ground truth and adaptive Frangi. The number of vessel
bifurcations was also calculated for the ground truth and the
automatic segmentation. In order to investigate the sensitivity of
our proposed method in the presence of noise, Gaussian noise
with means and standard deviations of 50, 100, 150, and 200
was added column-wise to the datasets. Increasing gray scale
background with a maximum of 75% of the maximum gray
scale intensity value in the image was also added horizontally
across the synthetic images in order to mimic different levels of
background suppression of brain parenchyma. The segmentation
performance was also assessed by adding noise and varying
the vessel-to-background contrast of the TOF-MRA image. The
DSC was calculated for the automatically segmented noise-
added images with respect to the noise-free ground truth

FIGURE 3 | (A) Axial maximum intensity projection images for three volunteers along with coronal and sagittal views shown for Volunteer 3. (B) From left to right:
original TOF-MRA maximum intensity projection; Frangi filtered image where thin vessels appear broader than expected; new Adaptive Frangi filtered image where
vessels maintain the radii of the original image; manual segmentation; and color-coded vessel radii map for two volunteers. Radii values are given in terms of number
of pixels (1 pixel = 0.23 mm).
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image for both the Frangi and adaptive Frangi methods. In
order to evaluate the fidelity of the vessel radii estimation,
the vessel radii distribution from the ground truth synthetic
image was compared with the Frangi and adaptive Frangi. The
same comparison could not be done for the TOF-MRA images
because, with manual delineation, the vessel boundary may not
be exactly drawn pixel-wise, especially for vessels with small
radii, and it could not be considered as the ground truth for
radii comparison.

RESULTS

Figure 3A shows the results of the adaptive filter overlaid on
MRA on axial 2D MIPs for three volunteers and for one of the
volunteers in the other two orthogonal views as well. The images
demonstrate the versatility of our method and its performance
in segmenting both small and large vessels. The Circle of Willis
was not observed in subjects 1 and 3 because the 3-slab imaged
volume was acquired more superiorly because we were interested

in looking at smaller vessels closer to the periphery. In general,
vessel diameters were decreasing toward the periphery and with
increasing branching degree.

The DSC between the adaptive Frangi and manual
segmentation for the three volunteers were found to be
0.89, 0.85, and 0.83, respectively. A comparison of the adaptive
Frangi, original Frangi, and manual segmentation methods
is shown in Figures 3B,C for two volunteers. The original
Frangi filter inaccurately broadens thin vessels because it takes
the maximum intensity projection across all scales, losing
the thickness information of the vessels, while the manual
segmentation introduces added noise after the MIP. The
corresponding vessel radii distribution for the two volunteers
is also shown, whereby the vessel radii map for the MIP image
is color coded in terms of the number of pixels thick, where 1
pixel = 0.23 mm. Segmentation results for the two clinical MRA
scans of the juvenile pilocytic astrocytoma patients acquired
at lower strengths is shown in Figure 4. The repeatability test
demonstrated a 2–14% percentage difference between the two
serial scans for the same volunteer.

FIGURE 4 | Segmentation results and color-coded vessel radii map for two clinical MRA scans of the patients with juvenile pilocytic astrocytoma acquired at 3T
(top) and 1.5T (bottom). Radii values are given in terms of number of pixels (1 pixel = 0.23 mm).
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The accuracy of the method was demonstrated by means
of Bland–Altman plots with lower bias, indicating that both
scans were in agreement (Figure 5). Histograms of the vessel
radii distribution and corresponding vessel radii map for the
central slice of each projection thickness are shown in Figure 6.
The maximum radii of the vessels found in a slice increased
with larger projection thicknesses, likely due to increased
coverage with thicker projections. Although small vessels can
be obscured as the projection thickness increases, the automatic
segmentation from projected image improved the delineation
of small blood vessels. The average radii measurements across
the five projection thicknesses (8, 16, 24, 32, and 48) for the
two region of interests displayed as white circles in Figure 6
were 1.32 ± 0.017 and 1.70 ± 0.02 pixels, demonstrating
the high level of precision of our method regardless of
projection thickness.

The performance of the proposed adaptive Frangi filter
was evaluated for multiple projection thicknesses (1, 4, 8, 16,
and 32 mm) and compared with the corresponding manual

segmentation and fixed thresholding results, as shown in
Figure 7, for a representative central slice of each projection
thickness. The color-coded difference images in the last two
columns demonstrate that significantly more vessels were missed
by the fixed thresholding method compared to the adaptive
Frangi method, while the adaptive Frangi method was able to
preserve vessel continuity more than either manual or fixed
thresholding method. These trends persisted at all projection
thicknesses, demonstrating the robustness of our method despite
the increase in segmentation metrics (DSC, JI, F-score, and
CCC) between the central slice automatic segmentation and
the corresponding manual segmentation with larger projection
thickness (Figure 8). Table 1 displays the total arterial vessel
volume and the length of arteries for all the subjects based on
Frangi and adaptive Frangi filtering. A statistically significant
decrease in segmentation error was found with our method
compared to the original Frangi (p < 0.003).

In order to further evaluate the accuracy of our algorithm,
both the Frangi and the adaptive Frangi algorithm were

FIGURE 5 | Repeatability analysis in Volunteer 1 (top) and Volunteer 2 (bottom): Vessel radii distribution after two repeat scans (A,C). The percentage variation in
the counts for each radii range is marked in the chart. Bland–Altman plots show close agreement between the measurements in the two serial scans for the two
volunteers (B,D).
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FIGURE 6 | Vessel radii map for the central slice of each projection thickness and the corresponding vessel radii distribution. As the projection thickness increases,
larger vessels are preserved, and the maximum radii of the vessels found in the central slice increase due to increased coverage. Although small vessels can be
obscured as the projection thickness increases, the automatic segmentation from projected image improves delineation of small blood vessels. Two identical ROIs
(white circles) were overlaid on each of the five projection thicknesses (8, 16, 24, 32, and 48), and the average vessel radii within that vessel segment were
evaluated. The average radii measurements for the two ROIs were 1.32 ± 0.017 and 1.70 ± 0.02 pixels. The low standard deviation demonstrates the high level of
precision of our method, regardless of projection thickness.

applied to synthetic images generated from VascuSynth
software. Figure 9 shows the results of each algorithm and
the difference image between the original and adaptive Frangi
methods. As with the volunteer data, the adaptive Frangi
method produced more accurate segmentation than the
original Frangi method as shown by the minimal differences
highlighted in green that only exist in cases of looped branches.
The number of branches was compared in the original
synthetic image and the automatically segmented image
showing close agreement. The set of segmentation metrics
described previously were obtained for both Frangi and
adaptive Frangi compared to the ground truth synthetic image
(Table 2). The DSC, JI, and F-scores were slightly higher
for the adaptive Frangi compared to the Frangi method.
The volume agreement metric, CCC, was also higher for the
adaptive Frangi method.

When tested under conditions of varying contrast and
noise levels, the adaptive Frangi filter maintained accurate
vessel radii throughout and outperformed the Frangi filter
that erroneously produces bulges at the ends of vessels
(Figure 10A). Adding noise to the TOF-MRA reduced the

DSC for the subject from 0.89 to 0.82 and 0.84 for the
Frangi and adaptive Frangi methods, respectively (Figure 10B).
Adding noise to the synthetic images reduced the DSC as
expected, with more decrease observed in Frangi compared
to the adaptive Frangi method (Table 2). Regarding the
fidelity of the vessel radii measured using our algorithm,
Frangi and the ground truth synthetic image were compared
for the three datasets and the mean count as shown in
Figure 11A. The Bland–Altman plots for the comparison of
Frangi and ground truth (Figure 11B) show higher differences
in the count compared to adaptive Frangi and ground
truth (Figure 11C).

DISCUSSION

Precise characterization of vascular structures is important for
the assessment and objective quantification of cerebrovascular
diseases. We have devised and thoroughly evaluated a new
technique for automated segmentation of cerebral vascular trees
from MRA images. Although the Frangi filter has been widely
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FIGURE 7 | Comparison of different segmentation methods from a central slice projected at different thicknesses. For the last 2 columns, white pixels denote
overlapping areas, magenta pixels depict vessels that were only segmented manually, and green pixels missed by the manual segmentation but identified by either
our adaptive Frangi (left) or fixed thresholding (right).

FIGURE 8 | Testing segmentation accuracy between adaptive Frangi and
manual segmentation for different projection thicknesses. As the projection
thickness increases, the Dice similarity coefficient, Jaccard Index, F-score,
and Concordance correlation coefficient between the mid-slice automatic
segmentation and the corresponding manual segmentation increase.

used in previous works, it holds limitations, and there is
no standard method for determining its optimal parameters.
Although Phellan and Forkert (2017) determined parameters
such as minimum sigma, maximum sigma, and number of

TABLE 1 | Vascular metrics for nine scans.

S.No.

Arterial vessel volume (ml) Total artery length (m)

Frangi Adaptive Frangi Adaptive

1 1.20 0.80 1.91 1.78

2 1.46 1.15 2.67 2.20

3 1.08 0.76 1.73 1.53

4 1.10 0.82 2.14 1.85

5 1.86 1.23 2.72 2.34

6 1.33 1.01 2.08 1.97

7 1.15 0.98 1.96 1.88

8 1.2 0.91 1.77 1.69

9 1.1 0.89 2.25 2.11

sigmas empirically, few methods (Shikata et al., 2004) have
employed an EDT-based selection of scales. Our method has
the advantage that it scales well for images projected at
different thicknesses. The method was tested on 10 image
datasets (seven from human subjects and three synthetic
datasets) and validated for segmentation accuracy, flexibility,
and robustness. To our knowledge, this is the first technique
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FIGURE 9 | Comparison of original Frangi filtering and adaptive Frangi filtering for a synthetic dataset. In the difference image, white pixels denote overlapping areas,
while green pixels represent areas missed by the adaptive Frangi filter. Both filtering strategies missed pixels at the bifurcation points.

TABLE 2 | Testing segmentation accuracy in synthetic images.

S.No.

No. of branches Dice Dice with noise Jaccard index F1 score CCC

Original Adaptive Frangi Adaptive Frangi Adaptive Frangi Adaptive Frangi Adaptive Frangi Adaptive

1 38 36 0.90 0.92 0.86 0.88 0.83 0.85 0.97 0.98 0.85 0.90

2 44 40 0.90 0.90 0.83 0.86 0.82 0.83 0.99 0.99 0.90 0.91

3 56 54 0.90 0.93 0.83 0.86 0.81 0.84 0.97 0.97 0.88 0.92

CCC, concordance correlation coefficient.

to explore the effects of projection thickness on the vessel
filter parameters.

The TOF-MRA images used in this work were obtained from
the first echo of a multi-echo sequence that simultaneously
allows acquisition of SWI images (Bian et al., 2015). As a result,
the parameters used for the acquisition were optimized for the
combined sequence in general and not for single echo MRA
images, which resulted in a longer TR than would otherwise
be considered optimal. This resulted in poorer background
suppression of MRA images, necessitating the use of a more
powerful vessel segmentation technique. The versatility of the
algorithm was then demonstrated by applying it to standard

clinical MRA scans in two pediatric patients with brain tumors
acquired at 1.5T and 3T and in different imaging planes. In
order to make the vessel segmentation more sensitive for a
given disease application, users can expand the scale range or
insert intermediate sigma values in addition to the ones used
in this setting.

The manual delineation of the 2D MIP and the 3D
volume of continuously projected slices was performed by a
neuroradiologist. We found that some smaller branching arteries
were missed by our algorithm likely due to small vessels
exhibiting lower contrast than larger ones (Dehkordi et al.,
2011). The smoothing applied during the vessel enhancement
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FIGURE 10 | Performance of our algorithm in the presence of noise. (A) Noise added synthetic dataset. (B) Original Frangi filtered syntetic data. (C) Adaptive Frangi
filtered synthetic data. Red arrows denote where the Frangi filter produced some bulges at the vessel tips, and two thin vessels were not clearly delineated. (D) Noise
added to the MIP TOF image of one subject. (E) Original Frangi filtered MIP TOF. (F) Adaptive Frangi filtered MIP TOF. Adding noise reduced the DSC for this subject
from 0.85 to 0.82 for the original Frangi method and from 0.89 to 0.84 for the adaptive Frangi method.

may also contribute to this finding. Although the manual
segmentation did a better job of capturing the small vessels,
there were regions where our automatic segmentation visually
outperformed the manual gold standard. This is because
manual segmentation is prone to overestimating smaller vessels.
Identification of very small, low-contrast arteries is often
complicated even for expert reviewers. Manual segmentation
is time-consuming as well as subject to inter-rater and intra-
rater variability. In addition, the large number of arterial
segments in each dataset poses a practical limit on manual
segmentation by radiologists. A major issue with manual
vessel diameter measurements in MRA is the variability in
setting threshold levels. The estimated vessel diameter on

MRA highly depends on the pixel intensity at the vessel
boundaries, which is controlled by the selected image threshold
(Westenberg et al., 2000).

Increasing the projection thickness has several known
consequences on vessel conspicuity including the worsening of
partial-volume effects, improvement of noise suppression, the
preservation of larger higher-contrast vessels, and dampening
of smaller vessels with lower contrast. Because increasing
projection thickness improves the contrast of larger vessels, a
2D MIP is often used to increase the contrast-to-noise ratio of
large vessels and accurately measure the radii of single large
vessels such as the internal carotid artery or the basilar artery
(Sun and Parker, 1999). Conversely, multiple non-overlapping
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FIGURE 11 | Vessel radii comparison in synthetic images: (A) Pixel counts for
the different vessel radii obtained using the synthetic ground truth, adaptive
Frangi, and Frangi. The Bland–Altman plots for the comparison of Frangi and
ground truth (B) shows higher differences in the count compared to adaptive
Frangi and ground truth (C).

8 or 16 mm projections over the entire volume are more
appropriate for estimating the vessel radii distribution through
the entire image volume because smaller vessels with low
contrast can be obscured using larger projection thicknesses.
The automatic segmentation from projected images improved
delineation of small blood vessels, even at larger projection
thicknesses. The observed increase in similarity metrics for
larger projection thickness could be due to either increased
accuracy of the manual segmentations with higher projection

thickness or the fact that the Frangi filter typically looks for
tubular structures with higher vesselness scores compared to
blob like structures. With higher projection thickness, more
volume is also covered, potentially causing more vessels to
appear as tubular.

Although our algorithm scales well for images of different
projection thickness, it fundamentally performs assessments
on 2D projection views of inherently 3D structures. This can
inevitably cause loss of important vascular structure due to
varying projection angles. Although other methods that consider
the full 3D structure of vessels (Ilicak et al., 2016) can overcome
this limitation by utilizing a reconstruction strategy that leverages
vascular maps extracted from undersampled angiographic
acquisitions with higher levels of background suppression, they
have not been evaluated for different projection thicknesses
and are far more computationally intensive, precluding the
feasibility for their incorporation in clinical practice. Our
method, conversely, takes only a few minutes to produce the
segmented vessels on a single CPU and corresponding vessel radii
maps and can be applied for any projection thickness.

Although our method can be applied to any number of
images, the results for only seven human subjects and three
synthetic images are presented here to discuss performance
metrics in detail. The adaptive Frangi segmentation and radii
estimation method should serve as a useful tool to monitor
the subtle changes in arterial structure that are expected
in a variety of vascular diseases. Some examples include
moyamoya, atherosclerosis, radiation-induced arteriopathy,
autoimmune vasculitis, and even chronic vascular disorders
such as hypertension. It can aid in the automated evaluation
of cerebral vasospasm after aneurysm treatment where the
magnitude and pattern of vascular injury are variable in each
patient (Schob et al., 2019). Another example is the evaluation of
complex arteriovenous shunts, where the quantification of lesion
size, location, and pattern is highly rater-dependent (Geibprasert
et al., 2010). Quantification of the severity of these complex
lesions using this algorithm could help to establish a much more
reliable grading system as long as lumen diameters constitute at
least three pixels (Hoogeveen et al., 1998).

CONCLUSION

In conclusion, we have developed an automated tool for accurate
segmentation of arteries from TOF-MRA images with suboptimal
background suppression that provides accurate measures of
vessel radii for a wide range of projection thicknesses. We
have demonstrated the feasibility of applying an adaptive
Frangi method on volunteer images from a 7T scanner. We
believe that this approach can easily be extended to lower
field strength data for routine clinical and research use given
that its parameters are automatically calculated based on vessel
radii, and it demonstrated superior performance on synthetic
images of various contrasts and noise levels. Future work will
apply this automated algorithm to study differences in vessel
radii associated with normal aging, vessel pruning due to
neurovascular disease, and the post-radiation angiitis.
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