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We present a multi-objective optimization method for electroencephalographic (EEG)

channel selection based on the non-dominated sorting genetic algorithm (NSGA) for

epileptic-seizure classification. We tested the method on EEG data of 24 patients from

the CHB-MIT public dataset. The procedure starts by decomposing the EEG data from

each channel into different frequency bands using the empirical mode decomposition

(EMD) or the discrete wavelet transform (DWT), and then for each sub-band four features

are extracted; two energy values and two fractal dimension values. The obtained feature

vectors are then iteratively tested for solving two unconstrained objectives by NSGA-II

or NSGA-III; to maximize classification accuracy and to reduce the number of EEG

channels required for epileptic seizure classification. Our results have shown accuracies

of up to 1.00 with only one EEG channel. Interestingly, when using all the EEG channels

available, lower accuracies were achieved compared to the case when EEG channels

were selected by NSGA-II or NSGA-III; i.e., in patient 19 we obtained an accuracy of

0.95 using all the channels and 0.975 using only two channels selected by NSGA-III.

The results obtained are encouraging and it has been shown that it is possible to

classify epileptic seizures using a few electrodes, which provide evidence for the future

development of portable EEG seizure detection devices.

Keywords: epilepsy, electroencephalogram (EEG), empirical mode decomposition (EMD), discrete wavelet

transform (DWT), channel selection, multi-objective optimization, NSGA-II, NSGA-III

1. INTRODUCTION

Epilepsy is a group of neurological disorders, characterized by recurrent epileptic seizures, that
affects approximately 1% of the world’s population of all ages, both sexes, and all races and ethnic
backgrounds (Mormann et al., 2006). It consists of widespread electrical discharges of a set of
neurons inside the brain (Kale, 1997). Epileptic seizures are normally detected by continuous
monitoring of electroencephalographic signals (EEG); the epileptiform can be categorized into ictal,
interictal, and postictal periods. The identification of seizures by visual inspection can be time-
consuming and lead to an incorrect interpretation of EEG signals, which can trigger under/over
medication of patients (Engel, 1984). Suitable methods for detecting epileptic seizures could
facilitate the rapid treatment of patients.
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Current state-of-the-art efforts, such as that reported here,
are attempting to improve the feature extraction stage for
correct representation of the seizure and seizure-free periods.
Several relevant studies using the same public dataset have
been published, using various experimental setups. The study
presented by Khan et al. (2012) used relative energy values
and normalized variation coefficients from discrete wavelet
transform (DWT) in the feature-extraction stage and then linear
discriminant analysis (LDA) for classification. The method was
evaluated on the data of five subjects, with 23, 24, or 26 channels,
depending on the subject. In the classification process, they used
approximately 80% of the data for training and the rest for
testing, obtaining an accuracy of 0.91. Zabihi et al. (2015) later
presented amethod for feature extraction with even features from
the intersection sequence of Poincaré section with phase space
using LDA and naive Bayes classifiers. They used 23 channels,
obtaining accuracies of 0.93 using 25% of the data for training
and 0.94 using 50%.

The signal curve length of the time-domain EEG signal and
the mode powers of the dynamic mode decomposition (DMD)
have been used by Solaija et al. (2018) for feature extraction. They
reported a sensitivity of 0.87 using approximately 50% of the data
for training their models for epileptic-seizure classification.

We previously presented an approach using empirical mode
decomposition (EMD) to decompose EEG signals into different
intrinsic mode functions (IMF) and five features for each
chosen IMF (Moctezuma and Molinas, 2019a). In that study,
we presented results of an approach based on channel reduction
using the backward-elimination algorithm, obtaining an average
classification accuracy of 0.93 when five channels and 10-fold
cross-validation were used.

Bhattacharyya and Pachori (2017) used a multivariate
extension of empirical wavelet transform (EWT) to decompose
the EEG signal into different oscillatory levels and compute three
features for each level. The accuracies obtained ranged from 0.95
to 0.99 using five channels and various classifiers. This method
selects the channel with the lowest standard deviation (SD)
and then the remaining four channels with the highest mutual
information (MI) with the previously chosen channel. Zhang
et al. (2018) presented a method based on 24 feature types and
the support vector machine (SVM) classifier. They used the TUH
EEG Corpus (Obeid and Picone, 2016), the experiments were
performed using 22 EEG channels and the accuracy obtained
was 0.994.

There are some proposed methods using different values of
entropy for feature extraction (Acharya et al., 2012), EMD for
decomposing the EEG signals (Sharma and Pachori, 2015), using
features based on Fourier-Bessel series expansion (Gupta and
Pachori, 2019; Gupta et al., 2020), and with the energy from
sub-bands extracted using the Taylor-Fourier filter bank (de la
O Serna et al., 2020). The proposals used machine learning
classifiers (Acharya et al., 2012; Sharma and Pachori, 2015; Gupta
and Pachori, 2019; de la O Serna et al., 2020; Gupta et al.,
2020), and neural networks (Sharma et al., 2020). However, these
approaches have been tested using the Bonn university EEG
database, which consist on a single channel and based on invasive
seizure EEG signals (Andrzejak et al., 2001).

In addition to feature extraction and classifier design, a
robust EEG channel selection procedure should reduce the
computational cost to obtain results faster, decreasing possible
over-fitting that comes from using all available channels. Recent
efforts and advanced technology on dry EEG sensors have opened
up new possibilities to develop new types of EEG systems (Fiedler
et al., 2015; di Fronso et al., 2019). In this context, reducing
the necessary number of EEG channels while maintaining or
increasing the accuracy of machine-learning-based algorithms
will be our targeted efforts toward low-cost portable devices for
personal use.

Here, we analyze two methods for feature extraction, four
classifiers with various parameters, and two channel selection
methods to classify epileptic-seizure and seizure-free periods.
We considered the process of selecting channels to be a multi-
objective optimization problem, using the least possible number
of EEG electrodes and obtaining the highest possible accuracy, we
tested our approach on a well-known public dataset (Goldberger
et al., 2000).

2. MATERIALS AND METHODS

A laboratory setting and research-grade EEG equipment ensure
a controlled environment and high-quality multiple-channel
EEG recording. However, this approach is not suitable when
considering a portable device for detecting epileptic seizures. This
is because conventional EEG is challenged by high computational
cost, high-density, non-portability of the equipment, and the
use of inconvenient conductive gels. In addition, certain EEG
channels may provide redundant information instead of helping
to improve performance.

Epileptic seizure analysis using the complete EEG signals
is not suitable for obtaining relevant information from the
raw data and also for providing faster responses. Using feature
extraction methods we can obtain relevant information not
only in amplitude but also in frequency. With a set of
features extracted, we can train a machine learning model
that can reject new instances for prediction in real-time.
The works presented in the literature suggest that using
methods for feature extraction, is possible to improve the
classifier’s performance, especially decomposing the EEG signals
into different frequency bands, using EMD or DWT (Khan
et al., 2012; Sharma and Pachori, 2015; Moctezuma and
Molinas, 2019a). The selection of the machine learning method
that works better for epileptic seizure classification is also
relevant and it has been studied in the literature, however,
depending on the feature extraction methods, the classifier’s
performance may vary. Following our previous findings, here
we compare four different classifiers, as it is explained
in section 2.3.

We performed the experiments for this study on the NTNU
IDUN computing cluster Själander et al., 2019. The cluster has
more than 70 nodes and 90 GPGPUs. Each node contains two
Intel Xeon cores and at least 128 GB of main memory and
is connected to an Infiniband network. Half of the nodes are
equipped with two or more Nvidia Tesla P100 or V100 GPGPUs.
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Idun’s storage is provided by two storage arrays and a Luster
parallel distributed file system.

2.1. Patients and EEG Recording
For the comparison of any proposed method and its
performance, the use of free and public EEG-signals datasets
is important. Most of the proposed methods in the state-of-
the-art are tested on datasets from the PhysioNet (Goldberger
et al., 2000) and EPILEPSIAE (Dourado et al., 2009) projects,
and from the TUH EEG Corpus (Obeid and Picone, 2016),
where some of the datasets consist of private repositories or
access is limited.

The EEG recordings used were obtained from pediatric
patients with intractable seizures who were monitored for several
days at the Boston Children’s Hospital following the withdrawal
of anti-seizure medication to characterize their seizures and
assess their candidacy for surgical intervention. The dataset used
comes from the PhysioNet project and is partially described
in Goldberger et al. (2000) and Shoeb (2009). The dataset
consists of bipolar EEG signals from 24 patients that were
recorded using 22 channels (FP1-F7, F7-T7, T7-P7, P7-O1,
FP1-F3, F3-C3, C3-P3, P3-O1, FP2-F4, F4-C4, C4-P4, P4-O2,
FP2-F8, F8-T8, P8-O2, FZ-CZ, CZ-PZ, P7-T7, T7-FT9, FT9-
FT10, FT10-T8, and T8-P8), with a sampling rate of 256 Hz
using the 10-20 international system. It should be noted that
channels FT9 and FT10 are not part of the 10-20 international
system, for illustrative purposes, we use the 10-10 system
when necessary.

The EEG data for each epileptic seizure and epileptic-free
period is of 6 s and there are 80 instances on average for each class
for each patient. The EEG signals were down-sampled to 128 Hz
as our previous research has been shown that the results did not
differ using 256 or 128 Hz, however, the process for decomposing
the EEG signals into different sub-bands is faster with 128 Hz
(Moctezuma and Molinas, 2019a). More details can be found
in Goldberger et al. (2000), Shoeb (2009), and Moctezuma and
Molinas (2019a).

2.2. Feature Extraction
2.2.1. Empirical Mode Decomposition
EMD is a decomposition method that can deal with non-linear
and non-stationary signals and is based on the local characteristic
time scale of the data, is adaptive and offers physical meaning.
EMD decomposes an EEG signal into a finite set of oscillatory
components, known as IMFs, by applying the sifting process, as
it is shown inAlgorithm 1 (Huang et al., 1998). During the sifting
process, some redundant IMFs with shape and frequency content
different from those of the original signal may appear. These
inappropriate IMFs show maximum Minkowski (Euclidean)
distances with respect to the original signal (Boutana et al.,
2010). We tested using different numbers of IMFs but used
the closest two IMFs according to the Minkowski / Euclidean
distance because they showed the same performance as that of
using more. We characterized each selected IMF and reduced the
data dimension by extracting four features, which are described
in section 2.2.3.

Algorithm 1: The sifting process for a signal x(t).

Data: Time serie = x(t)

Result: IMFs

sifting = True;

while sifting = True do
1. Identify all upper extrema in x(t)
2. Interpolate the local maxima to form an upper envelope

u(x).
3. Identify all lower extrema of x(t)
4. Interpolate the local minima to form an lower envelope

l(x)
5. Calculate the mean envelope:

m(t) = u(x)+l(x)
2

6. Extract the mean from the signal:
h(t) = x(t)−m(t)

if h(t) satisfies the two IMF conditions then
h(t) is an IMF;

sifting = False ; ⊲ Stop sifting

else

x(t)= h(t);

sifting = True ; ⊲ Keep sifting

end

if x(t) is not monotonic then
Continue;

else

Break;

end
end

2.2.2. Discrete Wavelet Transform
DWT is a decomposition method that can deal with non-
stationary signals, and decomposes the EEG signal into different
frequency sub-bands, but does not offer a physical interpretation
for the components. When using DWT, it is necessary to specify
themother function and the levels of decomposition. Themother
(prototype) wavelet (functions) is scaled or dilated to decompose
a signal in the time-domain into shifted and scaled versions
of a base wavelet. Its outputs provide in the first level a high-
frequency part known as detail coefficients (D1), and a low-
frequency part, known as approximation coefficients (A1). Then,
the low-frequency part is used as input for generating another
decomposition level until the predefined number of levels of
decomposition is reached. In short, the wavelet decomposition
of a signal S in the j decomposition level has the structure
[Aj,Dj,Dj−1, ...,D1], it should be noted that at every level, half
of the samples can be removed according to the Nyquist theorem
(Mallat, 1989).

Here, we use the mother function bi-orthogonal 2.2 with
four levels of decomposition, based on the results obtained from
previous studies (Moctezuma, 2017; Moctezuma and Molinas,
2019b; Moctezuma et al., 2019). We obtained most of the brain
rhythms (32–64, 16–32, 8–16, 4–8, and 0–4 Hz) using these
decomposed components.
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2.2.3. Features
Both, EMD and DWT sub-bands were used as inputs for a
method that extracts four features for each sub-band. The
method for feature extraction consisted of computing two
energy values and two fractal dimension values from both the
EMD (Moctezuma and Molinas, 2018, 2020) and DWT sub-
bands (Moctezuma and Molinas, 2019b). This set of features
are introduced in Moctezuma and Molinas (2018), Moctezuma
and Molinas (2019a), and Moctezuma and Molinas (2020) and
described below.

• INSTANTANEOUS ENERGY: gives the energy distribution in log
base ten for each band (Didiot et al., 2010):

fj = log10

(

1

Nj

Nj
∑

r=1

(wj(r))
2

)

(1)

• TEAGER ENERGY: This log base ten energy operator reflects
variations in both amplitude and frequency of the signal
(Jabloun and Cetin, 1999; Didiot et al., 2010):

fj = log10

(

1

Nj

Nj−1
∑

r=1

∣

∣

∣
(wj(r))

2
− wj(r − 1) ∗ wj(r + 1)

∣

∣

∣

)

(2)

• HIGUCHI FRACTALDIMENSION: The algorithm approximates
the mean length of the curve using segments of k samples
and estimates the dimension of a time-varying signal
directly in the time domain (Higuchi, 1988). Considered
a finite set of observations taken at a regular interval:
X(1),X(2),X(3), ..,X(N). From this series, a new one Xm

k
must

be constructed,

Xm
k
:X(m),X(m+ k),X(m+ 2k), ..,X

(

m+

(

N −m

k

)

k

)

(3)
Where m = 1, 2, .., k, m indicate the initial time and k the
interval time. Then, the length of the curve associated to each
time series Xm

k
can be computed as follow:

Lm(k) =
1

k

(
N−m
k
∑

i=1

(

X(m+ ik)− X
(

m+ (i− 1)k
)

)

)(

N − 1
(

N−m
k

)

k

)

(4)

Higuchi takes the mean length of the curve for each k, as the
average value of Lm(k), form = 1, 2, ..., k and k = 1, 2, ..., kmax,
that it is calculated as:

L(k) =
1

k

k
∑

m−1

(Lm(k)) (5)

• PETROSIAN FRACTAL DIMENSION: can be used to provide
a fast computation of the fractal dimension of a signal by
translating the series into a binary sequence (Petrosian, 1995).

FDPetrosian =
log10 n

log10 n+ log10

(

n
n+0.4N∇

) (6)

Where n is the length of the sequence andN∇ is the number of
sign changes in the binary sequence.

For each EEG channel, we obtained a number of features, eight
for EMD and 20 for DWT, that were concatenated to represent all
epileptic-seizure or seizure-free periods. Repeating this process
with all the instances allowed us to obtain a balanced dataset that
was used as input for the classifiers.

2.3. Classification
Deep learning algorithms have been shown to be a success in
image processing and other fields, but when using EEG data
they have not shown convincing and consistent improvements
over the most advanced methods to date (Lotte et al., 2018).
Additionally, its performance depends on the use of a large
number of instances, something that is not common when using
EEG data. In our case, we used some classifiers that have been
shown to be effective with little training data (Tsoumakas and
Katakis, 2007; Akram et al., 2015; Steyrl et al., 2016; Zhang et al.,
2017; Lotte et al., 2018), and it has been presented in our previous
research that such classifiers present similar results depending on
the number of channels, the number of instances, and themethod
for feature extraction used (Moctezuma and Molinas, 2019a,b,
2020; Moctezuma et al., 2019).

The first classifier used was the well-known SVM, as it
provides a global solution and the classification complexity does
not depend on the feature dimension Joachims (1998). For SVM,
the kernels tested are sigmoid, linear, and radial basis functions
(RBFs). The second classifier was the k-nearest neighbors (KNN)
classifier, with 1–9 neighbors. Random forest (RF) was also tested
using different tree depths, which can be 2–5. Finally, the naive
Bayes (NB) classifier was also tested to analyze its performance
for this task.

For classification, we tested all four classifiers and only that
which showed the highest accuracy was retained (Figure 2),
meaning that a different classifier may be used for each subset of
channels. The implementation of each classifier internally selects
the best parameters by testing the set of possible parameters in
each case, for instance, KNN was tested with 1–9 neighbors, but
the number of neighbors used in the classifier was the one with
the highest accuracy. We use 10-fold cross-validation to evaluate
the performance of each classifier. It should be noted that 9-
fold cross-validation was applied when required, depending on
the lowest number of trials per class in the patients, i.e., in
the case of subject 16, according to the information described
in Goldberger et al. (2000), Shoeb (2009), and Moctezuma and
Molinas (2019a).

2.4. EEG Channel Selection
This process is essential for decreasing the computational cost,
making it possible to obtain the results more quickly and
consider portable low-cost headsets. It allows focusing on the
channels containing the most information, thus maintaining or
even increasing classification accuracy. First, we briefly explain
a method for channel reduction and then present two multi-
objective optimization algorithms.
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2.4.1. Backward-Elimination Algorithm
This well-known greedy algorithm, has been used for feature
subset selection (Narendra and Fukunaga, 1977; Foroutan and
Sklansky, 1987; Yang and Honavar, 1998) and channel reduction
using EEG signals (Moctezuma and Molinas, 2019a).

This algorithm begins by testing all possible combinations
by removing one channel at a time. Feature extraction and
classification is performed for each subset and that with the
highest accuracy is used in the next iteration to eliminate another
channel until there is one left. For the dataset used here, the
classification process was performed 22∗23

2 = 253 times for
each patient.

This provides a general indication of the channels containing
less information because it provides an optimal solution at each
step, but does not consider the complex iterations of the channels
that could affect classification accuracy.

2.4.2. NSGA-II
The genetic algorithms (GAs), which mimic Darwinian
evolution, are normally used to solve complex optimization
and search problems (Chugh et al., 2019). The population for
GAs is comprised of a set of candidate solutions, each with
chromosomes than can be mutated and altered.

In a multi-objective optimization problem, there is a set of
solutions that is superior to the others in the search space
when all the objectives are considered, but inferior to the other
solutions for one or more objectives. Such solutions are known
as Pareto-optimal solutions or non-dominated solutions and the
rest as dominated solutions. The non-dominated sorting ranking
selection method is used to emphasize good candidates and a
niche method is used to maintain stable sub-populations of good
points. The non-dominated sorting genetic algorithms (NSGA)
were created based on this concept (Srinivas and Deb, 1994).

The first version of NSGA showed problems related to
the computational complexity, non-elitism approach, and need
to specify a sharing parameter to ensure diversity in a
population. NSGA-II reduced the computational cost from
O(MN3) to O(MN2), where M is the number of objectives
and N the population size. Additionally, the elitism approach
was introduced by comparing the current population with the
previously found best non-dominated solutions (Deb et al.,
2002). NSGA-II elitism does not require the setting of any new
parameters other than the normal genetic algorithm parameters,
such as population size, termination parameter, and crossover
and mutation probabilities.

In general, a GA requires a genetic representation of
the solution domain and a fitness function to evaluate the
solutions domain, which in this case, was an array representing
each channel (see Figure 1) and the fitness function for the
two-objective optimization problem was defined as [Acc,No],
where Acc was the classification accuracy obtained with the
chromosome and No the number of EEG channels used.

Figure 1 shows a binary representation for creating the
chromosomes, with each gene representing a channel, 1 if the
channel will be used for the classification process and 0 if not. All
possible channels that can be used are colored and this represents
the search space, which is 22, as already mentioned. It should be

FIGURE 1 | Example of channel representation in a chromosome for a GA.

noted that channels FP1-F7, FP1-F3, T7-P7, T7-FT9, P7-T7, P7-
O1, FP2-F4, and FP2-F8 were considered to be different, as the
references for the channels are different and the dataset provides
the EEG signals for each one separately.

2.4.3. NSGA-III
This method follows the NSGA-II framework using a set
of supplied or predefined reference points that emphasizes
population members that are non-dominated, yet close to the
supplied set (Deb and Jain, 2013; Jain and Deb, 2013). It has
shown its efficiency in solving two-objective to 15-objective
optimization problems (Deb and Jain, 2013).

The predefined set of reference points are used to ensure
diversity in the obtained solutions and can be predefined in a
structured manner or defined in the problem to be optimized by
the user. Here, we used a systematic approach for creating the
reference points presented by Das and Dennis (1998), as in Jain
and Deb (2013). This approach places points on a normalized
hyper-plane that is equally inclined to all objective axes and has
an interception of one on each axis. For example, in a three-
objective optimization problem, the reference points are created
on a triangle with apexes at (1, 0, 0), (0, 1, 0), and (0, 0, 1).

2.5. Problem and System Definition for
NSGA-II and NSGA-III
All the best solutions found in the optimization process for
epileptic-seizure classification were analyzed. There are some
applications using EEG signals in which the automatic selection
of the best solution may be important, especially for cross-subject
analysis. Here, however, it was important to analyze all the results
for each patient individually. With this assumption, a possible
low-cost EEG headset designer can consider whether it is better
to sacrifice accuracy or the number of EEG channels, depending
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on how easy or difficult it is to detect epileptic seizures for
a given individual.

The problem to be optimized is defined by two unconstrained
objectives: first, to maximize accuracy and second, to decrease
the number of channels used for epileptic seizure classification.
The termination criterion for the optimization process is
defined by the objective space tolerance, which is defined
as 0.0001. This criterion is calculated every 5th generation
and if not achieved, the process stops after a maximum of
500 generations. Figure 2 shows the complete process, which
consists of three main stages: feature extraction, classification,
and optimization.

The process starts using the raw EEG signals of one patient
at a time, from which feature extraction is performed and the
results organized and stored for iterative use (Figure 2). From
this point on, the main process is handled by the NSGA, which
starts creating all the possible candidates (chromosomes) for
each population, obtaining the corresponding subset of features
for the channels represented as 1 in the chromosome, and
evaluating the subset with four different classifiers, with different
parameters for each. The best accuracy obtained and the number
of EEG channels used is returned to the NSGA to evaluate each
chromosome in the current population. The process is repeated,
creating different populations by the NSGA until the termination
criterion is reached.

In summary, the chromosome has 22 genes, each representing
an EEG channel. Each population size in each iteration is defined
as 20, which was selected experimentally. Four classifiers were
tested for each possible solution, but only the highest accuracy
was retained and the corresponding classifier used was stored for
analytical purposes.

One of the objectives of this study was to compare
our approach with the state-of-the-art and present easily
reproducible results. We thus used free public tools for creating
the code. Implementation of the classifiers is based on the

scikit-learn python library presented by Pedregosa et al. (2011).
NSGA-II and NSGA-II are based on pymoo presented by Blank
and Deb (2020).

3. RESULTS

We performed classification experiments using the characterized
EEG signals for each patient separately, while reducing or
selecting the EEG channels for creating models to detect epileptic
seizures. For each patient, a carefully balanced dataset was created
using epileptic-seizure and seizure-free segments of 6-s.

3.1. Epileptic-Seizure Classification Using
EMD
For this experiment, we used EMD-based feature extraction, the
greedy algorithm for channel reduction, and both NSGA-II and
NSGA-III for channel selection. The process described in 2.5 was
repeated for each patient using the above techniques.

For illustrative purposes, Figure 3 presents the results
obtained using NSGA-II for epileptic-seizure classification of
patient 1.

Figure 3 clearly shows that NSGA-II managed to cope with
both objectives, whereas, although the backward-elimination
algorithm sometimes showed higher accuracy when using a high
number of channels, the opposite was true when using a lower
number of channels.

In this case, the best results obtained using NSGA-II consisted
of four subsets of channels, which did not necessarily overlap.
This is because each chromosome was almost independent and
may have come from different parents. The illustrative example
presented in Figure 4 shows the subsets of channels used for
obtaining the highest accuracy.

Channel Cz was selected in the first four subsets shown
using the NSGA-II method, but not when backward-elimination
was used. The accuracy obtained by backward-elimination was

FIGURE 2 | Complete process for EEG channel selection using NSGA-II or NSGA-III.
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notably lower than when NSGA-II was used (0.964 and 0.993,
respectively) (Figure 3), which shows the feasibility of the
method, as well as the importance of a robust method for
channel selection.

Tables 1, 2 shows the accuracies obtained using each of the
methods on data from all of the patients. Most of the best
results were obtained when 10 channels were reduced to one
(Figure 3). The tables show only the results for channels 1–10 for
all patients, but the experiment was carried out with all channels.
As we used an automatic termination criterion, the number
of generations for each patient was different and is shown
in the tables. Supplementary Material provides accuracies,
specificities, and sensitivities for the first 4 EEG channels
of Tables 1, 2.

The results highlighted in gray are those for which the
accuracy obtained was higher than when using backward-
elimination. The average number of generations was 39 ± 12 for
NSGA-II and 47± 13 for NSGA-III.

Patient 13 appears to be a possible special case, as similar
accuracies were obtained with all methods. NSGA-II showed the
highest accuracy when using three channels and NSGA-III when
using five, reaching 0.813. The addition of more channels to
detect epileptic seizures resulted in fluctuations in the accuracy
but it did not increase.

Table 2 shows a number of empty cells when using NSGA-
II and NSGA-III, meaning that the accuracy obtained was not
part of the best solutions. This is best illustrated for the results
obtained for patient 19 using the NSGA-III method (Figure 5).

FIGURE 3 | EEG Channel Selection for epileptic seizure classification of patient 1, using EMD-based features. Comparison using NSGA-II and the

backward-elimination algorithm.

FIGURE 4 | Four EEG Channel subsets selected by NSGA-II (left) and backward-elimination (right) for epileptic-seizure classification in patient 1.
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TABLE 1 | Accuracies obtained using EMD for feature extraction with NSGA-II and NSGA-III for EEG channel selection (Subjects 1–12).

Id Method Gen.
No. channels

1 2 3 4 5 6 7 8 9 10

1

B-E – 0.943 0.964 0.986 0.964 0.971 0.979 0.986 0.993 0.993 0.993

NSGA-II 30 0.979 0.979 0.986 0.993

NSGA-III 60 0.964 0.979 1.000

2

B-E – 0.815 0.899 0.921 0.921 0.961 0.976 0.969 0.985 0.985 0.985

NSGA-II 40 0.866 0.921

NSGA-III 40 0.866

3

B-E – 0.796 0.888 0.912 0.920 0.960 0.976 0.969 0.985 0.985 0.985

NSGA-II 30 0.911 0.943 0.958 0.975 0.976 0.975

NSGA-III 70 0.876 0.927 0.951 0.975 0.976

4

B-E – 0.832 0.940 0.948 0.977 0.976 0.985 0.977 0.986 0.986 0.986

NSGA-II 40 0.914 0.946 0.955 0.977 0.992

NSGA-III 40 0.897 0.955 0.963 1.000

5

B-E – 0.972 0.978 0.995 1.000 1.000 1.000 1.000 1.000 1.000 1.000

NSGA-II 30 0.974 0.995 1.000

NSGA-III 30 0.970 0.995

6

B-E – 0.975 1.000 0.975 1.000 1.000 0.975 1.000 1.000 1.000 1.000

NSGA-II 30 1.000 1.000

NSGA-III 30 1.000 1.000

7

B-E – 0.962 0.962 0.963 0.992 0.992 0.992 0.992 0.992 0.992 0.992

NSGA-II 50 0.962 0.972 0.982 1.000

NSGA-III 60 0.962 0.972 1.000

8

B-E – 0.884 0.884 0.877 0.877 0.874 0.877 0.865 0.884 0.874 0.890

NSGA-II 40 0.884 0.890 0.890 0.890

NSGA-III 50 0.884 0.884

9

B-E – 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

NSGA-II 30 1.000

NSGA-III 30 1.000

10

B-E – 0.993 0.993 0.993 1.000 1.000 1.000 1.000 1.000 1.000 1.000

NSGA-II 30 0.993 1.000

NSGA-III 40 0.993 1.000

11

B-E – 0.996 0.996 0.996 0.992 0.996 0.992 0.992 0.992 0.992 0.996

NSGA-II 30 0.996 0.996

NSGA-III 40 0.996 0.996

12

B-E – 0.899 0.892 0.918 0.911 0.921 0.925 0.925 0.929 0.922 0.925

NSGA-II 50 0.899 0.908 0.919 0.928 0.932 0.941

NSGA-III 70 0.899 0.912 0.942

Gray values are highlighted the higher accuracy between the methods for the channels.

This case shows a clear example of how the method works, as the
accuracy obtained using two channels was 0.975 but the addition
of more channels only decreased the accuracy, except for the use
of six channels. This is related to the small amount of information
provided by the aggregate channels.

As mentioned previously, the classifier used each time is
that resulting in the highest accuracy using the subsets of
EEG channels. The NSGA-based algorithms were clearly able
to handle the complete process and the classifiers most used
to obtain the highest accuracies are presented in Figure 6.
The results show the percentage of use of each classifier for
each patient. We use the percentage of use, as the number of
generations for each patient was different, depending on the

method used for feature extraction, as well as for EEG channel
selection. For example, in the case of NSGA-II for patient 1,
the most highly used classifier was RF, which was used 54.59%
of the time, then SVM with 33.72%, k-NN with 7.35%, and NB
with 4.34%.

SVM and RF were the most highly used classifiers to obtain
the highest accuracy in all iterations of NSGA-II and NSGA-III
(Figure 6). On the other hand, NB was used in all iterations but
only returned the highest accuracy a few times. In general, RF was
used 32.8%± 24.2 of the time for all patients, SVM 47.0%± 27.9,
NB 3.1% ± 4.2, and KNN 17.1% ± 20.5. For NSGA-III, the RF
classifier was used 32.0% ± 25.1 of the time, SVM 48.8% ± 28.6,
NB 2.8%± 3.6, and KNN 16.4%± 21.7.
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TABLE 2 | Accuracies obtained using EMD for feature extraction with NSGA-II and NSGA-III for EEG channel selection (Subjects 13–24).

Id Method Gen.
No. channels

1 2 3 4 5 6 7 8 9 10

13

B-E – 0.775 0.777 0.775 0.806 0.788 0.726 0.749 0.782 0.782 0.733

NSGA-II 40 0.775 0.777 0.798 0.806 0.813

NSGA-III 40 0.775 0.777 0.813

14

B-E – 0.925 0.933 0.942 0.942 0.942 0.967 0.967 0.983 0.983 0.983

NSGA-II 40 0.933 0.967 0.983 0.983

NSGA-III 40 0.933 0.942 0.983

15

B-E – 0.971 0.969 0.978 0.981 0.985 0.986 0.986 0.988 0.988 0.988

NSGA-II 40 0.981 0.981 0.988 0.988

NSGA-III 40 0.981 0.985 0.988

16

B-E – 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.800

NSGA-II 70 0.900 0.900

NSGA-III 70 0.900 0.900

17

B-E – 0.940 0.980 0.980 0.990 1.000 1.000 1.000 1.000 1.000 1.000

NSGA-II 30 0.980 0.990 1.000

NSGA-III 40 0.980 1.000

18

B-E – 0.790 0.852 0.832 0.862 0.853 0.882 0.892 0.910 0.900 0.900

NSGA-II 70 0.803 0.852 0.870 0.900 0.910 0.920

NSGA-III 40 0.783 0.852 0.862 0.880 0.890 0.892

19

B-E – 0.913 0.908 0.925 0.925 0.950 0.963 0.975 0.975 0.988 0.988

NSGA-II 30 0.921 0.946 0.950 0.963 0.975 0.988 1.000

NSGA-III 60 0.913 0.975 1.000

20

B-E – 0.948 0.970 0.957 0.957 0.970 0.980 0.990 0.990 0.968 0.980

NSGA-II 30 0.980 0.990

NSGA-III 50 0.980 0.990

21

B-E – 0.879 0.933 0.888 0.888 0.908 0.938 0.904 0.942 0.933 0.908

NSGA-II 30 0.888 0.950 0.954 0.967 0.970 0.983

NSGA-III 50 0.888 0.942 0.954 0.983

22

B-E – 0.971 0.971 0.983 0.983 0.983 0.983 0.983 0.983 0.983 0.983

NSGA-II 50 0.983 0.983

NSGA-III 60 0.983

23

B-E – 0.938 0.940 0.938 0.955 0.962 0.955 0.962 0.962 0.962 0.962

NSGA-II 40 0.938 0.948 0.962

NSGA-III 40 0.938 0.946 0.970

24

B-E – 0.975 0.975 0.992 0.992 0.992 0.992 0.992 0.992 0.992 0.992

NSGA-II 40 0.975 0.992 0.992 1.000

NSGA-III 40 0.992 1.000

Gray values are highlighted the higher accuracy between the methods for the channels.

The analysis of the most highly used classifier in all
generations and each chromosome is important because it allows
discarding the use of some to decrease the computational cost
and also because it shows that the classifier necessary to obtain
the highest accuracy may differ, depending on the patient and the
EEG channel subsets used.

3.2. DWT-Based Epileptic-Seizure
Classification
We repeated the experiment but used DWT for feature
extraction to extract the sub bands and then computed
the four features, as described above. The experiments were
repeated using NSGA-II and NSGA-III for the 24 patients.

Additionally the accuracies obtained were also compared to those
obtained using the backward-elimination algorithm. The results
are summarized in Tables 3, 4, and Supplementary Material

provides accuracies, specificities, and sensitivities for the first 4
EEG channels.

The results in Tables 3, 4 show that an average of 36 ± 7

generations was required for NSGA-II and 41 ± 11 for NSGA-
III. In general, the use of DWT for feature extraction resulted in
more rapid EEG channel selection and better accuracy.

In the case of patient 13, the use of DWT instead of EMD
considerably improved epileptic-seizure classification, i.e., an
improvement from 0.775 to 0.820 using one EEG channel and
from 0.777 to 0.849 using two. In general, both methods showed
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FIGURE 5 | EEG Channel selection for epileptic-seizure classification of patient 19, using EMD-based features. Comparison using NSGA-III and the

backward-elimination algorithm.

FIGURE 6 | Comparison of the most used classifiers by NSGA-II (left) and NSGA-III (right) in the 24 patients with EMD-based feature extraction.

high accuracy when the EEG channels were selected using
NSGA-based methods. The most-used classifiers when DWTwas
used for feature extractionwere SVMandKNN for bothNSGA-II
and NSGA-III, as shown in amesh plot of themost-used classifier
for each patient (Figure 7). Specifically, for NSGA-II, RF was
used an average of 20.5%± 16.5 of the time for all patients, SVM
46.1% ± 23.5, NB 3.6% ± 3.8, and KNN 29.8% ± 23.1. When
selecting the EEG channels using NSGA-III, the RF classifier was
used an average of 22.1% ± 19.0 of the time, SVM 47.3% ± 24.5,
NB 1.0%± 1.4, and KNN 29.5%± 23.3.

SVM was the most highly-used classifier in general, but RF
and KNN were also highly used (Figure 7). These data also show

that KNN is more highly used with DWT-based features than
EMD-based features (see Figure 6). NB was the classifier with the
lowest percentage of use for both approaches.

4. DISCUSSION

We have presented a method for EEG channel selection for
epileptic-seizure classification. Feature extraction was based
on EMD or DWT. For each sub-band obtained, we then
computed two energy and two fractal dimension features and the
classification was performed automatically using four different
classifiers to choose that with the highest accuracy.
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TABLE 3 | Accuracies obtained using DWT for feature extraction with NSGA-II and NSGA-III for EEG channel selection (subjects 1–12).

Id Method Gen.
No. channels

1 2 3 4 5 6 7 8 9 10

1

B-E – 0.950 0.993 0.993 0.993 1.000 0.993 0.993 0.993 1.000 1.000

NSGA-II 30 0.986 1.000

NSGA-III 50 0.986 1.000

2

B-E – 0.983 0.992 0.992 1.000 1.000 1.000 1.000 1.000 1.000 1.000

NSGA-II 30 0.992 0.992 1.000

NSGA-III 30 0.992 0.992 1.000

3

B-E – 0.983 0.985 0.992 1.000 1.000 1.000 1.000 1.000 1.000 1.000

NSGA-II 40 0.983 0.992 1.000

NSGA-III 30 0.983 1.000

4

B-E – 0.952 0.966 0.975 0.983 0.976 0.983 0.983 0.983 0.976 0.983

NSGA-II 30 1.00

NSGA-III 30 1.00

5

B-E – 0.995 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

NSGA-II 30 1.000

NSGA-III 30 1.000

6

B-E – 0.975 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.900 1.000

NSGA-II 50 0.975 0.975 0.975

NSGA-III 60 0.975 0.975 1.000

7

B-E – 0.962 0.972 0.980 0.980 0.980 0.980 0.980 0.980 0.980 0.980

NSGA-II 40 0.980 0.982 1.000

NSGA-III 50 0.980 1.000

8

B-E – 0.914 0.903 0.917 0.904 0.894 0.884 0.894 0.890 0.890 0.894

NSGA-II 50 0.917 0.917

NSGA-III 50 0.971 0.917

9

B-E – 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

NSGA-II 30 1.000 1.000

NSGA-III 30 1.000

10

B-E – 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

NSGA-II 30 1.000

NSGA-III 30 1.000 1.000

11

B-E – 1.000 1.000 1.000 1.000 0.996 0.996 0.996 1.000 0.996 1.000

NSGA-II 30 1.000

NSGA-III 30 1.000

12

B-E – 0.899 0.932 0.942 0.942 0.949 0.935 0.942 0.945 0.952 0.945

NSGA-II 30 0.911 0.948 0.948 0.952

NSGA-III 40 0.911 0.952

Gray values are highlighted the higher accuracy between the methods for the channels.

The EEG channel selection method for epileptic-seizure
classification proved to be robust. For example, the accuracy
when using all EEG channels for patient 1 and DWT-based
features was 0.97. The accuracy was even higher when using
the EEG channels selected by NSGA-II or NSGA-III (1 or 2
channels): 0.98 for EMD and 1.00 for DWT.

As an example, the results obtained with the data of patient 12
show the highest accuracy using EMD to be 0.942 using six EEG
channels selected by NSGA-III. The highest accuracy obtained
using DWT-based features was 0.952 using four EEG channels.
An important feature of the classification of the epileptic seizures
of this patient is that most of the highest accuracies were obtained

using the KNN classifier (see Figures 6, 7), i.e., an average of 73
and 84% when using EMD-based features, and an average of 96
and 98% using DWT-based features, for NSGA-II and NSGA-
III respectively. Examination of the number of epileptic seizures
described in the database (Goldberger et al., 2000) showed this
patient to have had 38 and after segmentation (6-s segments), we
obtained 234 instances of epileptic seizures and 234 for seizure-
free periods. This amount of data is one of the highest of the
patients used for this study [More details about the data are
described by Moctezuma and Molinas (2019a)], however in the
case of patient 15, which has a similar amount of data, the highest
accuracies were obtained using SVM. Because of this, we cannot
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TABLE 4 | Accuracies obtained using DWT for feature extraction with NSGA-II and NSGA-III for EEG channel selection (subjects 13–24).

Id Method Gen.
No. channels

1 2 3 4 5 6 7 8 9 10

13

B-E – 0.822 0.827 0.793 0.827 0.795 0.798 0.776 0.798 0.776 0.827

NSGA-II 40 0.820 0.849 0.855 0.864

NSGA-III 50 0.820 0.850

14

B-E – 0.950 0.967 0.983 0.983 0.983 1.000 1.000 1.000 1.000 1.000

NSGA-II 40 0.967 0.983 0.995

NSGA-III 40 0.967 0.983 1.000

15

B-E – 0.978 0.985 0.981 0.986 0.986 0.988 0.994 0.995 0.998 0.997

NSGA-II 40 0.978 0.994 1.000

NSGA-III 50 0.978 0.994 0.998 1.000

16

B-E – 0.800 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

NSGA-II 30 1.000

NSGA-III 30 1.000

17

B-E – 0.930 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

NSGA-II 30 1.000

NSGA-III 30 1.000

18

B-E – 0.862 0.862 0.912 0.922 0.922 0.922 0.940 0.952 0.932 0.952

NSGA-II 40 0.890 0.913 0.950 0.952

NSGA-III 50 0.862 0.913 0.952

19

B-E – 0.987 1.000 0.987 1.000 1.000 1.000 1.000 1.000 1.000 1.000

NSGA-II 30 0.988 1.000

NSGA-III 30 0.988 1.000

20

B-E – 1.000 1.000 1.000 1.000 1.000 0.990 0.990 0.990 1.000 0.990

NSGA-II 30 1.000

NSGA-III 30 1.000

21

B-E – 0.921 0.950 0.938 0.967 0.983 0.966 0.966 0.966 0.966 0.966

NSGA-II 40 0.925 0.950 0.971 0.983

NSGA-III 50 0.933 0.950 0.983

22

B-E – 0.983 0.983 0.983 0.983 0.983 0.983 0.983 0.983 0.983 0.983

NSGA-II 40 0.995 0.998 1.000

NSGA-III 50 0.995 0.995

23

B-E – 0.938 0.946 0.953 0.961 0.961 0.962 0.955 0.962 0.969 0.969

NSGA-II 40 0.939 0.961 0.969 0.970 0.970 0.977

NSGA-III 60 0.939 0.961 0.977

24

B-E – 0.975 0.975 0.975 0.975 0.975 0.983 0.975 0.983 0.975 0.983

NSGA-II 40 0.985 0.992 1.000

NSGA-III 40 0.985 0.988 1.000

Gray values are highlighted the higher accuracy between the methods for the channels.

argue that this fact is because of the amount of data. Therefore,
future work will also analyze more parameters related to the
classifier (i.e., number of neighbors for KNN, and kernel as well
as kernel parameters for SVM), how the accuracy is affected by
the number of seizure periods/trials, and then we will figure out a
possible relationship between the feature extraction method, the
classifier and classifier’s parameters, and more factors (Sample
rate, wet or dry electrodes, EEG device, etc.) that can affect a
solid conclusion.

As it is shown in Figures 6, 7, independently of the feature
extraction method and if NSGA-II or NSGA-III is used for
channel selection, SVM was the most highly-used classifier in

general, but KNN was also highly used. These data also show that
KNN is more highly used with DWT-based features than EMD-
based features. NB was the classifier with the lowest percentage of
use for both approaches, so, for our future steps, we will consider
these findings and use that computational cost for testing other
important parameters related to each classifier, instead of testing
NB again.

In general, the results presented in this paper, have been shown
that our approach is able to classify epileptic seizure and seizure-
free periods with an accuracy up to 0.97 ± 0.05 in average, using
only one EEG electrode. This result was obtained using DWT-
based features, but if we use 2 or more channels, the accuracy
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FIGURE 7 | Comparison of the most-used classifiers by NSGA-II (left) and NSGA-III (right) for the 24 patients with DWT-based feature extraction.

increase to 0.98 and 0.99, specially when the EEG channels are
selected by NSGA-III (see Table 5). In the state-of-the-art, there
are some relevant works, where authors are presenting different
methods for feature extraction and classification with the same
dataset, under different experiment setups. Table 5 presents a
general overview of that for analysis and comparison purposes.

Table 5 shown the state-of-the-art and the classification
accuracy of our approaches using EMD-based or DWT-based
features, as well as NSGA-II or NSGA-III. It should be noted
that our results are not directly comparable with previous
works, since we are using a lowest amount of EEG channels,
which were found by NSGA-based algorithms and we are
using 24 subjects for the experiments, as well as different
experimental setups. It should be noted that the average
values presented in our results were obtained from Tables 1–
4, which correspond to the results obtained in the Pareto-
front for each subject in the dataset. Also when using 2
or 3 channels, the average accuracy is affected if for some
subjects, the highest accuracies there were no obtained with
that amount of EEG channels (See Tables 1–4), i.e., using
features EMD-based the Pareto-front for NSGA-III is composed
as: 0.992 of accuracy with 1 channel, and 1.00 of accuracy
using 4 EEG channels, but there are no information about a
combination with two or three channels for obtaining accuracies
in the Pareto-front.

Most of the studies presented in Table 6, are based on invasive
seizure EEG signals, which have better signal quality (Andrzejak
et al., 2001). Therefore, their performance should be re-tested
on non-invasive EEG signals for continuous monitoring. An
interesting fact in the presented works is that SVM classifier is
the most widely used, and it has exhibited the highest accuracies
compared with other classifiers and neural networks, which is
consistent with our own results.

According to our results, NSGA-III is able to find the
most relevant EEG channel combinations using DWT-based
features for obtaining up to 0.99 of accuracy in average using
only 3 channels, looking forward for improving the general
performance of our proposal and for testing with more public
dataset with epileptic seizures, we will propose new experiments
considering more than two objective functions in the problem
and verify if NSGA-III is still the best method for solving this
problem (Deb and Jain, 2013; Jain and Deb, 2013). We show in
our results that for some subjects the best accuracy can be reached
using 1-3 channels and for others with more than 4 channels.
For this reason, we propose as future work to test different
methods trying to improve the channel selection process, and for
decreasing the complexity. This can be by testing and comparing
methods such as the one presented by Bhattacharyya and Pachori
(2017), which selects a channel with the lowest SD and then four
channels with the highest MI with the previously chosen channel.

The epileptic seizure classification using EEG signals is
important for evaluating the state of the brain. The evolution
of the signals by continuous monitoring (Panayiotopoulos
and Koutroumanidis, 2005; Cho and Kim, 2019), will enable
prediction with a low number of EEG channels and this will
make it easier to use, allowing long-term monitoring using a
possibly personalized portable EEG device. However, there are
several challenges that must be addressed before implementation
in real life. It is mainly because epilepsy can cause a variety of
other neurological disorders (i.e., depression, anxiety, etc.) that it
should be studied additionally to distinguish between an epileptic
seizure and seizure-free. In that direction, our future efforts will
also include the study of epilepsy-related disorders and how
they can be recognized on EEG signals. A possible portable
low-density EEG device will facilitate the monitoring in daily
life, which will allow health care professionals more confident
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TABLE 5 | Comparison of relevant existing methods for epileptic seizures classification using the CHB-MIT Scalp EEG dataset presented in Shoeb (2009).

References Method Subjects,

channels

Evaluation

Rafiuddin et al., 2011
Energy and coefficient of variation extracted from DWT,

interquartile range, median absolute deviation from raw

signal.

23, 23 0.80 of accuracy, using 80% for training.

Khan et al., 2012
Relative values of energy and a normalized coefficients of

variation from DWT.

5, (23, 24, or

26)

0.91 of accuracy, using 80% for training.

Zabihi et al., 2015
Seven features from the intersection sequence of

Poincaré section with phase space.

23, 23 0.93 and 0.94 of accuracies, using 25%

and 50% for training, respectively.

Bhattacharyya and Pachori,

2017

Three features extracted from different oscillatory levels

using multivariate extension of EWT.

23, 5 0.99 of accuracy, using 10-fold

cross-validation.

Solaija et al., 2018
Signal curve length of the time-domain EEG signal and

the mode powers of the dynamic mode decomposition.

12, 18 0.87 of sensitivity, using 50% for training.

Moctezuma and Molinas,

2019a

Teager and instantaneous energy, Higuchi and Petrosian

fractal dimension, and DFA from 2 IMFs based on the

EMD.

24,5 0.93 of accuracy in average, 10-fold

cross-validation.

Proposed method using

EMD-based features

Teager and instantaneous energy, Higuchi

and Petrosian fractal dimension from 2

based on the EMD.

24, 1–3 0.93 ± 0.06, 0.95 ± 0.06, and 0.95 ±

0.05 of accuracies in average using

10-fold cross-validation for 1, 2, 3, and 4

channels selected by NSGA-II.

24, 1–3

channels

0.93 ± 0.06, 0.94 ± 0.06, and 0.96 ±

0.04 of accuracies in average using

10-fold cross-validation for 1, 2, and 3

channels selected by NSGA-III.

Proposed method using

DWT-based features

Teager and instantaneous energy, Higuchi

and Petrosian fractal dimension from 4

decomposition levels of the DWT.

24, 1–3 0.97 ± 0.05, 0.97 ± 0.04, and 0.98 ±

0.02 in average using 10-fold

cross-validation for 1, 2, and 3 channels

selected by NSGA-II.

24, 1–3 0.97 ± 0.05, 0.98 ± 0.03, and 0.99 ±

0.01 of accuracies in average using

10-fold cross-validation for 1, 2, and 3

channels selected by NSGA-III.

TABLE 6 | Comparison of some relevant existing methods for epileptic seizures classification using different datasets.

References Method Subjects,

channels

Evaluation

Srinivasan et al., 2007
Features based on approximate entropy and

classification using Elman and probabilistic neural

networks.

5, 1 1.00 of accuracy.

Subasi and Gursoy, 2010
Five levels of decomposition using DWT and features

using principal component analysis (PCA), independent

component analysis (ICA), and LDA. The classification

was using SVM.

5, 1 0.987, 0.995, and 1.00 of accuracies for

features based on PCA, ICA and LDA,

respectively.

Acharya et al., 2012
Entropies-Fuzzy Classifier with three classes, normal vs.

pre-ictal vs. epileptic.

5, 1 0.981 of accuracy.

Sharma and Pachori, 2015
Features based on two-dimensional (2D) and

three-dimensional (3D) PSRs of IMFs from EMD, and

least-square SVM (LS-SVM) classifier.

5, 1 0.986 of accuracy.

Zhang et al., 2018
Using the TUH EEG corpus, they used 10-s segments

with a sample rate of 250 Hz and they computed 24

features per channel. Six different classifiers were

compared: SVM, NB, KNN, RF, gradient boosting and

logistic regression.

43, 22 0.994 of accuracy using SVM.

Gupta and Pachori, 2019
Features based on Fourier-Bessel series expansion and

classified using LS-SVM

5, 1 0.99 of accuracy in the best case.

Sharma et al., 2020
Third-order cumulant (ToC) and neural network with

softmax classifier.

5, 1 1.00 of accuracy.

de la O Serna et al., 2020
Energy features from sub-bands extracted using the

Taylor-Fourier filter bank and LS-SVM.

5, 1 0.948 of accuracy.
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management of the seizures, through not only the service in a
hospital or laboratory but also in conjunction with the recent
ideas and progress in telehealth and telemedicine (Bingham and
Patterson, 2007; Smith, 2016; Kissani et al., 2020).

From the results presented in this paper, we can figure
out that EMD-based or DWT-based features can be useful
for epileptic seizure classification, with this, a possible subject-
tailored method can consider another gene in the chromosome
for the optimization process and thus select the most useful
method for detecting epileptic seizures for that subject. This will
be tested in our future works, considering the findings here and
also testing different chromosome representations for solving all
the possible problems related to the parameters optimization at
the same time.

The computational complexity of themethod used for channel
selection is O(MN2), in the best case. However, the study
of the most relevant channels is important and it must be
performed for analysis and as this work presented, to verify if
the epileptic seizures can be detected using a few non-invasive
EEG channels. The limitations of the methods used for feature
extraction are related to the well-known problems of EMD,
such as the selection of the best spline, the end effect, and
the mode mixing problem (Huang et al., 1998; Rilling et al.,
2003; Boutana et al., 2010). For DWT, the main problems are
related to the parameters selection, such as the number of
levels of decomposition and the mother function. Some of these
limitations have been already considered in the literature or can
be solved by using recent progress in code optimization (Lam
et al., 2015; Dask Development Team, 2016; Blank and Deb,
2020), but other limitations are not yet well-established, and
more research is necessary. Our future efforts for classification
will be for testing and comparing shallow convolutional neural
networks and Riemannian classifiers since they have been shown
high accuracies for EEG signals classification (Kalunga et al.,
2016; Schirrmeister et al., 2017; Lotte et al., 2018).
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