
SYSTEMATIC REVIEW
published: 30 June 2020

doi: 10.3389/fnins.2020.00578

Frontiers in Neuroscience | www.frontiersin.org 1 June 2020 | Volume 14 | Article 578

Edited by:

Michela Chiappalone,

Italian Institute of Technology (IIT), Italy

Reviewed by:

Seong-Whan Lee,

Korea University, South Korea

Trieu Phat Luu,

University of Houston, United States

*Correspondence:

Olive Lennon

olive.lennon@ucd.ie

Specialty section:

This article was submitted to

Neuroprosthetics,

a section of the journal

Frontiers in Neuroscience

Received: 05 December 2019

Accepted: 12 May 2020

Published: 30 June 2020

Citation:

Lennon O, Tonellato M, Del Felice A,

Di Marco R, Fingleton C, Korik A,

Guanziroli E, Molteni F, Guger C,

Otner R and Coyle D (2020) A

Systematic Review Establishing the

Current State-of-the-Art, the

Limitations, and the DESIRED

Checklist in Studies of Direct Neural

Interfacing With Robotic Gait Devices

in Stroke Rehabilitation.

Front. Neurosci. 14:578.

doi: 10.3389/fnins.2020.00578

A Systematic Review Establishing
the Current State-of-the-Art, the
Limitations, and the DESIRED
Checklist in Studies of Direct Neural
Interfacing With Robotic Gait Devices
in Stroke Rehabilitation
Olive Lennon 1*, Michele Tonellato 2, Alessandra Del Felice 3,4, Roberto Di Marco 3,

Caitriona Fingleton 5, Attila Korik 6, Eleonora Guanziroli 7, Franco Molteni 7,

Christoph Guger 8, Rupert Otner 8 and Damien Coyle 6

1 School of Public Health, Physiotherapy and Sports Science, University College Dublin, Dublin, Ireland, 2Department of

Neuroscience, Rehabilitation Unit, University of Padova, Padova, Italy, 3Department of Neuroscience, NEUROMOVE-Rehab

Laboratory, University of Padova, Padova, Italy, 4 Padova Neuroscience Center, University of Padova, Padova, Italy,
5Department of Physiotherapy, Mater Misericordiae University Hospital, Dublin, Ireland, 6 Intelligent Systems Research

Centre, School of Computing, Engineering and Intelligent Systems, Ulster University, Derry, United Kingdom, 7 Villa Beretta

Rehabilitation Center, Valduce Hospital, Costa Masnaga, Italy, 8 g.tec Medical Engineering GmbH, Schiedlberg, Austria

Background: Stroke is a disease with a high associated disability burden.

Robotic-assisted gait training offers an opportunity for the practice intensity levels

associated with good functional walking outcomes in this population. Neural interfacing

technology, electroencephalography (EEG), or electromyography (EMG) can offer new

strategies for robotic gait re-education after a stroke by promoting more active

engagement in movement intent and/or neurophysiological feedback.

Objectives: This study identifies the current state-of-the-art and the limitations in direct

neural interfacing with robotic gait devices in stroke rehabilitation.

Methods: A pre-registered systematic reviewwas conducted using standardized search

operators that included the presence of stroke and robotic gait training and neural

biosignals (EMG and/or EEG) and was not limited by study type.

Results: From a total of 8,899 papers identified, 13 articles were considered for the

final selection. Only five of the 13 studies received a strong or moderate quality rating as

a clinical study. Three studies recorded EEG activity during robotic gait, two of which

used EEG for BCI purposes. While demonstrating utility for decoding kinematic and

EMG-related gait data, no EEG study has been identified to close the loop between

robot and human. Twelve of the studies recorded EMG activity during or after robotic

walking, primarily as an outcome measure. One study used multisource information

fusion from EMG, joint angle, and force to modify robotic commands in real time, with

higher error rates observed during active movement. A novel study identified used EMG

data during robotic gait to derive the optimal, individualized robot-driven step trajectory.
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Conclusions: Wide heterogeneity in the reporting and the purpose of neurobiosignal

use during robotic gait training after a stroke exists. Neural interfacing with robotic gait

after a stroke demonstrates promise as a future field of study. However, as a nascent

area, direct neural interfacing with robotic gait after a stroke would benefit from a more

standardized protocol for biosignal collection and processing and for robotic deployment.

Appropriate reporting for clinical studies of this nature is also required with respect to the

study type and the participants’ characteristics.

Keywords: stroke rehabilitation, robot-assisted gait trainer, electromyography, electroencephalography, human–

machine interface, brain–computer interface

INTRODUCTION

Stroke, a disease with substantial personal and societal
consequences, remains the leading cause of acquired disability
worldwide. With 13.7 million new cases each year, the associated
economic costs of treatment and post-stroke care are significant
(Wilkins et al., 2017; Johnson et al., 2019). At 3 months after
a stroke, 20% of people remain wheelchair dependent and
∼70% walk with a reduced capacity (Mehrholz et al., 2017).
Task-specific training is critical for recovery, and the intensity
of practice is strongly associated with improved functional gait
outcomes (Kwakkel et al., 2004; Veerbeek et al., 2014).

Providing high intensity restorative exercises for a larger share
of the stroke population is part of the Action Plan for Stroke
in Europe 2018–2030 (Norrving et al., 2018), yet the delivery
of an adequate dosage of gait training for physically dependent
patients is challenging in the rehabilitation sector, from manual
handling and human resource perspectives. Robotic gait devices,
which enable people to walk with electromechanical assistance to
achieve a healthy gait trajectory, can potentially overcome some
of these practical difficulties (Mehrholz et al., 2017; Cervera et al.,
2018) and allow an intensive, high repetition of the gait cycle with
reduced therapist involvement (as they no longer need to set the
paretic limbs or assist trunk movements) (Sarasola-Sanz et al.,
2017). The addition of robotic-assisted gait training (RAGT) to
usual rehabilitation has been shown by a systematic review to
improve the likelihood of regaining independent walking after
a stroke [odds ratio 1.94, 95% confidence interval (CI), 1.39 to
2.71], with a subgroup analysis suggesting that people in the
acute phase and non-ambulatory individuals benefit most from
the intervention (Mehrholz et al., 2017). Of note is that the
improvements in walking velocity and walking capacity did not
match the observed improvements in independence in gait.

At present, RAGT alone has not been shown to be superior
to equally dosed routine rehabilitation despite the increased
intensity of stepping in RAGT (Taveggia et al., 2016; Bruni et al.,
2018). When motor function is considered specifically as an
outcome, the upper limb robotic devices have proven efficacy in
contrast to the lower limb robotic training, where no treatment
effect for motor function has been demonstrated (Lin et al.,
2019). Current RAGT therapies have focused on providing high-
intensity training and repetition but not on patient engagement,
motivation, and reward, which are important factors for inducing

cortical plasticity (Hogan et al., 2006; Goodman et al., 2014).
Limitations in randomized controlled trials (RCTs) in this area
to date have been identified (Molteni et al., 2018) and many
RAGT protocols were criticized for allowing the trainee to
be too passive, with lower metabolic costs, muscle activations,
and subject effort reported in comparison to therapist-assisted
treadmill training (Cai et al., 2006; Israel et al., 2006; Krishnan
et al., 2013). However, rehabilitative robotics, when deployed
correctly, have the ability to generate bottom up and top down
complex and controlled multisensory stimulation to modify
the plasticity of neural connections through the experience of
movement (Molteni et al., 2018).

Direct human machine interfaces (HMIs) can translate
electrical, magnetic, or metabolic activity at the brain or the
muscle level into control signals for external devices (e.g.,
computers or neuroprosthetic and robotic devices) to replace,
restore, or enhance the natural neural output (Wolpaw, 2012;
Soekadar et al., 2015). Brain interfacing technology, primarily
electroencephalography (EEG)-based brain computer interfaces
(BCI,) can offer new strategies for robotic gait re-education after
a stroke that can promote more active engagement in movement
intent and/or by neurophysiological feedback. In stroke, BCI
exploitation has mainly used motor imagery to drive brain
activity levels (with no overt motor output) in combination
with visual, auditory, or haptic feedback or to control an
external device which executes the movement and provides
proprioceptive feedback (Prasad et al., 2010; Van Dokkum et al.,
2015). Of the nine upper limb studies identified in a recent
systematic review of BCI for motor rehabilitation after a stroke,
only three used BCI to control a robotic or orthotic device
with large to moderate effect sizes noted for improved motor
impairment (Cervera et al., 2018) and emerging evidence in
upper limb rehabilitation now points to the superiority of BCI
robotic training after a stroke to robotic training alone in motor
recovery (Varkuti et al., 2013; Ang et al., 2014). No lower limb
robotic RCT studies using BCI were reported in this review
(Cervera et al., 2018).

Motor intent can also be determined non-invasively by
electromyography (EMG) activity and responded to in triggered
motion (Hussein et al., 2009) and thus has potential to enhance
RAGT. EMG-based robotic movement has emerged as a well-
developed field in upper limb rehabilitation in stroke (Ho et al.,
2011; Vaca Benitez et al., 2013; Hu et al., 2015), and when used in
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robot-assisted rehabilitation has achieved a significantly higher
completion rate compared to torque control for the participants
with severe to moderate impairment in the upper limb (Paredes
et al., 2015). EMG has also been combined with EEG in
human–machine interactive force to improve the recognition of
movement intent (Mrachacz-Kersting et al., 2012; Jiang et al.,
2014; Bhagat et al., 2016).

As reported in a 2018 review of human intent-based control
in motor rehabilitation after a stroke, most studies are in the
laboratory stage (Li et al., 2018), and a systematic review of
RCTs of BCI interfaces after a stroke identified no RAGT studies
(Cervera et al., 2018). Therefore, the aim of this systematic
review was to establish the current state-of-the-art in EMG
and/or EEG neural biosignal deployment during robotic gait
training post-stroke as described in the literature (with no
limitation by study design applied). Contributing to this review is
a panel of relevant stakeholders from the fields of rehabilitation,
neurology, biomedical engineering, and BCI engineering who,
in providing a summary of available data, comment and
make important recommendations to standardize reporting and
advance this important and emerging area in robotic-assisted gait
rehabilitation in stroke.

The primary question that this review asks is:
what is the current state-of-the-art in neural–exoskeleton

interface (non-invasive EEG and/or EMG) during robotic gait
training after a stroke?

The secondary review questions asked are the following:

1. What is the profile of the stroke patients in the
included studies?

2. What robotic gait devices are deployed?
3. What biosignals are measured in conjunction with the robotic

gait devices and what devices (hardware and/or software) are
used to capture these biosignals?

4. What protocols are used for recording and processing
these biosignals?

5. For what purpose is the acquired biosignal data collected?

As a nascent area, the inclusive approach to study type was
taken in this review to allow a true reflection of bioengineering
translational research in gait rehabilitation robotics in a
clinical population. A compendium of current data collection
and signal processing procedures will be developed to allow
recommendations for the standardization of future research in
this field.

The systematic review was pre-registered with PROSPERO
(PROSPERO 2018 CRD42018112252) (Heilinger et al., 2018).

METHODS

Definitions
Prior to conducting the review, several operational definitions
were defined by the research teamwhich included an experienced
information science researcher and experts in rehabilitation, BCI,
and medical engineering. The methodology was based on the
Cochrane handbook for systematic reviews of interventions and
the PRISMA statement (Preferred Reporting Items for Systematic

Reviews andMeta-Analyses) (Higgins andGreen, 2011) and used
the PICOS acronym to guide the search strategy development. In
line with best practice, screening for inclusion at the abstract and
the manuscript stages and during data extraction of the included
studies was conducted independently by two researchers. Where
disagreements arose, they were discussed among the reviewers
first and then with an independent third party until a consensus
was achieved.

The inclusion criteria for the review population were adults
(>18 years) with confirmed diagnosis of stroke and at any stage
of stroke recovery. No limitation by stroke etiology, first or
recurrent event, or symptom presentation were applied. Adults
with other known neurological diseases (e.g., spinal cord injury
and multiple sclerosis) were excluded.

The interventions included in the review, broadly termed
as “robotic gait training,” must comprise exoskeleton or other
electromechanically assisted gait devices and be implemented
in conjunction with biosignal (EEG and/or EMG) data capture
as part of the study. For the purpose of this review, robotic
devices could be either end-effector (electromechanically driven
footplates simulating the phases of gait) or exoskeleton (robot-
driven orthosis) gait devices.

Comparator populations were not a mandatory inclusion
criterion, but studies that include a control group or a matched
comparator group were considered eligible for inclusion. RCTs,
cross-over, or quasi-randomized control studies, case–control
studies, cohort studies, cross-sectional studies, case series, and
case reports were all eligible for inclusion. Reviews, opinion
pieces, editorials, and conference abstracts were excluded. This
review was not designed to specifically examine the efficacy of
the robotic gait interventions on stroke outcomes; rather, we
were interested in the neural biosignals of EEG and or EMG
themselves when recorded during robotic gait training after a
stroke and how these signals interface with the robotic device.

Information Sources
A systematic search and review of the literature was completed,
which was compliant with the PRISMA guidelines (Moher et al.,
2010). The following databases were searched from inception up
to the 30th of November 2018: PubMed (1949–2018), EMBASE
(1947–2018), Web of Science (1945–2018), COMPENDEX
(1967–2018), CINAHL (1982–2018), SPORTDiscus (1985–
2018), ScienceDirect (1997–2018), and Cochrane Library (1974–
2018). No language, publication year, or publication status
limits were applied to the database searches. Each database
was searched using a comprehensive search strategy which was
devised in conjunction with a librarian, including controlled
vocabulary terms specific to each database and employing
Boolean operators AND andOR. Gray literature was searched for
in the following websites: http://bnci-horizon-2020.eu/database/
data-sets and OpenGrey. A sample search strategy is provided as
part of Figure 1.

Study Identification and Selection
The citations identified were subjected to the following review
process. Duplicate records were removed. The remaining studies
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FIGURE 1 | PRISMA flow chart with sample search strategy.
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were then reviewed independently by two reviewers against the
established eligibility criteria in three stages: screening by title,
screening by abstract, and screening by full text. An inclusive
approach was taken, whereby if it was not clear whether a study
fulfilled the necessary criteria for inclusion, it progressed to the
next more in-depth review stage.

Methodological Quality of the Included
Studies
The reviewers independently documented the methodological
quality of the included studies using the Effective Public
Health Practice Public tool (EPHPP) in conjunction with the
EPHPP dictionary for standardization. The EPHPP tool has been
established as a reliable and valid tool in health research and is
suitable to use across a range of differing study methodologies
(Thomas et al., 2004, 2008). The disparity in ratings was discussed
until a final decision was agreed.

Eight different sections of study quality to be applied as
appropriate to the study type were addressed: selection bias,
study design, confounders, blinding, data collection methods,
withdrawals and dropouts, intervention integrity, and analysis.
The tool provides an overall rating of either strong, moderate, or
weak quality for each study.

Data Extraction, Synthesis, and Analysis
Data were extracted from the included studies using a pre-agreed,
standardized data collection form. The data extracted included
(1) the characteristics of stroke study participants (including
number, age, stroke type, stroke severity, and ambulatory ability),
(2) type of robotic gait devices employed, (3) neural biosignal/s
captured, (4) protocol reported for signal capture and processing,
and (5) purpose and use of biosignal capture. Discrepancies in
extraction, mainly related to the criteria for reporting biosignal

processing, were resolved through a group discussion until a
consensus was reached.

Narrative and tabular syntheses of data were proposed due
to the heterogeneity of the study methodologies included. An
overview of the studies meeting the inclusion criteria is initially
provided, summarizing across the studies the stroke patient
profiles, robotic devices, neural biosignal/s captured during
robotic gait training after a stroke, and the purpose of the
signal capture.

A summary of current integration of EEG and/or EMG data
during robotic walking is presented next, with the current state
of the art in closing the BCI/HMI loop in robotic gait training
after a stroke being delineated.

The protocols for EEG and EMG signal collection are reported
in a tabular format, with a narrative summary identifying the
hardware and the software utilized where reported, the number
of channels/leads used, and the sites chosen for signal capture.

EEG and EMG signal processing, as employed in the included
studies, are again reported in a tabular format, with a summary
identifying the frequency of signal capture, filtering processes,
and software and algorithms used.

RESULTS

Overall Summary of Studies Identified
The database searches were completed by end of November 2018.
Figure 1 provides the PRISMA flow chart of the studies identified
through database searching and through each stage of the review
process. From 8,899 articles identified by the search strategy, 13
full papers fitting the inclusion criteria were included.

Tables 1, 2, which report the EEG and the EMG studies,
respectively, detail the characteristics of the stroke participants,

TABLE 1 | Electroencephalography (EEG)-based robotic studies (participants and purpose).

References Robotic

device

Stroke patients Mobility

level

Outcome

measures

Purpose of EEG

recording

Feedback to

robot (Y/N)

Real-time

feedback (Y/N)

Adverse

events

(Y/N)

Calabrò et al.

(2018)

EKSO N = 40 H-C

69.0 ± 4.0 yrs RGT

67.0 ± 6.0 yrs OGT

Type: I

Side: 8L + 12R

FAC < 5

MRC < 4

10 MWT, RMI,

TUG, sEMG, CSE,

SMI, FPEC

Identify the cortical

activations

induced by gait

training

N N Y

Contreras-Vidal

et al. (2018)

H2 and

continuous-

time Kalman

decoder

N = 6C

53.5 ± 12.5 yrs

Type: 2 I; 2 He; 2M

Side: 2L + 4R

NS BBS, FGA, 6

MWT, TUG, FM, BI

(pre/post)

Decoding gait

kinematics

N N NS

He et al. (2014) X1 N = 1 US

51 yrs

Type: NS Side: 1L

FM-LL 12/34

BBS 38/56

FGA 13/30

EEG decoding

accuracies for

kinematics and

EMG

Feasibility of

decoding joint

kinematics and

muscle activity

patterns

N N NS

Patient data reported: sample number (N), stroke classified as (A) acute, (SA) subacute, (C) chronic, (US) undefined stroke and (H) hospitalized; age in years (yrs); robot gait training

(RGT) and overground gait training (OGT); stroke type classified in (I) ischemic stroke, (He) hemorrhagic, (M) mixed; L, affected side—left; R, affected side—right. Control subject sample

(CTRL) is reported, if any. NS: not specified in the manuscript.

Outcomes and mobility: 10 MWT, Ten-Meters Walking Test; RMI, Rivermead Mobility Index; TUG, Timed Up and Go; sEMG, surface electromyography; CSE, Corticospinal Excitability;

SMI, Sensory-Motor Integration; FPEC, Fronto-Parietal Effective Connectivity; BBS, Berg Balance Score; FGA, Functional Gait Assessment; 6MWT, Six-Minute Walking Test; FM,

Fugl–Meyer assessment; BI, Barthel Index; FAC, Functional Ambulation Classification; MRC, Medical Research Council scale for muscle strength; FM-LL, Fugl–Meyer Lower Limb Scale.
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TABLE 2 | Electromyography (EMG)-based robotic studies (participants and purpose).

References Robotic

device

Stroke Patients Disability

level

Outcome

measures

Purpose of EMG

recording

Feedback to

robotic (Y/N)

Real-time

feedback (Y/N)

Adverse

events (Y/N)

Androwis et al.

(2018)

EKSO GT

(EXO)

N = 5A (first event)

51.0 ± 17.0 yrs

Type: NS

Side: 2L + 3R

FIM 26 ± 4 FIM Test a novel EMG

analysis (Burst

Duration Similarity

Index) and assess

the neuromuscular

adaptations in

lower extremities

muscles

N N NS

Calabrò et al.

(2018)

EKSO (EXO) N = 40 H-C

69.0 ± 4.0 yrs RGT

67.0 ± 6.0 yrs OGT

Type: I

Side: 8L + 12R RGT

9L + 11R OGT

FAC < 5

MRC < 4

10 MWT, RMI,

TUG, sEMG, CSE,

SMI, FPEC

Quantify gait

parameters and

compare mean

muscle activity

pre/post robotic

and standard

therapy

N N Y

Chisari et al.

(2015)

Lokomat

(EXO)

N = 15H

62.0 ± 10.0 yrs

Type: 10 I, 5 He

Side: NS

Ability to walk

for a few

meters

FMMS, BBS, 10

MWT, TUG, 6

MWT

Strength and

motor unit firing

rate of vastus

medialis

N N NS

Coenen et al.

(2012)

Lokomat

(EXO)

N = 10C

55.0 ± 11.0 yrs

CTRL = 10

47 ± 12 yrs Type: 5 I, 5

He Side: 8L + 2R

FAC = 5 sEMG during gait

cycle

Compare EMG

amplitude in

robotic walking,

overground

walking for stroke

patients, and

overground

walking for control

subjects

N N NS

Fan and Yin (2013) Lower

extremity

exoskeleton

with a

standing bed

frame (EXO,

non-

commercial)

N = 3H (2 SA, 1C)

50.7 ± 19.2 yrs

CTRL = 3

25.3 ± 1.5 Type: NS

Side: 2L + 1R

NS Exoskeleton forces

and angles, joint

ROM and active

flexion/extension

force

To decode

movement and

predict human

motion inattention

Y Y NS

Gandolfi et al.

(2017)

First mover

(EE)

N = 2 H-SA

74 yrs

CTRL = 10

65.4 ± 6.1 yrs

Type: I Side: L

FAC = 0

TCT < 12

sEMG, MI, MRC,

AS

Explore the

training effects on

lower limb function

and timing of

muscle activation

onset and offset

N N N

Gandolla et al.

(2018)

EKSO GT

(EXO)

N = 13 (8A, 5C)

52 ± 14 yrs

Type: 7 I, 6 He

Side: 8L + 5R

Tibialis

anterior MRC

< 4

MAS < 2 at

hip,

knee, ankle

GM, sEMG during

gait cycle

(1) Computational

calibration

procedure, (2) gait

cycle reference

Y N NS

He et al. (2014) X1 (NASA)

(EXO)

N = 1, 51 yrs

CTRL = 2

33.8 ± 0.1 yrs

Type: NS Side: L

FM-LL 12/34

BBS 38/56

FGA 13/30

EEG decoding

accuracies for

kinematics and

EMG

Assess muscle

activation pattern

N N NS

Hesse et al. (2010) G-EO-

Systems

(EE)

N = 6 SA

<75 yrs

Type: I Side: 3L + 3R

Independent

walker

(>20m,

>0.25 m/s)

Stair climber

(aids/hand

rails allowed)

sEMG activation

pattern during

floor walking and

stairs climbing;

FAC, RMI, MI, BI

Compare lower

limb muscle

activation with and

without the robot

N N NS

(Continued)
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TABLE 2 | Continued

References Robotic

device

Stroke Patients Disability

level

Outcome

measures

Purpose of EMG

recording

Feedback to

robotic (Y/N)

Real-time

feedback (Y/N)

Adverse

events (Y/N)

Ping et al. (2013) NaTUre-gaits

(EXO non-

commercial)

N = 1 H-C, 73 yrs

SCI=2, 32 and 67 yrs

CTRL = 4, age NS

Type: NS Side: L

Moderate

level of

assistance to

walk

sEMG during gait

cycle

Investigate the

timing and

intensity of activity

in the lower limb

muscles during the

use of the system

N N NS

Sloot et al. (2018) Exosuit (EE) N = 8, age NS Type:

NS

Side: NS

Walkers (level

of assistance:

NS)

sEMG, walking

speed, energy

cost of walking

Maximum EMG

values during

push-off and

swing during

walking with and

without EE

N N NS

Srivastava et al.

(2016)

ALEX II (EXO) N = 12 SA-C

(6 RGT, 6 BWSTT)

RGT: 62.7 ± 12.7 yrs

BWSTT: 58.8 ± 9.0 yrs

Type: NS Side: 4L + 2R

RGT 3L + 3R BWSTT

Walkers (level

of assistance:

NS)

TUG, 6 MWT,

FGA, FM

(pre/post)

Compare muscle

activation timing

during the gait

cycle in RGT and

BWTSS

Y N NS

Robotic devices: EXO, exoskeleton; EE, end-effector. Patient data are reported as: N, sample number; A, classified as acute stroke; SA, classified as subacute stroke; C, classified as

chronic stroke; H, hospitalized; SCI, spinal cord injury; RGT, robot gait training; BWSTT, body-weight supported treadmill training; OGT, overground gait training; I, stroke type classified

in ischemic stroke; He, stroke type classified in hemorrhagic stroke; M, stroke type classified in mixed; L, affected side—left; R, affected side—right; CTRL, control subject sample is

reported, if any; NS, not specified. Outcomes and mobility: FIM, Functional Independence Measure; FAC, Functional Ambulation Classification; MRC, Medical Research Council muscle

strength; TCT, Trunk Control Test; MAS, Modified Ashworth Scale; FM-LL, Fugl–Meyer Lower Limb Scale; BBS, Berg Balance Score; FGA, Functional Gait Assessment; 10 MWT, Ten-

Meter Walk Test; RMI, Rivermead Mobility Index; TUG, Timed Up and Go; sEMG, surface EMG; CSE, corticospinal excitability; SMI, sensory–motor Integration; FPEC, fronto-parietal

effective connectivity; FMMS, Fugl–Meyer Motor Scale; 6 MWT, Six-Minute Walk Test; MI, Motricity Index; AS, Ashworth Scale for spasticity; GM, Gait Motor Index; BI, Barthel Index;

FM, Fugl–Meyer assessment.

the robotic gait devices deployed, and the purpose of the neural
bio-signal recording.

A total of 96 out of the 122 individuals with stroke who were
recruited in the studies received robot-assisted gait training on
at least one occasion. Calabrò et al. recruited the largest cohort
(40 stroke subjects, 20 of whom underwent robotic training)
(Calabrò et al., 2018), whereas others reported a case study
(Ping et al., 2013). The stroke participants differed widely across
studies in terms of age profile, stroke type, stroke lateralization,
and disability levels. Where reported, the ages ranged from
29 to 81 years of age. The laterality of the stroke event was
described for 99 of the 122 stroke participants, 46 of whom
had a right-sided stroke (with left hemiplegia). Two studies did
not report stroke laterality (Chisari et al., 2015; Sloot et al.,
2018). Stroke etiology was reported in 92 cases: 72 of which
were ischemic in origin, 18 were hemorrhagic, and two were
ischemic/hemorrhagic. Six studies did not provide information
related to stroke type (Ping et al., 2013; He et al., 2014; Androwis
et al., 2018; Sloot et al., 2018). The time from stroke to study
participation was reported for 98 patients, with the majority (N
= 57) recruited in the chronic phase of stroke. Three studies,
comprising 13 subjects in total, selected stroke participants
during the acute/subacute phase (Hesse et al., 2010; Gandolfi
et al., 2017; Androwis et al., 2018). Three studies involved the
collection of data from both chronic and acute/subacute phases
of stroke (N = 10 in acute phase; N = 15 in chronic phase)
(Fan and Yin, 2013; Srivastava et al., 2016; Gandolla et al., 2018).
The stage of stroke recovery was not specified for the remaining
24 participants.

As noted in Tables 1, 2, a variety of methods were employed
to describe the walking ability of the participants and, where
comparable, the disability levels of the stroke study participants
varied. Three authors adopted the Functional Ambulation
Classification (FAC) as a standardized scale to describe the
dependence levels in walking. Coenen et al. included fully
independent walkers (FAC 5) (Coenen et al., 2012), Gandolfi
et al. selected people who were unable to walk (FAC 0), (Gandolfi
et al., 2017) and Calabrò et al. focused on stroke patients
with gait impairment (FAC ≤ 4) (Calabrò et al., 2018). Three
studies identified the participants as “walkers” but did not specify
the level of assistance required, if any (Chisari et al., 2015;
Srivastava et al., 2016; Sloot et al., 2018). Other studies described
the participants’ mean motor subscale score of the Functional
Independence Measure (Androwis et al., 2018) [26 ± 4; where
13–38 indicate low scores for motor independence as guided by
Itaya et al. (2017)], the Fugl–Meyer Lower Limb Scale (He et al.,
2014) [12/34; where a cutoff score of<21 indicates lowermobility
levels, as guided by Kwong and Ng (2019)], or strength of the
lower limb tibialis anterior muscles of <4 on the MRC scale
(Gandolla et al., 2018) or specified the level of assistance required
to walk (Hesse et al., 2010; Ping et al., 2013). Two studies did
not address the participants’ walking status (Fan and Yin, 2013;
Contreras-Vidal et al., 2018); however, one of these studies used
the 6 MWT as a baseline score.

Exoskeleton devices were the most frequent robotic gait
devices deployed in the studies included (n = 10 studies).
The Lokomat (Lokomat R© Hocoma, Switzerland) was used in
two studies, EKSO (Ekso bionics R©, USA) was used in three
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studies (two EKSO GT and one non-specified EKSO); the X1
(NASA, USA), the H2 (Technaid, Spain), the ALEX II (ROAR
Laboratory, USA), and NaTUre-gaits (Nanyang Technological
University, Singapore) devices were used in one study each.
Fan and Yin combined a non-commercial lower extremity
exoskeleton robot with a standing bed frame (Fan and Yin,
2013). Three end-effector devices were reported in the included
studies [First Mover (Reha Technology AG, Switzerland), G-
EO-Systems (Reha Technology AG, Switzerland), and Exosuit
(Wyss Institute for Biologically Inspired Engineering, Harvard
University, USA)].

Closing the Loop Between Human and
Robotic Device
No studies included in this review closed the loop in real time
using EEG biosignals during robotic walking after a stroke,
indicating that this field has not sufficiently evolved in a patient
population such as stroke. One study described a multisensor,
real-time movement prediction model that included sEMG of
knee flexor and extensor muscles, joint angle, and force to
determine the rehabilitation mode and the parameter settings in
a bespoke exoskeleton (Fan and Yin, 2013). Errors in movement
prediction were evident however during active training, when
flexion and extension altered rapidly.

EEG-Based Studies
Three of the thirteen studies included in this review recorded and
analyzed EEG activity. As summarized in Table 1, two studies
used EEG during robotic gait to decode gait kinematics (He
et al., 2014; Contreras-Vidal et al., 2018) and muscle activity
during walking (He et al., 2014). One study used EEG to
determine frontoparietal connectivity as an outcome measure
of neuroplasticity following a robotic gait training intervention
(Calabrò et al., 2018).

Table 3 summarizes the EEG signal processing methods
employed by the researchers. Contreras-Vidal et al. identified
neural representation at the brain level for robotic gait using
a powered H2 exoskeleton. A wireless, 64-channel, active
electrode EEG-based system (BrainAmpDC, Brain Products,
Inc., Munich), with continuous-time Kalman decoder operating
on delta band, was utilized in five chronic stroke patients to
demonstrate the feasibility of an EEG-based BCI-controlled
rehabilitative robotic exoskeleton. The classification accuracy for
predicting joint angles during gait was noted to improve with
multiple training sessions and gait speed (Contreras-Vidal et al.,
2018). The pilot study conducted by He et al., using a 10th-order
unscented Kalman filter, demonstrated similar moderately high
online decoding accuracies for joint kinematics during robotic
gait but not for muscle activity patterns during robotic gait
training in two healthy participants and one stroke survivor (He
et al., 2014) using a multimodal interface comprising EEG [64-
channel EEG (actiCap system, Brain Products GmbH, Munich,
Germany)], EMG, and motion (goniometers), instrumented in
conjunction with the X1 exoskeleton employed during 5-min
overground walking sessions of three conditions: no robot, robot
off (X1 in passive mode), and robot on (X1 in active mode).
The final EEG-based study, an RCT by Calabrò et al. (N =

40 sub-acute and chronic stroke patients), employed 21-channel
EEG as a measure of neuroplasticity using frontoparietal effective
connectivity (FPEC) but did not interface with the robotic
device directly. EEG was recorded using a high-input impedance
amplifier (referential input noise<0.5µVrms at 1÷20,000Hz) of
Brain Quick SystemPLUS (Micromed; Mogliano Veneto, Italy),
wired to an EEG cap equipped with 21 Ag tin disk electrodes
positioned according to the international 10–20 system. An
electrooculogram (EOG) was also recorded for blinking artifact
detection. EEG and EOG were sampled at 512Hz, filtered
at 0.3–70Hz, and referenced to linked earlobes. The cortical
activations induced by gait training from the EEG recordings
were identified by using low-resolution brain electromagnetic
tomography (LORETAKEY alpha-software). Structural equation
modeling technique (or path analysis) was employed to measure
the effective connectivity among the cortical activations induced
by gait training. Improved FPEC was observed when robot-
assisted gait training was included in the rehabilitation in
comparison to conventional rehabilitation alone (r = 0.601, p <

0.001).

EMG-Based Studies
Table 4 summarizes the EMG measurements from 12 studies
included in this review. Only eight of the 12 studies defined the
EMG device used: two studies used a Noraxon, two a BTS, one
a DataLog, one a Motion Lab, and one a Porti system; one study
used a self-made signal acquisition processor. Among these, five
were wireless EMG devices.

The majority of the studies collected EMG data to assess
neuromuscular adaptations during robotic gait in stroke (Coenen
et al., 2012; Ping et al., 2013; Chisari et al., 2015; Srivastava
et al., 2016; Androwis et al., 2018; Calabrò et al., 2018; Sloot
et al., 2018) or as an outcome measure following robotic training
(Hesse et al., 2010; Chisari et al., 2015; Gandolfi et al., 2017). One
study employed EMG activity as a calibration tool to identify
individualized, optimal robotic parameters based on the gait
index score derived from a normalized dataset (Gandolla et al.,
2018). Every study used a symmetrical scheme for electrode
placement, collecting EMG signals from both stroke-affected and
contralateral sides, with the exception of one study (Srivastava
et al., 2016) that collected EMG data from the paretic leg only.
The number of muscle groups for EMG signal capture varied
from only one muscle site (Quadriceps) (Chisari et al., 2015) to
up to seven different muscle groups per limb (Hesse et al., 2010;
Coenen et al., 2012), with no clear rationale for themuscle groups
provided. Three studies referenced the guidelines used to identify
optimal electrode placement (SENIAM guidelines) (Chisari et al.,
2015; Gandolfi et al., 2017; Gandolla et al., 2018). Eleven out of
the 13 studies tested the dorsi-flexors and the plantar-flexors of
the ankle joint. Knee joint muscles were assessed by 12 studies.
One of these studies recorded rectus femoris only (Chisari et al.,
2015), whereas the others registered both flexor and extensor
muscle groups. The hip musculature was addressed in three
studies (Hesse et al., 2010; Coenen et al., 2012; Srivastava et al.,
2016).

Muscle activity and timing of onset were registered and
interpreted in relation to the gait cycle in 10 studies (Hesse et al.,
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TABLE 3 | Electroencephalography (EEG) signal processing in included studies.

References Protocol and analysis Channels Frequencies Filtering Reference Additional

Calabrò

et al. (2018)

High-input impedance amplifier (Brain Quick

SystemPLUS, IT)

Eyes open recording pre-post rehab session

Low-resolution brain electromagnetic tomography to

identify cortical activations induced by gait training

Structural equation modeling

21 (10–20 config) 512Hz BP, 0.3–70Hz Referenced to

linked earlobes

Electrooculogram

Contreras-

Vidal et al.

(2018)

Wireless, active electrode EEG (BrainAmpDC, DE)

Signals acquired during overground gait session

Peripheral channels removed

Detrend the remaining channels

Down-sample to 100Hz to match the frequency of H2

EEG and kinematics segmented in walk/stop epochs

Principal component analysis applied to EEG data matrix

to reduce the dimensionality

10th-order unscented Kalman filter to decode

joint kinematics

64 1,000Hz Butterworth

4th-order

Zero-phase

BP, 0.1–3Hz

FCz Kinematic data

acquired by H2

He et al.

(2014)

actiCap system (Brain Products GmbH, DE)

Data collected during robotic gait

Peripheral channels removed

Principal component analysis applied to the EEG data

matrix to reduce the dimensionality

Common average filter (CAR)

10th-order unscented Kalman filter to predict goniometer

and electromyography measurements

64 (10–20 config) 1,000Hz BP,

0.01–100Hz

FCz EMG

Biaxial

electrogoniometer

Hip and Knee

angles measured

by the X1

Filter type: BP, band-pass; LP, low-pass; HP, high-pass.

2010; Coenen et al., 2012; Ping et al., 2013; Srivastava et al., 2016;
Gandolfi et al., 2017; Androwis et al., 2018; Calabrò et al., 2018;
Gandolla et al., 2018; Sloot et al., 2018). A variety of methods
were employed, including instrumented gait analysis systems
(Androwis et al., 2018), synchronized video analysis (Coenen
et al., 2012; Ping et al., 2013), accelerometry (Calabrò et al., 2018),
shoe-mounted sensors (Hesse et al., 2010; Gandolfi et al., 2017),
or through the monophasic soleus muscle EMG activity and
deactivation during gait, where the signal portion between two
soleus muscle deactivations corresponds to a step cycle (Gandolla
et al., 2018). The detailed protocols, where provided by the
authors, are summarized in Table 5. Where explicitly reported,
all studies set the EMG sampling frequency at or over 1,000Hz
in accordance with the Nyquist sampling principle. This was
not specified in four studies (Fan and Yin, 2013; Ping et al.,
2013; Gandolla et al., 2018; Sloot et al., 2018). Impedance was
checked and kept below 5 k� by two studies (Hesse et al., 2010;
Gandolfi et al., 2017), while the other studies did not specify
impedance checking. The studies applied different signal filtering
methods (Butterworth, high/low/band-pass filtering, keeping
signals usually between 5/20–300/400/500Hz). The signals were
full-wave-rectified, and root mean square was applied to calculate
the EMG amplitude and to provide a global overview of the
muscle activity.

Co-registered EMG and EEG Data
Collection
Only two papers (He et al., 2014; Calabrò et al., 2018) captured
both EEG and EMG data. One study decoded the muscle
activation patterns by scalp EEG signals during robotic walking,

demonstrating reasonable success at decoding the hip and knee
EMG activity in the affected leg of a stroke survivor (He et al.,
2014). The authors cited difficulty with the EMG data collection,
however, as the exoskeleton device and its attachments, in many
cases, were located at the same anatomical sites as the EMG
electrodes. The second study reported EMG and EEG as separate
measures and was therefore not considered a co-registration of
neural signals (Calabrò et al., 2018).

Quality Review
As identified in Table 5, many studies were rated as “weak,”
using the EPHPP guidance tool, primarily due to a potential
selection bias during participant recruitment, thereby limiting
their representation of the stroke population. Here the majority
of studies failed to identify their recruitment strategy. Similarly,
the studies received a lower quality rating where the reliability
and the validity of the data collection methods were not
explicitly reported.

DISCUSSION

This systematic review compiled the current state of the art in
the use of neural biosignals during robotic gait training after a
stroke. No studies that used EEG signals to close the loop between
human and robotic gait device were identified. Two BCI studies
that show promise (with adequate training) were identified for
the classification of gait in an exoskeleton after a stroke with a
view toward a future BCI application (He et al., 2014; Contreras-
Vidal et al., 2018). The work presented by Contreras-Vidal
(Contreras-Vidal et al., 2018) builds on a previously published

Frontiers in Neuroscience | www.frontiersin.org 9 June 2020 | Volume 14 | Article 578

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Lennon et al. Stroke: Neural Interfaced Robotic Walking

TABLE 4 | Electromyography (EMG) signal processing in included studies.

References Recording device and processing Muscles Hip Knee Ankle Wireless Frequencies Filtering Additional

devices

Androwis

et al. (2018)

Noraxon (AZ, USA)

Amplitude analysis: integrated EMG

Timing analysis: Burst Duration

Similarity Index

TA, SOL, RF, VL,

BF, gastrocnemius

N Y Y Y 2,520Hz Butterworth

4th-order

Zero-lag

BP,

20–300Hz

Notch, 60Hz

Retroreflective

markers

Calabrò

et al. (2018)

8-ch BTS (IT)

Root mean square for muscle activation

TA, SOL, RF, BF N Y Y Y 1,000Hz BP, 5–300Hz Accelerometer

Chisari et al.

(2015)

Noraxon, Telemyo 2400T V2

SENIAM guidelines

Reference electrode on the patella

Frequencies at 50, 75, and 95% of the

total power spectral density were

estimated

Root mean square normalized for the RMS

of the maximum voluntary contraction

VM N Y N Y 3,000Hz Zero-lag

BP,

20–500Hz

Isokinetic

dynamometer

Coenen

et al. (2012)

16-ch Porti (NL)

Envelope calculation: rectified EMG,

4th-order LP Butterworth 5 Hz

GM, TA, ST, RF,

AL, GLM, GLm

Y Y Y N 1,000Hz Butterworth

4th-order,

HP, 20Hz

Video gait analysis

Fan and Yin

(2013)

2-ch self-made sEMG acquisition

processor

BF and quadriceps N Y N NS NS BP,

10–500Hz

Notch, 50Hz

Force sensors,

angular encoders

Gandolfi

et al. (2017)

Device not defined

SENIAM guidelines

Envelope representation

TA, RF, BF,

gastrocnemius

N Y Y NS 1,000Hz LP, 480Hz Pressure sensor

(overshoes)

Gandolla

et al. (2018)

FREEEMG (BTS Bioengineering, IT)

SENIAM guidelines

No processing (activation timing only)

TA, SOL, RF, ST N Y Y Y NS Butterworth

6th-order,

HP, 20Hz

He et al.

(2014)

8-ch DataLOG MWX8 (Biometrics) TA, VL, BF,

gastrocnemius

N Y Y Y 1,000Hz BP,

20–460Hz

Biaxial

electrogoniometers,

hip and knee

angles measured

by the X1

Hesse et al.

(2010)

Device not defined

SENIAM guidelines

EMG mean onset and offset points of

activation determined by thresholding

the envelope

TA, VM, VL, RF,

BF, GLm,

gastrocnemius

Y Y Y NS 1,000Hz 1st-order LP,

500Hz

Overshoe force

sensors

Ping et al.

(2013)

Device not defined

EMG activity was acquired during the

robotic gait and referred to the % of the

gait cycle. Patients’ EMG was confronted

with the activity of a healthy control

Research focuses on the shape of EMG

profile, times of peak, or onset/cessation

of myoelectric activity

TA, GM, VL, RF,

ST, SM

N Y Y NS NS NS

Sloot et al.

(2018)

EMG device not defined

Compared maximum EMG values during

push-off and swing between with and

without robotic device

TA, GM, SOL N N Y NS NS NS

Srivastava

et al. (2016)

16-ch MA-416-003 Motion Lab System

(LA)

Signal normalization to its peak amplitude

Non-negative matrix factorization

(dimensionality reduction) to compute

muscle modes and understand the effects

of gait training on coordination

BF, VL, VM, RF,

GLm, SOL, GL,

GM, TA, medial

hamstrings

Y Y Y N 1,200Hz HP, 20Hz

Muscle abbreviations: TA, tibialis anterior; GL, gastrocnemius lateralis; GM, gastrocnemius medialis; SOL, soleus; RF, rectus femoris; VL, vastus lateralis; VM, vastus medialis; BF,

biceps femoris; ST, semitendinosus; SM, semimembranosus; AL, adductor longus; GLM, gluteus maximus; GLm, gluteus medius (GLm). Filter type: BP, band-pass; LP, low-pass;

HP, high-pass.
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TABLE 5 | Quality rating of included studies.

References Selection bias Study design Confounders Blinding Data collection methods Withdrawal and dropouts Total score

Androwis et al. (2018) Moderate Moderate N/A N/A Moderate Moderate Strong

Calabrò et al. (2018) Moderate Strong Strong Moderate Strong Strong Strong

Chisari et al. (2015) Moderate Moderate N/A N/A Moderate Weak Moderate

Coenen et al. (2012) Moderate Moderate Weak N/A Weak Weak Weak

Contreras-Vidal et al. (2018) Weak Moderate N/A N/A Strong Strong Moderate

Fan and Yin (2013) Weak Weak Weak N/A Weak Strong Weak

Gandolfi et al. (2017) Weak Moderate Weak Moderate Moderate Strong Weak

Gandolla et al. (2018) Moderate Weak N/A N/A Strong N/A Moderate

He et al. (2014) Weak Weak N/A N/A Moderate N/A Weak

Hesse et al. (2010) Weak Weak N/A N/A Weak Strong Weak

Ping et al. (2013) Weak Moderate Weak N/A Weak N/A Weak

Sloot et al. (2018) Weak Moderate N/A N/A Weak N/A Weak

Srivastava et al. (2016) Weak Strong Strong Weak Strong Weak Weak

N/A, not applicable.

framework proposed by this study group (Contreras-Vidal and
Grossman, 2013). Otherwise, as with the majority of the EMG
studies identified, the EEG signals were used as an outcome
measure to evaluate RGT devices in stroke rehabilitation, for
example, as an index of fronto-parietal connectivity to quantify
neuroplastic changes (Calabrò et al., 2018). A recent systematic
review of BCI rehabilitation in stroke supports this finding, where
EEG was used to trigger neuromuscular electrical stimulation in
the lower limb but not robotic gait devices to date (Cervera et al.,
2018).

Specifying a search strategy that must include individuals with
stroke in this systematic review yielded very limited EEG data.
While this is informative with respect to the current state of
the art in this area in stroke rehabilitation, it does not reflect
the broader field of EEG-based control for robotic gait devices
well. A recent systematic review by Al-Quraishi et al. (2018)
comprehensively reported on EEG-based control for upper and
lower limb exoskeletons and prostheses. In this review, 14 studies
that used EEG-based control for lower limbmovement, primarily
in healthy subjects and individuals with spinal cord injury,
were identified. Among those, nine studies targeted robotic
gait-assistive devices (alone or in conjunction with an avatar),
three used motor-imagery-only protocols with event-related
desynchronization/resynchronization (ERD) (Do et al., 2013;
Gordleeva et al., 2017; Lee et al., 2017), four used a movement-
based protocol—with the EEG signal analysis undocumented
in one (He et al., 2018b), and in the remaining three as ERD
(Garcia-Cossio et al., 2015), combined ERD and movement-
related cortical potential (MRCP) (López-Larraz et al., 2016),
and exogenous steady-state visually evoked potentials with the
visual stimuli representing robotic commands (Kwak et al., 2015).
Two studies identified used a combination of motor imagery
and movement using sensorimotor rhythms and MRCP (Liu
et al., 2017) and event-related spectral pertubations (Donati
et al., 2016). Notably, in one patient with a spinal cord injury,
EEG signals were used to detect gait initiation to trigger the
exoskeleton movement (López-Larraz et al., 2016). In another

study with healthy individuals, online control of an overground
exoskeleton using ERD in sensorimotor networks to train a
classifier to identify two different mental states of walking
forward intention or turning were demonstrated. In one body-
weight-supported exoskeleton system, the user’s intention was
classified into active and passive walking phases using 62-channel
EEG and power spectrum analysis in 8–30Hz, normalized to
the baseline condition to calculate ERD (Garcia-Cossio et al.,
2015). The classification accuracies for active and passive walking
with baseline were 94 and 93%, respectively, demonstrating the
capability of BCI-assisted robotic training. The majority of EEG-
based control in lower limb studies (N = 11; 79%) included in this
cited review (Al-Quraishi et al., 2018) were markedly published
from 2015 onwards, indicating a relatively new research area
and, in part, explaining the poor penetration in the stroke
population identified in this current systematic review. Another
review of brain–machine interfaces for controlling lower limb
powered robotic systems (He et al., 2018a) identifies that themost
common studies in this area are classification-based studies of
walk vs. stand tasks in healthy subjects and system performance
is not clearly presented in these studies. Several challenges were
summarized in this review, including EEG denoising, safety,
and responsiveness. Furthermore, it concluded that suitable
performance metrics and more clinical trials were required to
advance research and development in the field.

One study that investigated closed-loop control between
human and robotic gait device involving three stroke survivors
was identified in this systematic review (Fan and Yin, 2013). EMG
activity levels from knee flexor and extensor muscle groups were
measured and a multisystem decoding paradigm, which included
EMG in addition to joint angle and force production data,
allowed the robotic command to be altered. High error rates in
the commands generated during active movement were observed
when flexion and extension activity alternated rapidly, limiting
application in the clinical setting (Fan and Yin, 2013). EMG
methods for motor intent identification have previously been
noted to have significant limitations in stroke in that they are
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only appropriate for patients who can produce some voluntary
movement or high-enough levels of muscle activity and are not
suitable for individuals with severe motor impairment, profound
muscle fatigue, or abnormally coactivated muscles (Li et al.,
2018). Concerns have also been raised that continuous EMG
control may indeed reinforce pathological movement rather than
encouraging the recovery of normal motion patterns (Krebs et al.,
2003).

EMG has been combined with EEG to improve the
recognition of movement intent in the upper limb (Bhagat
et al., 2016) in the BCI literature. The current review identified
two studies that recorded EEG and EMG. However, the two
neural biosignals were not used in conjunction in either study to
decode movement. One study reported these measures separately
(Calabrò et al., 2018), while the other decoded EMG activity in
the lower limbs using EEG during robotic walking in one stroke
subject (He et al., 2014).

One example was identified in the literature where the best
power transfer between subject and robot was achieved through a
fine-tuning procedure for robotic parameters based on optimized
EMG activity during the gait cycle (Gandolla et al., 2018); in
this context, sEMG could prove to be a useful tool to optimize
the patient–robot interaction in the clinical setting. However,
the current lack of personalization of robotic gait command
derived from neural biosignals and the limited ability to tailor
robotic training to participant effort and to rehabilitative goals
aligned with motor (re)learning principles limit their capacity
as truly restorative devices in stroke rehabilitation. Robotic
gait devices and the technological advancements enabling
their continued development have been the preserve of the
field of engineering (Pons, 2010). Translational research that
examines deployment of devices in a clinical population must
now also draw from expertise in rehabilitation and clinical
research. This paper includes input from experts in the field of
neurology, rehabilitation, bioengineering, and BCI engineering,
discusses shortcomings in the papers identified, and makes
recommendations to advance this field of research. A quick
reference guide DESIRED (Table 6) has been developed by the
group to identify a minimum reporting data set as a standard for
future studies and the rationale and evidence base guiding these
recommendations are described in detail next.

The majority of papers identified reported methodologies
related to the devices, biosignals, and/or model development as
appropriate to the domain of engineering. As a consequence,
when considered as clinical studies in a stroke population and
assessed using a broadly applicable quality rating tool (Thomas
et al., 2004), the majority of studies were deemed to have a
weakmethodology. Consistent problems identified across studies
related to the selection of stroke subjects and to the reporting
of the validity and the reliability of the outcome measures
employed. Guidelines with quality control checklists are available
across a range of clinical study methodologies, for example,
RCTs (Campbell et al., 2012), observational studies (Von Elm
et al., 2014), and qualitative methodologies (Booth et al., 2014).
When introducing participants with stroke or other neurological
pathologies to robotic and/or neural signal-based studies, it is
recommended that the authors familiarize themselves with the

criteria expected based on the study type to be reported in
the paper.

It is interesting to note that none of the papers reviewed
provided a rationale for their selection of the stroke participants,
and limited details on stroke pathology, stroke laterality, and
stroke severity levels were documented. The time from stroke,
for example, is something that further warrants attention. After
focal damage, there is a brief, approximately 3 months, window
of heightened plasticity, the so-called opportunity windowwhich,
in combination with training protocols, leads to large gains in
motor function (Zeiler and Krakauer, 2013). Emerging evidence
now supports smaller, plastic, and non-compensatory recovery
in the chronic stages after a stroke also (Mrachacz-Kersting et al.,
2015; Carvalho et al., 2018). To compare the neural biosignals
and their utility in robotic gait training after a stroke across
studies and to allow the results to be interpreted correctly,
it is imperative to report this information. No consensus was
observed across studies with respect to the gait impairment level
of those included in the studies and ranged from those fully and
independently mobile to those who are wheelchair dependent,
again limiting the conclusions that can be drawn across studies.
To stratify the findings from future studies, a minimum data set
for participants with stroke is recommended and summarized as:
stroke type, laterality, time from stroke to inclusion in the study,
and functional ambulatory category (Mehrholz et al., 2007). The
impairment of sensation also needs to be taken into account,
given that accurate motor control can only be exerted with
correct sensory and proprioceptive input. An index of stroke
severity would also be a useful addition, for example, the National
Institutes of Health Stroke Scale score (Ortiz and Sacco, 2014),
as well as the level of cognitive function of the participants, if
this is not a stated inclusion/exclusion criterion. To best replicate
clinical application, it is advised that only the participants with
gait impairment are included in the research.

A review of the brain–machine interface for lower limb
systems after a stroke, published in 2015, concluded that
additional research and development were required to advance
this field (Soekadar et al., 2015). This systematic review now
identifies that EEG data use during robotic gait after a stroke
remains sub-optimal to closing the loop between person and
robot. It is acknowledged that EEG activity during walking is
not well-understood in general and discordance exists in the
literature on the temporal and the spectral patterns of cortical
dynamics during walking (Wagner et al., 2012, 2014; Seeber et al.,
2014, 2015; Bradford et al., 2015; Bruijn et al., 2015; Bulea et al.,
2015; Storzer et al., 2016; Winslow et al., 2016; Artoni et al., 2017;
Luu et al., 2017; Oliveira et al., 2017). A number of research
groups (Bradford et al., 2015; Bruijn et al., 2015; Bulea et al., 2015;
Winslow et al., 2016; Artoni et al., 2017; Luu et al., 2017; Oliveira
et al., 2017) report event-related (de)synchronization (ERD/S)
(i.e., an event-related power change) in 8–12Hz (alpha/mu) and
12–28Hz (beta) oscillations after the onset of stepping/walking
task (Bradford et al., 2015; Bruijn et al., 2015; Bulea et al., 2015;
Winslow et al., 2016; Artoni et al., 2017; Luu et al., 2017; Oliveira
et al., 2017), while other research groups report ERS at 28–40Hz
(low gamma) during early and mid-swing and ERD toward the
end of the swing phase and during double support (Wagner et al.,
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TABLE 6 | The DESIRED checklist: minimal reporting dataset for neural biosignals during robotic gait after a stroke.

DESIRED Minimal requirement Recommended but not mandatory

Description of study

methodology

Adequate description of the clinical study type: e.g., randomized controlled

trial; observational study: case study; case series, cross-sectional, pre–post

design; mixed methods

Published guideline for study type referenced and checklist

completed

Explicit reporting of

stroke participant

recruitment strategy

Recruitment method stated. Focus of the study on acute/subacute/chronic

phases of stroke stated. Number of potential participants approached and

number who entered the study described

Participants’ location is described, e.g., in-patient acute or

rehabilitation center; out-patient rehabilitation center;

community dwelling and attending community services or no

current rehabilitation provided at the time of recruitment

Stroke participant

profile

Stroke pathology, e.g., ischemic or hemorrhagic, stroke side (at brain level);

time from stroke to study participation; provide an index of gait impairment,

e.g., functional ambulatory category; identify the presence and the type of

sensory impairment where relevant

Stroke severity described, e.g., National Institutes of Health

Stroke Scale (score included); cognitive level/s described

Intervention described

using FITT principles

Frequency, intensity, time, and type of intervention reported Report who delivered the intervention; the level of skill and

training of the interventionist and whether there was fidelity of

interventionist

Robotic gait training Device and manufacturer; exoskeleton vs. end-effector device; over-ground

vs. treadmill walking

Robotic mode settings described, e.g., whether step

trajectory is fully supported by the robotic device or whether

the device allows participant contribution to the step

generated

Electroencephalography

data capture

At minimum 32-electrode EEG with inclusion of activity from the central

pre-motor/motor/sensorimotor and posterior parietal cortical areas to

categorize walking from rest and ensuring frequency bands in 8–12Hz

(alpha/mu), 12–28Hz (beta), and 28–40Hz (low gamma) are represented in

the data collection

For motion trajectory prediction, global analysis to identify the most suitable

features (potential or band-power time-series, low-delta, mu, or beta

frequency band and all cortical areas) currently recommended

State if active electrodes are used and, if so, the planned data

filtering. Use of source-resolved EEG dynamics during

walking (mobile brain/body imaging)

Minimization of artifactual contamination of lateral electrode

signals by neck muscle electromyography during walking by

blind source separation (typically by independent component

analysis or frequency clustering)

Potential time-series of the low-delta EEG oscillations or

band-power time-series of the mu and beta EEG oscillations

may hold the most information for motion trajectory prediction

but further supporting research is required

Electromyography data

capture

Minimum of two agonist/antagonist paired muscles in the distal and

proximal compartment of stroke-affected and contralateral leg. Tibialis

anterior, soleus, rectus femoris, and vastus lateralis recommended where

stroke impairment and robotic gait device allow clean signal to be collected.

Identification of the minimal crosstalk area of the muscle for electrode

placement using the guidelines given by Basmajian and Blummenstein,

updated by Blanc and Dimanico, with the axis of the electrodes directed

parallel to the muscle fibers

Sensor placement checks for single muscles by checking for

crosstalk on the other collected traces is recommended

where spasticity or muscle shortening is present. Power

spectral density computation may be useful when using

exoskeleton gait devices to unravel unwanted electrical

interference from electrical actuators, battery packs, and

cables

2012, 2014; Seeber et al., 2014, 2015; Storzer et al., 2016). The
literature does call attention to the importance of the central pre-
motor/motor/sensorimotor and posterior parietal cortical areas
in neural signal generation during the walking tasks. Thus, for
the separation of walking from rest periods, we recommend
the above-described cortical areas and the frequency bands are
represented in the data collected and processed.

Decoding the 3D motion trajectory of the lower limbs is a
more challenging objective (Georgopoulos et al., 2005). In BCI,
this method poses an ideal solution for controlling a robotic
device as the applied signal processing algorithm reconstructs the
track of the intended movement. To date, most joint trajectory
decoding studies have focused on reconstructing the movement
of the upper limbs (Bradberry et al., 2010) and fingers (Paek et al.,
2014) using 0.5–2Hz slow cortical potentials (SCP) or band-
power time-series of mu and beta bands (Korik et al., 2015, 2016,
2018). Motion trajectory prediction has successfully been applied
to lower limb kinematics during treadmill walking in healthy

individuals by Presacco et al. (2011, 2012) using SCP time-series.
Here topographical analysis did not identify a significant pattern
of lower limb movement-related cortical areas. Two studies
included in this current review identified the utility of the 0.1–
3Hz frequency band for decoding kinematic data (He et al., 2014;
Contreras-Vidal et al., 2018) and EMG kinetics during robotic
walking after a stroke (He et al., 2014). One of these studies
primarily focused on the frontal, temporal, and parietal brain
regions (He et al., 2014), while others removed the peripheral
channels susceptible to facial/cranial movement-related noise
(Contreras-Vidal et al., 2018). Thus, as decoding the motion of
lower limbs during walking is a nascent area, we still recommend
a global analysis to identify the most suitable features (potential
or band-power time-series, low-delta, mu, or beta frequency
band and all cortical areas). However, the SCP/mu and beta
band-power time-series extracted from the central motor and
posterior parietal areas most likely contain maximal information
for decoding lower limb movement trajectories.
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From the present review, the lack of a standardized
EMG recording protocol when applied to people with stroke-
related disability in interaction with exoskeletons is evident.
This limitation hampers the constitution of shared database
repositories and pooling of data. A protocol and reported
methodology should include a minimum dataset of muscles,
dimensions, and positioning criteria of the surface EMG
electrodes, interelectrode distance, techniques to verify the
system selectivity, and technical sampling requirements (e.g.,
amplifier characteristics, electrode diameter, and impedance
limits). The guidelines also suggest the inclusion of additional
details relating to signal analysis pipelines, such as filtering and
signal quality checks (Blanc and Dimanico, 2010; Merletti and
Farina, 2016; Benedetti et al., 2017).

Currently, no consensus exists on targeting specific muscle
groups during gait analysis in stroke survivors. The surface EMG
of agonist and antagonist lower limb muscle activity during gait
is emerging as an effective way of defining motor control during
spontaneous movement in stroke (Srivastava et al., 2019). A
minimum set of agonist and antagonist muscles in the distal
and the proximal compartment of the leg needs to be defined to
provide comprehensive muscle recruitment patterns and muscle
synergies during the gait cycle after a stroke, which could be
helpful for future HMI. Additionally, for individuals after a
stroke, sEMG data from both legs (stroke affected and non-
affected sides) should be collected as motor deficits are not only
associated with the stroke-affected side but also of the non-
affected side during spontaneous walking (Parvataneni et al.,
2007; Bagnato et al., 2009; Tseng and Morton, 2010; Raja et al.,
2012). Recent reviews of muscle synergies in post-stroke gait and
robotic gait devices support the need for better standardization of
muscles chosen for EMG data capture (Molteni et al., 2018; Van
Criekinge et al., 2019). Tibialis anterior, soleus, gastrocnemius,
and rectus femoris were noted to be most commonly assessed
in all muscle synergy studies after a stroke (Van Criekinge
et al., 2019). Considering best clinical practice and the need to
record agonist and antagonist muscles during gait, a minimum
representative muscle set to be targeted in future studies is
recommended as bilateral: tibialis anterior, soleus, rectus femoris,
and vastus lateralis, where possible. Alternate muscle/s selection
may need to be defined by the participant’s stroke-related muscle
impairment/s or the robotic gait device and its positioning at
specific anatomical landmarks for sensor placement, leading to
muscle group exclusion.

Only three studies included in this review referred to a
guideline document used for the correct positioning of electrodes
on muscles. Failure to do this limits the reliable recording of
muscle signals and does not address the challenge of avoiding
“crosstalk” (diffused signal components coming from co-active
or inactive adjacent muscles) (Basmajian, 1983). Correct sensor
positioning aims to minimize this phenomenon and allows the
researchers to identify a real co-contraction of agonist and
antagonist muscle groups, which is common after a stroke.
Basmajian and Blummenstein provide instructions to identify
the minimal crosstalk area (MCA) for electrode placement on
superficial muscles during gait (Basmajian and Blumenstein,
1980; Basmajian, 1983; Campanini et al., 2007; Blanc and

Dimanico, 2010). Although the Surface EMG for Non-invasive
Assessment of Muscles (SENIAM) guidelines referenced in the
included studies are readily available and easy to use (www.
seniam.org; Merletti, 2000), the MCA locations defined by
Basmajian and Blummenstein, subsequently updated by Blanc
and Dimanico (Blanc and Dimanico, 2010), have been proven
to be superior to the SENIAM guidelines (Campanini et al.,
2007). MCA identification would now be a minimum standard
recommendation to follow in this field when studying the EMG
timing during gait (Campanini et al., 2007), with the axis of
the electrodes directed parallel to the muscle fibers to increase
selectivity (Blanc and Dimanico, 2010). Additional quality
assurance measures during robotic gait after a stroke, where
feasible with the constraints of the device itself, could include
sensor placement checks—performed by eliciting contractions of
a single muscle and checking for crosstalk on the other collected
traces (Benedetti et al., 2017) and strongly recommended where
spasticity or muscle shortening may alter placement accuracy—
and data check to ascertain the shape of the power spectral
density (PSD) of the signal to ensure meaningful content
(Merlo and Campanini, 2010), free of movement artifacts.
When recording surface EMG in sessions that include the
use of exoskeletons, electrical interference on EMG signals
coming from electrical actuators, battery packs, and cables is
not unexpected, and the PSD computation could prove to be a
powerful tool to unravel such unwanted events.

LIMITATIONS

The authors acknowledge that while no language limits were
applied when searching across databases, no papers were
returned in languages other than English. As such, it is possible
that additional manuscripts exist that were not identified through
this search strategy. The search also returned studies with
heterogeneous use of neural bio-signals, including as an outcome
measurement only.While these were included in the review, their
purpose was not in line with the primary focus of this review.
However, in unifying all studies in this area irrespective of their
set purpose, biosignal collection and interpretation in this field
could be generalized and commented on constructively.

CONCLUSION

Overall, while there are ever-growing technological advances
in robotics, actuators, and sensors, advances in applications
to entrain robotic commands with biosignals for gait training
in clinical populations such as stroke have been considerably
slower. EEG recording in stroke, where the pathology is at
the brain level, has been problematic when compared to other
neurological pathologies such as spinal cord injury (Castermans
et al., 2014), and similarly EMG recording on the stroke-affected
side can be problematic (Sarasola-Sanz et al., 2017; Li et al.,
2018). Uncertainty still exists in the literature on the best choice
of EEG metric (Goh et al., 2018) and in the ability of EMG
to respond accurately in real time (Fan and Yin, 2013). This
review, summarizing the current state of the art in neural
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interface during robotic-assisted gait training after a stroke,
identifies a lack of standardization in data collection in this field
and provides guidance for study design and reporting future
studies. Promising findings for decoding movement during
robotic gait after a stroke and potential for EMG, in conjunction
with other measurement modes to close the loop, have
been elucidated.
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