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Resting-state Arterial Spin Labeling (rs-ASL) is a rather confidential method compared

to resting-state BOLD. As ASL allows to quantify the cerebral blood flow, unlike

BOLD, rs-ASL can lead to significant clinical subject-scaled applications. Despite directly

impacting clinical practicability and functional networks estimation, there is no standard

for rs-ASL regarding the acquisition duration. Our work here focuses on assessing the

feasibility of ASL as an rs-fMRI method and on studying the effect of the acquisition

duration on the estimation of functional networks. To this end, we acquired a long

24min 30 s rs-ASL sequence and investigated how estimations of six typical functional

brain networks evolved with respect to the acquisition duration. Our results show that,

after a certain acquisition duration, the estimations of all functional networks reach their

best and are stabilized. Since, for clinical application, the acquisition duration should be

the shortest possible, we suggest an acquisition duration of 14min, i.e., 240 volumeswith

our sequence parameters, as it covers the functional networks estimation stabilization.

Keywords: functional magnetic resonance imaging, arterial spin labeling, resting-state fMRI, acquisition

duration, modeling

1. INTRODUCTION

Functional MR imaging (fMRI) builds the links between location and function in the brain. The
two main sub-domains in fMRI are task-based fMRI and resting-state fMRI. In task-based fMRI,
the location of a function is considered to be where the acquired signal matches with the task
guidelines given to the subject (Poldrack et al., 2011). In resting-state fMRI (rs-fMRI), as no
task is given, the focus is on fluctuations in voxels time-series induced by spontaneous neural
activations. Similarities in these time-series in different areas have been shown to not be random
but to be matching the function of the brain (Biswal et al., 1995). These similarities between neural
activation pattern define the functional connectivity of the brain, and show the underlying cerebral
architecture is organized into functional specialized units, called networks, communicating with
each other (Varoquaux and Craddock, 2013; Fan et al., 2016). Resting-state functional imaging
aims to identify functional networks of the brain and to depict how they interact outside any
structural connectivity consideration (Van den Heuvel and Hulshoff Pol, 2010). As the resting-state
is rather easy to achieve, especially for the pediatric and elderly population but also for cognitive
impaired patients, rs-fMRI has found some niche clinical applications in diseases investigation.
The key concept is to consider the brain as a unique integrative network of the estimated functional
networks, assimilated with the mathematical structure of a graph (Van den Heuvel and Hulshoff
Pol, 2010; Wang et al., 2010). The graph properties model the functional architecture: each node
corresponds to a functional network, and edges configuration depicts how they interdepend. For
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instance, functional connectivity is altered in disease like
schizophrenia (Lynall et al., 2010; Kindler et al., 2015),
major depression (Mulders et al., 2015), Alzheimer’s disease
(Sanz-Arigita et al., 2010; Agosta et al., 2012). Rs-fMRI, as
a global investigation of function, is also appropriate for
neurodegenerative diseases like multiple sclerosis (Faivre et al.,
2012; Filippi et al., 2013; Cruz-Gómez et al., 2014), Parkinson’s
disease (Gao and Wu, 2016), or amyotrophic lateral sclerosis
(Mohammadi et al., 2009; Trojsi et al., 2017).

Another subdivision in fMRI concerns the way the signal
is obtained. The two major techniques are Blood Oxygenation
Level Dependent (BOLD) fMRI and functional Arterial Spin
Labeling (fASL). Based on neurovascular coupling effects, BOLD
techniques rely on the local signal variation induced by the
neuron consumption of blood oxygen (Kim and Ugurbil, 1997).
Arterial Spin Labeling (ASL) is an MRI perfusion technique that
usesmagnetically labeled arterial water protons as an endogenous
tracer (Detre et al., 1992). An inversion pulse labels the inflowing
blood, and, after a delay called the post-labeling delay, a labeled
image of the volume of interest is acquired. The subtraction of
the labeled image from a control image, i.e., non-labeled, reflects
the quantity of spins that have perfused the imaged volume,
producing what is commonly called a perfusion-weighted (PW)
image. The PW map can be used to quantify the cerebral
blood flow (CBF) under some assumptions (Buxton et al., 1998;
Borogovac and Asllani, 2012). The absence of a contrast agent
injection makes ASL well-suited for CBF longitudinal studies,
particularly for a pediatric population or for a population
with poor venous access or contrast agent contraindication.
The quantification of CBF is the main advantage of ASL over
BOLD. Indeed, a BOLD signal provides an indirect and non-
quantitative measurement of neural activity, as it results from a
combination of variations in CBF, cerebral blood volume, and
cerebral metabolic rate of oxygen (Buxton, 2010). The main
drawback of ASL is its lower signal-to-noise ratio compared to
BOLD fMRI. The repetition time (TR) is also twice to three times
higher in rs-ASL compared to resting-state BOLD (rs-BOLD),
which impacts its temporal resolution. Furthermore, ASL can
be implemented through numerous MRI sequences, and meta-
analyses can be difficult to set up, as ASL shows a high sequence
parameter dependency (Buxton et al., 1998; Grade et al., 2015;
Mutsaerts et al., 2015). Nevertheless, a consensus seems to be
emerging over the years (Alsop et al., 2015). BOLD is, however,
predominant in clinical usage and in academic research and is
therefore considered the gold standard in rs-fMRI. Consequently,
rs-ASL has been mostly used for research purposes. However,
the recent increasing involvement of all MRI stakeholders is
highly beneficial in order to further develop rs-ASL usage in
terms of a guide for clinical practitioners (Grade et al., 2015)
as well as consensus on implementation (Alsop et al., 2015),
feasibility, and viability (Chen et al., 2015). Despite its lower
SNR, but thanks to its closer proximity to neural activation
(Duong et al., 2001; Tjandra et al., 2005) and CBF quantification,
rs-ASL has been proven to be a serious contender to resting-
state BOLD in schizophrenia (Zhu et al., 2015) and Alzheimer’s
disease (Alsop et al., 2010; Zhang et al., 2017). Resting-state ASL
has also found its own clinical applications with investigation

of chronic fatigue syndrome (Boissoneault et al., 2016) and
catatonia (Walther et al., 2016).

The acquisition duration is an important parameter in an rs-
fMRI study with strong practical consequences. Most current
rs-ASL studies work with a duration from 8 to 13min and a TR
from 3 to 4 s, i.e., 120–260 images. Intuitively, one would assume
the longer the duration the better the sampling of the signal
correlation across the brain and, thus, the better the acquisition.
However, this requires us to define what “better” actually
means and does not consider the practical questions of clinical
implementation and subject resting-state upholding. To the best
of our knowledge, some papers already studied the influence of
duration in rs-BOLD (Van Dijk et al., 2010; Anderson et al., 2011;
Birn et al., 2013; Laumann et al., 2015; Termenon et al., 2016;
Bouix et al., 2017), whereas, in rs-ASL, it has not been explored
yet. In this work, we first focus on the feasibility of detecting
functional networks with rs-ASL. We remain as close as what a
typical investigator of rs-ASL would experience by implementing
usual sequence, processing, and functional networks detection
methods. We then assess a trend over the duration influence
on rs-ASL detected networks quality: we do not directly assess
whether an acquisition is good at a given time but rather how it
evolves with longer durations. After describing the scores used
and the modeling approach, an in-depth analysis for the Default-
Mode Network (DMN) will be presented in order to illustrate
scores evolution on the most typical resting-state network.
Finally, we will show results for all the functional networks under
consideration and discuss a recommended sequence duration
in rs-ASL.

2. MATERIALS

2.1. Subjects
Seven healthy male right-handed subjects aged from 21 to 28
years (23.5 yo± 2.5) were involved in this study. All subjects gave
written informed consent before participating in the study. We
have maintained the homogeneity of the population in order to
limit the influence of factors, such as gender or age.

2.2. MR Acquisitions
The subjects were scanned on a 3.0T whole body Siemens
MR scanner (Magnetom Verio, Siemens Healthcare, Erlangen,
Germany) with a 32-channel head coil. A 3D anatomical T1-
weighted MP2RAGE image was acquired for each subject. The
resting-state ASL imaging was performed using a 2D EPI pseudo-
continuous (pCASL) sequence. Subjects were asked to keep
their eyes closed, to relax (mind-wandering), to lie still and to
not fall asleep. We used common parameters reported in the
literature: TR= 3,500ms, FoV= 224× 224mm2, TE= 12ms,
LD= 1,500ms and a 1250ms post-labeling delay (PLD) at the
first slice (1712.5ms at the median slice). Volumes were made
of 24 slices of 64 × 64 voxels with 5mm slice thickness
with 20% gap for a total resolution of 3.5 × 3.5 × 6mm3.
The number of volumes was 420 for a total duration of
24min 30 s.
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FIGURE 1 | Preprocessing starts with a realignment: all the functional volumes are registered with the first one. Second step is the indirect normalization of the

functional volumes. The functional data is registered on the anatomical 3D T1 (a). Then the anatomical image is registered on the MNI 152 template (b). After a

surround subtraction (c), transformations of (a) and (b) are composed to register functional data on the MNI template (d). We then used Gaussian smoothing with a

typical 6 mm FWHM radius and pass-band filtering with a range from 0.005 to 0.1 Hz. Final denoising is made with COMPCOR.

2.3. Data Pre-processing
For each subject, the raw pCASL series is divided into 46 sub-
series. The duration of these sub-series ranges from nearly 2min
(34 volumes) to 24min 30 s (420 volumes) with a time step of
30 s. For the sake of simplicity, we will only mention rounded
durations hereafter. All these subdivisions are made before any
preprocessing: the preprocessing is done independently on each
sub-series. For the preprocessing steps and their parameters,
we chose the most common ones found in bibliography. While
identifying the best preprocessing is still an open topic in rs-
ASL in particular and in rs-fMRI in general (Gargouri et al.,
2018), a general routine can be discerned in the literature.
For the preprocessing steps, we used Matlab CONN toolbox
(www.nitrc.org/projects/conn, RRID:SCR_009550) (Whitfield-
Gabrieli and Nieto-Castanon, 2012). Preprocessing starts with
the realignment of the functional data. All the functional volumes
are rigidly registered to the first one using SPM12 realign
procedure (Andersson et al., 2001). Second step is the indirect
normalization of the functional volumes (Nieto-Castanon, 2020).
It starts with the affine registration of the functional data,
with the mean volume of the realigned series as the source
image, on the anatomical 3D T1 using SPM12 inter-modality
co-registration procedure with a normalized mutual information
cost function. Then the anatomical image is registered on
the MNI 152 template using SPM12 unified segmentation

and normalization procedure (Ashburner and Friston, 2005).
In parallel, perfusion-weighted maps are computed using a
surround subtraction on the realigned functional data. Both
transformations (functional to structural, structural to MNI) are
composed to register subtracted functional data on the MNI
template. We then used Gaussian smoothing with a typical
6 mm FWHM radius (Alakörkkö et al., 2017) and pass-band
filtering with a range from 0.005 to 0.1 Hz. Final denoising was
made with aCOMPCOR, using five regressors for white-matter,
five for cerebro-spinal fluid, and the 12 from the realignment
step (Behzadi et al., 2007). All these steps are shown in
Figure 1.

3. METHODS

3.1. Detecting Networks With Seed-Based
Analysis
To obtain the mapping of individual functional networks, we
relied on seed-based analysis (SBA) (Van den Heuvel and
Hulshoff Pol, 2010). The principle of this method, the first
proposed to define functional connectivity (Biswal et al., 1995), is
quite straightforward. Considering a similarity measure [usually
linear correlation, but many others exist (Zhou et al., 2009)],
SBA builds functional areas by gathering voxels which exhibit
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a matching signal, in the sense of the chosen measure, to that
of a ROI, called the seed in this context. Even if SBA is a
very polymorphic modeling method, we used its most common
form in our work. We therefore considered linear correlation
as the similarity measure and used a set of 20 single voxels as
seeds. Seeds are spread in the expected location of six usual
functional networks: DMN, Sensori-motor, Language, Salience,
Visual, and Cerebellum. The exact positions of the seeds in the
MNI152 space are provided in the Appendix section and were
suggested by the CONN toolbox. Each seed provides a linear
correlation map of the brain. To estimate a functional network
for each seed, we statistically tested whether the signal between
the seed and a candidate voxel is positively correlated with a
risk of 1% FWER-corrected with Bonferroni procedure. This is
a tough conservative testing compared to most of rs-ASL (even
fMRI in general) studies, but we agree with the recommendation

of Eklund et al. (2016) on false positives underestimation in
fMRI literature.

3.2. Evaluation Scores
The resting-state BOLD literature suggests different acquisition
durations: 6min (Van Dijk et al., 2010), 10min (Bouix et al.,
2017), 12min (Birn et al., 2013), 25min (Anderson et al., 2011),
and even 100min (Laumann et al., 2015). In Termenon et al.
(2016), Termenon et al. focus on the tradeoff that can be made
between duration and number of subjects in a group study.
They recommend durations ranging from 7 min for 100 subjects
to 14 min for 40 subjects. The main reason of their apparent
discrepancy is the modeling. Indeed, there are many ways to
properly define a model to assess the role of acquisition duration
(a fortiori how much duration is enough), even if they lead to
different conclusions. As a pioneer work on rs-ASL, we wanted

FIGURE 2 | Seed-based estimation of subject 3 DMN with posterior seed at different acquisition durations. Four stages can be identified. At 2min (1), the map mostly

shows false positive noise detection. Between 4 and 8min (2), the false positive noise has disappeared while the posterior component of the DMN starts growing.

Between 10 and 12min (3), the posterior component is well-detected, and the frontal and the lateral components have appeared, but quite poorly. At 14min and after

(4), DMN detection is good and interestingly, stable.
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our modeling to reflect an investigator’s experience with the
impact of acquisition duration on functional network estimation.
Figure 2 illustrates the investigation of acquisition duration we
will model. The DMN estimation is validated after 14min on
Figure 2 because it matches with how the functional network is
expected to look like. In modeling terms, it is basically assessing
the overlap of the estimated network with a reference network.
In order to investigate a trend afterwards and decide which
acquisition duration is enough, the individual functional maps
were compared to a reference, as in process described in Figure 2.
For that purpose, we relied on the Multi-Subjects Dictionary
Learning atlas (MSDL) by Varoquaux et al. (2011). The MSDL
is an atlas of 17 resting-state functional networks containing
our six networks of interest and from which our seeds and
subjects are independent. The key idea is to have functional
maps close to what an expert would expect to observe when
looking for the typical functional areas investigated here. To
study the quality of the detected networks as a function of the
acquisition duration, we evaluated the overlap between the SBA
estimated functional maps and the MSDL references (simply
called “reference” hereafter) through two measures: the Jaccard’s
index and the area under curve (AUC).

Let E be a set, let (vi)i6k∈N be observations in E and
(M1;M2) ∈ {0; 1}E × {0; 1}E binary categorical variables. In
fMRI,E is the voxels space, the vi are the voxels, and the variables
M1,M2 are the functional networks to be compared, which
associate to each voxel vi: 1 if the voxel belong to the functional
network, 0 otherwise. The definition of M1 and M2 is binary
here, but it can easily be extended to probability maps. In our
case, M1 corresponds to the estimation of a functional network,
and M2 corresponds to the functional network reference from
the MSDL. Let A,B,C,D be four sets with the respective cardinals
a,b,c,d defined by















A := {vi | M1(vi) = 1,M2(vi) = 1}
B := {vi | M1(vi) = 1,M2(vi) = 0}
C := {vi | M1(vi) = 0,M2(vi) = 1}
D := {vi | M1(vi) = 0,M2(vi) = 0}

(1)

Almost all common similarity measures (Sokal measure family,
Sørensen-Dice, correlation etc.) can be defined with a,b,c,d, e.g.,
Sørensen-Dice score: 2a / (2a+ b+ c). AsM2 (MSDL reference)
can be considered as a ground-truth, therefore a becomes the
number of True Positives, b of False Positives, c of False Negatives
and d of True Negatives. We also have the Sensitivity: a/ (a+ c),
Specificity: d/

(

d + b
)

, and the Positive Predicted Value (PPV):
a/

(

a+ b
)

.

3.2.1. Jaccard’s Index
When comparing two spatially distributed data like functional
networks, a straightforward measure is the Jaccard’s index. It is
the ratio between the size of the functional networks’ intersection
and their union. It is defined by J = a/ (a+b+c) in our notation
system. It provides intuitive and visual information about the
overlap between one SBA estimation of functional network and
one reference network from the MSDL. It is also test-dependent:
changing the risk or the multiple comparisons correction at the

estimation step will also change the shape and extent of the
functional network, generally modifying Jaccard’s index. This
may be considered as a drawback, but, in fact, a statistical test
is usually used at some point when investigating fMRI data.

3.2.2. Receiver Operating Characteristic Analysis
In this section, we assume that the binary categorical variables are
parameterized by at least one parameter. For example, in our case,
it could be the p-value for the statistical test of correlation α that
was used to estimate functional networks from the correlation
map. Let r be our parameter, ar , br , cr , and dr the previously
defined cardinals in (1) now parameterized by r, and let define
a set

{(

x (r) , y (r)
)

, r ∈ [−1, 1]
}

⊂ [0, 1]2 by











x(r) = 1−
dr

dr + br
y(r) =

ar

ar + cr

(2)

The implicitly defined function f : x 7→ y is called the Receiver
operating characteristic curve (ROC-curve), and its integral
∫ 1
0 f (x)dx is simply called the Area Under Curve (AUC). In the
case where M2 is considered to be the truth, f is just informally
f : 1 − Specificity 7→ Sensitivity. The AUC has the interesting
property to not be test-dependent, as it covers all possible values
of the threshold parameter (e.g., risk/correlation). It illustrates
how a functional map can be close to the reference by considering
all values of the considered parameter, while the Jaccard’s index
reflects how it is close to the reference by considering one
value of the given parameter. Hence AUC seems a better way
to assess the trend of interest from a theoretical point of view.
However, it is further away from the practical proximity and
easier interpretation of the Jaccard’s index modeling offers.

3.3. Modeling Scores Evolution With
Respect to the Duration
With each of the 20 seeds are 322 associated functional network
estimations that correspond to seven estimations per each of
the 46 different acquisition durations (seven subjects, 46 sub-
series). For each seed, and for one of the six functional network
references from the MSDL, both Jaccard’s index and AUC
are computed between the reference and the 322 estimations
associated with the seed. The last step is to model the
scores evolution according to the acquisition duration for all
subjects and for each combination between one seed and one
reference. Let us first check assumptions to select a suitable
regression model. Assuming the rs-ASL sequence lasts long
enough to cover all usage with 24min 30 s, extrapolation for
a duration longer than 24min 30 s seems superfluous. We
are not interested in an explicit formula between scores and
acquisition duration, as there is no theoretical model, even
in BOLD, on the dependence between acquisition duration
and functional network estimation. Moreover, even processed
independently, within-subject functional networks estimations
have a strong dependency since they come from the same
acquisition. Under these three conditions, a local non-parametric
regression is very well-suited. We chose to use the LOESS
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FIGURE 3 | Each boxplot corresponds to one seed and shows the distribution of Jaccard’s index between the estimated functional area corresponding to the

considered seed on the one hand, and the MSDL DMN reference on the other hand, for all subjects and all durations. The seeds are grouped by color, each

corresponding to one of the six functional areas considered. As expected, the seeds located in the expected DMN location (in pink) give the best results.

regression model (Cleveland and Devlin, 1988). While the model
name is a reference to a geological structure, LOESS is commonly
understood as “locally estimated scatterplot smoothing”. LOESS
is a local polynomial regression computed on subsets of the whole
dataset with each subset being defined for each time-points by a
weighted K-nearest neighbors algorithm. We used second degree
polynomial functions with a 0.8 span. For a more comprehensive
description of LOESS, see Cleveland and Devlin (1988). A LOESS
regression curve is computed for each score on each set of 322
overlap scores corresponding to one combination of seed and
MSDL references.

4. RESULTS

4.1. Effect of the Acquisition Duration for
the Default Mode Network
In this section, we present an in-depth analysis of the DMN.
In the set of 20 seeds we used, many should not be inspected
when used in combination with MSDL DMN. The main reason
is that most of the combinations have no objective basis for
detecting the DMN. Otherwise, the seed may have failed to
detect precisely the networks it was meant to detect, which is
expected with very short acquisition duration. A good way to
get an idea of the quality of the overlap between the functional
maps associated with a seed and a reference for all durations
is to check the boxplots of the Jaccard’s index as in Figure 3.
Boxplots give an overview of the results for rs-ASL: for the
DMN reference, Jaccard’s indices have higher values for the

seeds placed in order to detect it. Prefrontal and posterior seeds
seem to work well, while lateral DMN seeds provide lower
scores but still higher than any other seeds. Figure 4 shows the
evolution of the estimated DMN with the posterior seed and
corresponding scores for one subject. The depiction made by the
scores of the overlap between the estimation of the DMN and
the MSDL reference matches with the four stages identified in
Figure 2. Figure 5 shows the Jaccard’s index, AUC, Sensitivity
and Predicted Positive Value (PPV) for each subject and at each
acquisition duration. We chose to report the positive predicted
value rather than specificity for two main reasons. On the one
hand, true negatives can have multiple definitions in fMRI since
it depends on the voxels considered: the whole volume, only the
brain, or any smaller ROI, such as gray matter. Although it is
logical to consider only brain voxels for functional activity, this
implies an extremely high number of true negatives since the
volume of a functional network is 10–100 times smaller than
the one of the whole brain. Therefore, the specificity reaches
values too high to provide relevant information on similarity
between functional areas. On the other hand, like specificity,
PPV plays a similar role with respect to sensitivity: specificity
gives a complementary information to sensitivity in the totality
of voxels whereas PPV gives a complementary information in the
union of the reference and the estimated functional area. LOESS
on Jaccard’s index, as well as on AUC, models quite well what
can be observed by looking directly at the functional map as in
Figure 2. Jaccard’s index seems to stabilize after 12–13min and
AUC at an earlier acquisition duration around 9–10min. We
could have expected sensitivity and PPV to follow the same trend.
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FIGURE 4 | Subject 4 DMN detection (in blue) with prefrontal seed and MSDL DMN reference (in red) over a 2–24min duration with 2min steps. Maps are shown in

MNI152 space.

Actually, sensitivity just grows over time but more slowly for
longer durations. Interestingly, PPV reaches a peak in the second
stage mentioned above. The seven subjects show different levels
of response but good correlations (except for the subject 2 with
AUC), i.e., the trend is the same among subject, rather than an
average effect induced by the LOESS. Moreover, results observed
for the DMN can be generalized for almost every combination of
seeds and references as we will see.

4.2. Effect of the Acquisition Duration for
All Functional Networks
As seen for the DMN, many combinations between seeds
and references should not be investigated since they are not
functionally meaningful and will yield to very low overlapping
scores (e.g., prefrontal seed with visual cortex). With more than
6,000 functional maps generated (20 seeds, seven subjects, 46
different acquisition durations), a visual checking of all the

maps is not practicable in order to discard seeds that failed to
detect corresponding functional networks. In order to investigate
only combinations between seeds and references that provide
successful detections, we use empirical criteria on the scores
distribution. For Jaccard’s index, we select the combinations
for which at least 50% of observations have J > 0.1. The
reasoning behind the choice of the criterion was as follows. With
Figure 4 and additional visual inspections on different subjects,
we observe that the seed in prefrontal cortex is successful in
the detection of the DMN after a certain acquisition duration.
Hence, the corresponding boxplot to the prefrontal seeds in
Figure 3 provides a Jaccard’s index distribution of a successful
seed. We assume then that the combinations between seeds
and references that have a similar distribution or a better
one (i.e., higher values) also correspond to seeds that are able
to provide successful estimation of functional networks. We
choose to characterize these seeds considered as successful in
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FIGURE 5 | Jaccard’s indices (A), AUC (B), Positive Predicted Value (C), and Sensitivity (D) evolution with time with their associated LOESS curve for the seed

associated with prefrontal DMN. On all subjects, Jaccard’s index increases with duration before 10–12min, then stabilizes. The AUC shows the same trend with an

earlier stabilization, around 9–10min. PPV grows rapidly, reaches a peak at 8min, then decreases slowly. Finally, Sensitivity increases with time, but more slowly for

longer durations. Subjects show different level of response but good correlations.

the estimation, and a fortiori, corresponding boxplots, when the
median is above 0.1. Using the same considerations on AUC,
we also considered the median with a threshold of 0.7. These
thresholds on the median values may seem rather low, but let
us remember that all the acquisition durations are taken into
account, even the shortest ones. Figure 6 shows the median
values of the scores for each set of 322 functional networks
estimations corresponding to combinations between seeds and
references. The two thresholds lead to an almost identical choice
for the selection of combinations. All seeds have their best
scores with the expected reference, and each of the six functional
networks are considered to be sufficiently well-detected with SBA
for Jaccard’s index in accordance with our selection rules. The
AUC suggests as good enough one more seed for cerebellum but
considers that salience is not detected well-enough with our set
of seeds.

Figure 7 shows the range of durations where scores are not
significantly different from their maximum values (5% risk) for
each selected reference/seed combination. Each line corresponds
to a LOESS curve computed for one score (Jaccard’s index/AUC)
and one combination between seed and reference network (322
functional networks estimation per combination). The colors on

the heatmap are scaled between minimum and maximum values
of the corresponding score and matches with the stages already
described for DMN in the previous section. Indeed, for every
combination between seeds and references, both scores rapidly
increase, and start to stabilize after a certain duration. However,
for both measures, the 95% confidence interval around the
maximum suggests a later start in the stabilization than suggested
directly by the LOESS curve values. While some combinations
scores look already stabilized at 12min, almost all of them
are close to their maximum value at 16min. Figure 8 shows a
collection of functional areas obtained at a duration of 14min.
While the language seed struggles to detect spatial components
far from the seeds, all the other ones provide good detection of
expected functional networks. The two bottom rows show the
same subjects and the same reference with different seeds.

5. DISCUSSION

Our two objectives were to confirm the feasibility of resting
state ASL and to evaluate the influence of the acquisition
duration on the estimation of functional areas. Figures 4, 8 with
corresponding scores in Figure 6 and in Figure 7 confirm that,
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FIGURE 6 | Color maps of median values of Jaccard’s indices and AUC for all combinations of seeds and MSDL references. Green circles show where seeds are

considered to provide successful detection with respect to our thresholding rules (0.1 for the Jaccard median and 0.7 for the AUC median). The first column of

Jaccard’s index median values corresponds to the boxplots shown in Figure 3, which showed distribution of Jaccard’s index for every seeds in combination with the

MSDL DMN reference. The color code used for the seed here is the same as in the boxplots.

even with a classic sequence, and the basic preprocessing and
modeling we used, ASL is fully viable as a resting-state method.
Regarding the impact of acquisition duration, themost important
result is the stabilization of the functional areas estimation after
a certain duration for both measures, Jaccard’s index and AUC,
with a strong inter-subjects correlation (i.e., not a mean-effect
induced by the LOESS modeling). Since the acquisition should
have the shortest duration possible for clinical implementation,
the recommended duration eventually corresponds to the start
of the stabilization stage. Stricter definitions of the stabilization
stage would lead to longer duration since they would heavily
rely on the LOESS curve maximum by considering as stable
just a narrow interval around the maximum. However, since
after 12–14min the score variations are low, a slight change in
preprocessing or in the population could also lead to an unstable
maximumwithout changing the trend. Relaxed definitions would
keep recommended duration stability, but they may consider
a functional area as good enough when a human investigator
would not. Actually, early stages of acquisition are associated
with poor representation of functional areas not in the same
connected component that the seed, as we saw with Figures 2, 4.
Based on our different results, 14min seems to be an interesting
compromise between shortest duration and best estimation of
functional networks.

Regarding the rs-BOLD, others studies have suggested
different values for duration/number of volumes: 6 min/72 vol.
(Van Dijk et al., 2010), 10 min/250 vol. (Bouix et al., 2017),

12 min/275 vol. (Birn et al., 2013), 25 min/750 vol. (Anderson
et al., 2011), and 100 min/2,700 vol. (Laumann et al., 2015).
In Termenon et al. (2016), Termenon et al. give as reliable
configuration from 14 min/1,200 vol. for 40 subjects to 7
min/580 vol. for 100 subjects. Each paper assesses the effect
of acquisition duration in rsBOLD differently: comparison to
networks obtained from the longest acquisition (Bouix et al.,
2017), connectivity between regions of interest (Birn et al.,
2013), reproducibility (Anderson et al., 2011; Laumann et al.,
2015), and scoring on graph properties (Termenon et al., 2016).
Hence, because of the different modeling, it is hard to say
where our rs-ASL suggestion would be placed compared to
the different rs-BOLD results, notwithstanding the different
sequence and preprocessing. The different quality assessments
are not a drawback however, as each work explores different
aspects of the impact of the acquisition duration/number of
volumes. A natural area of future investigations would be to
compare rs-ASL performance to rs-BOLD with the inclusion
of acquisition duration/number of volumes as a parameter.
Furthermore, as we wanted to also confirm the efficiency of
ASL in resting-state fMRI, we naturally focused on a subject
scale study and functional networks estimation, but, as rs-BOLD
literature shows, numerous aspects of the effect of acquisition
duration are yet to be explored.

In order to estimate functional networks, the two most
common methods are SBA and Independent Component
Analysis (ICA). As ICA is also widely used in rs-fMRI, an
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FIGURE 7 | Color maps of Jaccard’s Index and AUC LOESS curve value with respect to the acquisition duration for all selected reference/seed combination. Each

line corresponds to the computation of one LOESS curve on a subset of 322 functional networks estimations, these subsets of estimations corresponding to a

selected seed. Every combination has a rapidly increasing score followed by a stabilization stage. The PPV peak shows on all combinations around 9min and appears

always just before score start stabilizing. Maximum and its 95% confidence interval may be unstable since score variations are often low after PPV peak.

investigation of the functional network’s spatial stabilization in
rs-ASL using the definition of functional connectivity through
statistical independence should be beneficial. Indeed, it is
not totally guaranteed that statistical independence and linear
correlation (or any other alternative modeling of functional
connectivity) provide a similar stabilization phenomenon, even
if SBA and ICA eventually provide similar functional networks
(Cole et al., 2010; Joel et al., 2012).

Note that the DMN, the sensori-motor cortex, and the
cerebellum have an almost consensual spatial definition among
the authors, unlike language, visual and salience, which show
a greater spatial variability (see for example http://neurosynth.
org/). As we provide an evaluation only with one set of references
(from the MSDL), this could be a limitation of our work and
could call into question the score values we obtained. However,
the spatial variability of the areas of interest in atlases is low

enough to change only the scores but not the trend observed in
this paper. Indeed, overlap scores can be interpreted as distances,
and, in that sense, we measured the distance between functional
networks estimation and fixed points (the set of references).
Changing the set of references modifies scores values but not
the stabilization phenomenon, as the references are still fixed.
Score values were used for seeds validation by thresholding
overlap scores with MSDL references. After considering only
the successful seeds, the score values matter less than their
stabilization after a certain acquisition duration. Regarding the
score values, using a ground truth built from subjects would most
likely bias the scores toward higher values but could also question
the validity of such ground truth, where confidence in atlases
is much stronger. Niazy et al. (2011), Zhu et al. (2013) report
that a Sørensen-Dice score of 0.3 corresponds to a good overlap,
regarding the reproducibility of functional networks between
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FIGURE 8 | Collection of estimated functional networks at 14min with the corresponding scores: Jaccard’s Index, Area Under the Curve, Sensitivity, and PPV. The

two bottom rows show the same subjects and the same reference but with different seeds. The third row shows the estimated (blue) and reference (red) visual

network for the same subject (subject 7) but different seeds (“dorsal left” seed on the left and “dorsal right” seed on the right). Similarly, the bottom row shows the

same subject (subject 1) with different seeds (“Prefrontal” and “Posterior”).

rs-ASL and rs-BOLD (i.e., with ground-truth built from same
set of subjects). As a Sørensen-Dice score of 0.3 corresponds to
a Jaccard’s index of 0.1761, and our subjects are independent
from the MSDL BOLD atlas, the median values of Jaccard’s
indices we obtained in Figures 3, 6, or the values we obtained in
Figures 4, 8, confirm a posteriori the criteria for seeds selection,
and a fortiori, rs-ASL’s ability to provide good estimation of
functional networks.

Preprocessing influence should also be considered as positive:
since we use typical and basic preprocessing, more advanced

1Jaccard= Dice/(2− Dice).

techniques should foster functional networks estimation, and
therefore, provide the same or an earlier stabilization, still
keeping our suggestion as a sufficient duration. The same is
true for ASL readout approach. Using a 3D readout is probably
an improvement in our sequence, as it tends to have higher
SNR compared to 2D EPI, but not every investigator has access
to 3D sequences (Alsop et al., 2015). Not to mention readout
approach, ASL is very sensitive to changes in its parameters.
Since we are studying the influence of acquisition duration for
a given set of parameters, the suggested sufficient duration of
14 min for rs-ASL could be strongly influenced by the sequence
parameters. Although the influence of each of them is to be kept
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in mind, most of them should not disturb the investigators, as
most of them have a specific bibliography that goes well-beyond
the issue of the acquisition duration. However, two sequence
parameters may have a deep impact on our results: post-labeling
delay (PLD) and repetition time (TR). For the PLD, the 1,250ms
duration we used for the first slice corresponds to 1712.5ms
at the median slice. Shorter PLD, like 600 ms, seems to give a
better functional estimation (Viviani et al., 2011; Liang et al.,
2012, 2014). We kept the PLD quite long, close to the 1,800 ms
at the median slice, which is recommended for best estimation
of CBF (Alsop et al., 2015; Chen et al., 2015). Indeed, the
main advantage of ASL is ultimately to compute CBF, although
we focused on functional areas estimation in this paper. The
critical parameter in our opinion is repetition time. It defines the
sample frequency of the resting-state signal and turns our 14min
suggestion into 240 volumes since we only work numerically on
the signal. Its variation may shift the stabilization step toward a
higher/lower number of volumes and hence a longest/shortest
duration, without changing the stabilization of the functional
networks estimation after a certain number of volumes (i.e., same
signal but different sampling frequency). Moreover in rs-ASL, TR
values are typically between 3 and 5 s, which is too wide to assume
the locally linear dependence between TR and optimal duration.
As a pioneer work on the effect of acquisition duration in rs-ASL,
we focused more on the modeling rather than investigating the
influence of the TR. In rsBOLD, the TR has already been shown
to be able to impact estimation considering a fixed number of
volumes (Wu et al., 2011), but for rs-ASL a specific investigation
of TR in combination with the number of volumes would be
highly valuable.

6. CONCLUSION

Usual sequence, preprocessing, and SBA managed to reconstruct
the six typical functional networks of interest at the subject scale,
which confirms the feasibility of ASL as a rsfMRI technique. The
main objective was to find the amount of data to acquire in rs-
ASL to properly estimate functional networks, considering that
clinical implementation requires the shortest possible duration.
Our results show that functional networks estimations stabilize
after a certain number of volumes/duration. For our set of
sequence parameters, we suggest 240 volumes/14min to achieve
an overall stabilization. Any method that improves the detection
of functional networks is likely to provide an earlier stabilization
start, i.e., a lower number for volume/duration. Hence, since we
use a basic and typical sequence, preprocessing and estimation,

240 volumes/14min should be enough for most rs-ASL usage.
Last, the exploration of the impact of the TR and PLD in
combination with acquisition duration was beyond the scope
of this article but would be highly beneficial for sequence
implementation since we forecast them to be the two parameters
that may shift the stabilization start toward higher number
of volumes.
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APPENDIX—SEED LOCATION IN MNI152

Expected networks Seed Location in MNI152

DMN Prefrontal (1, 55, −3)

DMN Left (−39, −77, 33)

DMN Right (47, −67, 29)

DMN Posterior (1, −61, 38)

Motor Left (−55, −12, 29)

Motor Right (56, −10, 29)

Motor Superior (0, −31, 67)

Visual Primary (2, −79, 12)

Visual Ventral (0, −93, −4)

Visual Dorsal left (−37, −79, 10)

Visual Dorsal right (38, −72, 13)

Salience Cingulate anterior (0, 22, 35)

Salience Prefrontal left (−32, 45, 27)

Salience Prefrontal right (32, 46, 27)

Language Frontal gyrus left (−51, 26, 2)

Language Frontal gyrus right (54, 28, 1)

Language Temporal gyrus left (−57, −47, 15)

Language Temporal gyrus right (59, −42, 13)

Cerebellum Anterior (0, −63, −30)

Cerebellum Posterior (0, −79, −32)
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